Стали прочностные характеристики: Основные свойства стали — статьи компании «Стройсталь»

Содержание

Основные свойства стали — статьи компании «Стройсталь»

Услуги

Сварочные работы Резка металла Доставка металлопроката

Полезная информация

Новости Статьи Сертификаты ГОСТы Отзывы Вопрос – ответ Акции Реквизиты

Скачать прайс

Новости

ВНИМАНИЕ!!!

Статьи

Роль анкеровки арматуры в бетоне

  • Главная
  • /
  • Статьи
  • /
  • Основные свойства стали

Сталь – это универсальный и удобный в работе металл, который широко применяется для изготовления уголка 63х63, арматуры и других видов металлопроката. Изделия из этого материала используются в машиностроении, строительстве и других сферах.

Широкое распространение стали обусловлено ее исключительными свойствами: механическими, физическими, технологическими и химическими.

Механические

  • Прочность. Это свойство обуславливает способность металла выдерживать значительную внешнюю нагрузку, не разрушаясь. Количественно этот показатель характеризуется пределом текучести и пределом прочности.
    • Предел прочности. Максимальное механическое напряжение, при превышении которого сталь разрушается.
    • Предел текучести. Данный параметр показывает механическое напряжение, при превышении которого материал продолжает удлиняться в условиях отсутствия нагрузки.
  • Пластичность. Благодаря этому свойству металл изменяет свою форму под действием внешней нагрузки и сохраняет ее при отсутствии внешнего воздействия. Количественно это свойство оценивается относительным удлинением при растяжении и углом загиба.
  • Ударная вязкость. Обозначает способность металла сопротивляться динамическим нагрузкам. Количественно эта характеристика оценивается работой, которая требуется для разрушения образца, отнесенной к площади его поперечного сечения.
  • Твердость. Это свойство позволяет металлу сопротивляться попаданию в него твердых тел. Количественно характеризуется нагрузкой, отнесенной к площади отпечатка при вдавливании алмазной пирамиды (метод Виккерса) или стального шарика (метод Бринелля).

Физические

  • Плотность. Это масса материала, заключенного в единичном объеме. Именно благодаря высокой плотности арматура а500с и другие изделия из стали широко применяются в строительстве.
  • Теплопроводность.
    Характеризует способность металла передавать теплоту от более нагретых частей к менее нагретым;
  • Электропроводность. Определяет способность стали пропускать электрический ток.

Химические

  • Окисляемость. Это свойство представляет собой способность металла соединяться с кислородом. Окисляемость усиливается с повышением температуры металла. Стали с низким содержанием углерода окисляются с образованием ржавчины (оксидов железа) под действием воды или влажного воздуха.
  • Коррозионная стойкость. Это способность вещества не вступать в химические реакции и не окисляться.
  • Жаростойкость. Жаростойкость характеризует способность металла не окисляться под воздействием высокой температуры и не образовывать окалины.
  • Жаропрочность. Уровень жаропрочности определяет способность металла сохранять свои прочностные характеристики при воздействии высокой температуры.

Технологические

  • Ковкость. Это свойство говорит о способности металла принимать новую форму в результате воздействия внешних сил.
  • Обрабатываемость резанием. Сталь хорошо поддается механической обработке режущим инструментом, благодаря чему облегчается процесс производства трубы 60х30 и других изделий металлопроката.
  • Жидкотекучесть. Обозначает способность расплавленного металла заполнять пространства и узкие зазоры.
  • Свариваемость. Это свойство позволяет проводить эффективную работу по сварке. В результате образовывается надежное соединение без дефектов.

Поделиться:

Вас может заинтересовать

Предыдущая

Следующая

Возврат к списку

Механические свойства стали и алюминиевых сплавов. Прочность и деформативность

Свойства и качество сталей оценивают рядом технических ха­рактеристик, основными из которых являются механические свой­ства и химический состав, регламентируемые соответствующими ГОСТами и ТУ.

К основным показателям механических свойств относят: проч­ность, упругость и пластичность, склонность к хрупкому разрушению.

Упругость —свойство восстанавливать первоначальное состо­яние после снятия нагрузки.

Хрупкость — разрушение материала при малых деформациях в пределах упругой работы.

Прочность, упругость и пластичность стали определяют испы­танием на растяжение специальных образцов. Полученная при этом диаграмма показывает зависимость между напряжениями и дефор­мацией.

Важнейшими показателями механических свойств стали явля­ются предел текучести — (Ry), временное сопротивление (предел прочности — Ru) и относительное удлинение (ε). Предел текучести и временное сопротивление характеризуют прочность стали, отно­сительное удлинение — пластические свойства стали.

До достижения стандартным образцом из малоуглеродистой стали напряжений, равных пределу текучести, материал работает практи­чески упруго. Затем в нем развиваются большие деформации при постоянном напряжении. В результате образуется площадка текуче­сти (горизонтальный участок диаграммы на рисунке выше). Когда относи­тельное удлинение достигает 2,5%, текучесть материала прекраща­ется, и он снова может оказывать сопротивление деформациям. Эту стадию работы стали называют cmadueit самоупрочнения, в ней ма­териал работает как упругопластический. У других сталей переход в пластическую стадию происходит постепенно (нет площадки теку­чести). Пределом текучести для них считают напряжение, при кото­ром остаточная деформация достигает 0,2%, т. е. σу = σ0,2.

Предельную сопротивляемость материала, характеризующую его прочность, определяют наибольшим условным напряжением в процессе разрушения (отношение разрушающей нагрузки к перво­начальной площади сечения образца). Это напряжение называют временным сопротивлением (пределом прочности).

Наибольшее напряжение в материале, при котором начинается отклонение от прямолинейной зависимости между напряжениями и деформациями, называют пределам пропорциональности σеt.

Склонность стали к переходу в хрупкое состояние, ее чувстви­тельность к различным повреждениям определяют испытаниями на ударную вязкость.

Механические характеристики стали зависят от температуры, при которой они работают. При нагревании стали до t = 250 °С свой­ства ее меняются слабо, однако при дальнейшем повышении тем­пературы сталь становится хрупкой. Отрицательные температуры повышают хрупкость стали, что особенно важно учитывать при стро­ительстве в районах Крайнего Севера. Малоуглеродистые стали ста­новятся хрупкими при температурах ниже минус 45 °С, низколеги­рованные — при температурах ниже минус 60 °С.

Химический состав стали. Такой состав характеризуется про­центным содержанием в ней различных добавок и примесей. Угле­род повышает предел текучести и прочности стали, однако снижа­ет пластичность и свариваемость. В связи с этим в строительстве применяют только малоуглеродистые стали. Специальное введение в сталь различных примесей (легирующих добавок) улучшает не­которые свойства стали.

Кремний (обозначается буквой С) раскисляет сталь, поэтому его количество возрастает от кипящей к спокойной стали. Он увеличивает прочность стали, однако несколько ухудшает свариваемость, стойкость против коррозии и значительно снижает ударную вязкость. Вредное влияние кремния компенсируется повышенным содержанием марган­ца. Марганец (Г) — увеличивает прочность стали, незначительно снижая ее пластичность. Медь (Д) — несколько повышает прочность ста­ли и увеличивает стойкость ее против коррозии, но способствует старению стали. Алюминий (Ю) —хорошо раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость. Значительно повышает механические свойства введение в сталь таких легирующих добавок, как никель (Н), хром (X), ванадий (Ф), вольфрам (В) и др. Однако применение этих добавок в сталях, используемых в инженер­ных конструкциях, ограничивается их дефицитностью и высокой стоимостью.

Некоторые примеси являются вредными для сталей. Так, фос­фор резко уменьшает пластичность и ударную вязкость стали, де­лает ее хрупкой при низких температурах. Сера несколько снижает прочность стали и, главное, способствует образованию трещин при сварке. Кислород, водород и азот, попадая в расплавленный металл из воздуха, ухудшают структуру стали, увеличивая ее хрупкость.

В зависимости от механических свойств (σu, σу), все стали ус­ловно делят на три группы — обычной, повышенной и высокой прочности. Для сталей обычной прочности используют малоугле­родистые стали, для сталей повышенной и высокой прочности — низколегированные и среднелегированные.

В зависимости от предъявляемых требований по испытаниям на ударную вязкость, малоуглеродистая сталь разделена на шесть категорий, для каждой из которых нормируются химический состав, значения временного сопротивления, относительного удлинения и требования к испытанию на холодный загиб.

Для гидротехнических сооружений, мостов и других особо от­ветственных конструкций предназначены малоуглеродистые стали марки М16С и марки 16Д.

Стали повышенной и высокой прочности (низколегированные и среднелегированные) поставляются по ГОСТам и специальным техническим условиям. Наименование марок легированных сталей в определенной мере отражает их химический состав. Первые две цифры показывают среднее содержание углерода в сотых долях процента, следующие далее буквы русского алфавита обозначают легирующие добавки. Цифра после буквы показывает содержание добавки в процентах с округлением до целых значений. Если коли­чество легирующих добавок 0,3-1%, то цифра не ставится. Содер­жание добавки менее 0,3% не отмечается. Все стали повышенной и высокой прочности поставляются с гарантией механических свойств и химического состава. В зависимости от нормируемых свойств согласно ГОСТу стали подразделяются на 15 категорий.

Примеры обозначения: сталь 14Г2 имеет среднее содержание угле­рода 0,14%, марганца (Г) до 2%; сталь 15ХСНД— углерода 0,15%, хрома (X), кремния (С), никеля (Н) и меди (Д) 0,3-1% каждого.

В целях экономии металла прокат из углеродистой стали марок СтЗ, СтЗГСпс и низколегированной стали марок 09Г2,09Г2С и 14Г2 поставляют по 2 группам прочности (например, ВСтЗсп5-1 и ВСтЗсп5-2). Отличаются такие стали различным браковочным уров­нем предела текучести и временного сопротивления, и в связи с этим расчетными сопротивлениями. Более высокие расчетные характе­ристики имеют стали, отнесенные ко второй группе прочности.

Выбор марки стали определяет надежность и стоимость конст­рукции, удобство изготовления, длительность нормальной ее эксп­луатации, количество, объем и стоимость работ по содержанию кон­струкции, в том числе и по защите от коррозии.

Марку стали, если по условиям эксплуатации конструкций не выдвигается специальных требований, выбирают на основании ва­риантного проектирования и технико-экономического анализа.

Прочность материала характеризуется небольшим напряжени­ем, при достижении которого начинается процесс разрушения об­разца. Это напряжение называют временным сопротивлением или пределом прочности.

При увеличении прочности стали заметно уменьшается площад­ка текучести, а для некоторых сталей характерно полное ее отсут­ствие. Это свойство снижает надежность стали, увеличивая ее склон­ность к хрупкому разрушению.

Для растяжения, сжатия и изгиба при работе в упругой стадии расчетные сопротивления Ry, определяют по нормативному значе­нию по формуле:

Ry=Rynm

где Ryn — нормативное значение, МПа; γm — коэффициент надеж­ности по материалу (1,025-1,15).

Свойства стальных материалов — SteelConstruction.info

Свойства конструкционной стали определяются как ее химическим составом, так и методом производства, включая обработку во время изготовления. Стандарты на продукцию определяют пределы состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций. В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация стальных конструкций описана в отдельной статье.

 

Схематическая диаграмма напряжения/деформации для стали

Содержание

  • 1 Свойства материала, необходимые для проектирования
  • 2 Факторы, влияющие на механические свойства
  • 3 Сила
    • 3.
      1 Предел текучести
      • 3.1.1 Горячекатаные стали
      • 3.1.2 Холоднодеформированные стали
      • 3.1.3 Нержавеющая сталь
  • 4 Прочность
  • 5 Пластичность
  • 6 Свариваемость
  • 7 Прочие механические свойства стали
  • 8 Прочность
    • 8.1 Атмосферостойкая сталь
    • 8.2 Нержавеющая сталь
  • 9 Каталожные номера
  • 10 ресурсов
  • 11 См. также

[наверх]Свойства материалов, необходимые для проектирования

Свойства, которые должны учитываться проектировщиками при выборе стальных строительных изделий:

  • Прочность
  • Прочность
  • Пластичность
  • Свариваемость
  • Прочность.


При проектировании механические свойства определяются на основе минимальных значений, указанных в соответствующем стандарте на продукцию. Свариваемость определяется химическим составом сплава, который регламентируется стандартом на продукцию.

Долговечность зависит от конкретного типа сплава — обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[вверх]Факторы, влияющие на механические свойства

Механические свойства стали определяются сочетанием химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали. Прочность стали можно увеличить за счет добавления таких сплавов, как марганец, ниобий и ванадий. Однако эти добавки к сплаву могут также неблагоприятно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму содержания серы может повысить пластичность, а ударная вязкость может быть улучшена за счет добавления никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также дают различную реакцию, когда материал подвергается термической обработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинацию термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка происходит во время прокатки или формовки стали. Чем больше стали прокатывают, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, определяют снижение уровней предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется ссылкой на различные технологические процессы, которые могут использоваться в производстве стали, основными из которых являются:

  • Сталь после проката
  • Нормализованная сталь
  • Прокат нормализованный
  • Сталь термомеханически катаная (TMR)
  • Сталь, подвергнутая закалке и отпуску (Q&T).


Сталь охлаждается во время прокатки, при этом типичная температура конца прокатки составляет около 750°C. Сталь, которой затем дают остыть естественным путем, называют материалом в состоянии после прокатки. Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900°C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность остыть естественным путем. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованно-прокатный процесс, при котором температура выше 900°C после завершения прокатки. Это оказывает такое же влияние на свойства, как и нормализация, но исключает лишний процесс повторного нагрева материала. Нормализованные и нормализованные прокаты имеют обозначение «Н».

Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязкой трещины. Следовательно, более прочные стали требуют улучшенной ударной вязкости и пластичности, что может быть достигнуто только при использовании чистых сталей с низким содержанием углерода и при максимальном измельчении зерна. Внедрение процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханически прокатанная сталь использует особый химический состав стали, чтобы обеспечить более низкую конечную температуру прокатки около 700°C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются до тех пор, пока она не будет повторно нагрета выше 650°C. Сталь, прокатанная термомеханическим способом, имеет обозначение «М».

Процесс производства закаленной и отпущенной стали начинается с нормализованного материала при температуре 900°C. Его быстро охлаждают или «закаливают» для получения стали с высокой прочностью и твердостью, но с низкой ударной вязкостью. Прочность восстанавливается повторным нагревом до 600°C, поддержанием температуры в течение определенного времени и последующим естественным охлаждением (отпуск). Закаленные и отпущенные стали имеют обозначение «Q».

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Он часто используется в сочетании с отпуском, который представляет собой вторую стадию термообработки до температур ниже диапазона аустенизации. Эффект отпуска заключается в размягчении ранее закаленных структур и повышении их прочности и пластичности.

 

Схематический температурно-временной график процессов прокатки

[вверх] Прочность

[вверх] Предел текучести

Предел текучести является наиболее распространенным свойством, которое необходимо проектировщику, поскольку оно является основой для большинства правил, приведенных в нормах проектирования. В европейских стандартах на конструкционные углеродистые стали (включая атмосферостойкие стали) основное обозначение относится к пределу текучести, например Сталь S355 представляет собой конструкционную сталь с указанным минимальным пределом текучести 355 Н/мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности при растяжении (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх]Горячекатаные стали

Для горячекатаных углеродистых сталей число, указанное в обозначении, представляет собой значение предела текучести для материала толщиной до 16 мм. Конструкторы должны учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый, и обработка увеличивает прочность). Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальные значения предела текучести и минимального предела прочности при растяжении показаны в таблице ниже для сталей в соответствии со стандартом BS EN 10025-2 9.0123 [1] .

Минимальный предел текучести и предел прочности при растяжении для обычных марок стали
Марка Предел текучести (Н/мм 2 ) для номинальной толщины t (мм) Прочность на растяжение (Н/мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 < t ≤ 40 40 < t ≤ 63 63 < t ≤ 80 3 < t ≤ 100 100 < t ≤ 150
S275 275 265 255 245 410 400
С355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для определенной толщины в качестве номинального (характеристического) предела текучести f y и минимальный предел прочности при растяжении f u использовать в качестве номинального (характеристического) предела прочности.

Аналогичные значения даны для других марок в других частях BS EN 10025 и для полых профилей в BS EN 10210-1 [3] .

[top]Стали холодной штамповки

Существует широкий диапазон марок стали для полосовой стали, подходящей для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 9.0123 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности при растяжении f u , которые следует использовать в качестве характеристических значений при проектировании.

[наверх]Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1,4401 для типичной аустенитной стали), а не системой обозначения «S» для углеродистых сталей. Соотношение напряжение-деформация не имеет четкого различия в пределе текучести, и предел текучести нержавеющей стали для нержавеющей стали обычно указывается в терминах условного предела прочности, определенного для определенного смещения постоянной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей находится в диапазоне от 170 до 450 Н/мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит номинальные (характеристические) значения предела текучести f y и предельной минимальной прочности на растяжение f u для сталей в соответствии с BS EN 10088-1 [7] для использования в конструкции.

[вверх] Прочность

 

Образец для испытания на ударный изгиб с V-образным надрезом

Природа всех материалов состоит в том, чтобы иметь некоторые дефекты. В стали эти дефекты принимают форму очень маленьких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и приводить к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с толщиной, растягивающим напряжением, концентраторами напряжения и при более низких температурах. Прочность стали и ее способность сопротивляться хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на ударную вязкость по Шарпи с V-образным надрезом — см. изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при определенной температуре одним ударом маятника.

В различных стандартах на продукцию указаны минимальные значения энергии удара для различных марок основания каждого класса прочности. Для нелегированных конструкционных сталей основные обозначения марок: JR, J0, J2 и K2. Для мелкозернистых сталей и закаленных и отпущенных сталей (которые, как правило, более прочные, с более высокой энергией удара) используются разные обозначения. Сводная информация об обозначениях ударной вязкости приведена в таблице ниже.

Минимальная энергия удара для оснований из углеродистой стали
Стандарт Основание Ударная вязкость Температура испытания
БС ЕН 10025-2 [1]
БС ЕН 10210-1 [3]
Младший 27Дж 20 или С
Дж0 27Дж 0 или С
Дж2 27Дж -20 о С
К2 40Дж -20 или С
БС ЕН 10025-3 [8] Н 40Дж -20 о в
НЛ 27Дж -50 о в
БС ЕН 10025-4 [9] М 40Дж -20 о в
МЛ 27Дж -50 о с
БС ЕН 10025-5 [10] Дж0 27Дж 0 или С
Дж2 27Дж -20 или С
К2 40Дж -20 или С
Дж4 27Дж -40 или С
Дж5 27Дж -50 или С
БС ЕН 10025-6 [11] В 30Дж -20 о в
QL 30Дж -40 о в
QL1 30Дж -60 о в

Для тонколистовых сталей для холодной штамповки требования к энергии удара не указаны для материала толщиной менее 6 мм.

Выбор подходящей марки основания для обеспечения достаточной прочности в расчетных ситуациях приведен в BS EN 19.93-1-10 [12] и связанный с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжения и т. д. с «предельной толщиной» для каждой марки стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору соответствующего грунтового основания дано в ED007.

 

SCI-P419

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет незначительную роль, чрезвычайно безопасно.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является расчетным соображением. Эти новые пределы были получены с использованием точно такого же подхода, как и правила проектирования Еврокода, но они существенно уменьшают рост трещин из-за усталости. Употреблено слово «уменьшать», так как допущение отсутствия роста означало бы полное устранение эффекта утомления. Допускается некоторая усталость (20 000 циклов) на основе ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции — в действительности может быть некоторое ограниченное циклическое воздействие нагрузки, но обычно это не рассматривается — подход к проектированию заключается в том, чтобы рассматривать все нагрузки как статические. Ключом к новому подходу является формула для выражения роста трещины при 20 000 циклов. Эксперты из Аахенского университета (участвовавшие в разработке Еврокода) дали это чрезвычайно важное выражение.

Дополнительную информацию можно найти в технической статье в сентябрьском выпуске журнала NSC за 2017 г.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . В стандарте BS EN 1993-1-4 [6] указано, что аустенитные и дуплексные стали достаточно прочны и не подвержены хрупкому разрушению при рабочих температурах до -40°C.

[top]Пластичность

Пластичность — это мера степени деформации или удлинения материала между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже. Конструктор полагается на пластичность в ряде аспектов конструкции, включая перераспределение напряжения в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостных трещин, а также в производственных процессах сварки, гибки и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому расчетные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряженно-деформационное поведение стали

[вверх]Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное расплавление стали, которая впоследствии охлаждается. Охлаждение может быть довольно быстрым, потому что окружающий материал, напр. луч предлагает большой «радиатор», а сварной шов (и подводимое тепло) обычно относительно мал. Это может привести к упрочнению «зоны термического влияния» (ЗТВ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эта восприимчивость может быть выражена как «значение углеродного эквивалента» (CEV), и различные стандарты на продукцию для углеродистых сталей дают выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех охватываемых изделий из конструкционной стали, и для тех, кто контролирует сварку, несложно обеспечить, чтобы используемые спецификации процедуры сварки были квалифицированы для соответствующей марки стали и CEV.

Другие механические свойства стали

Другие механические свойства конструкционной стали, важные для проектировщика, включают:

  • Модуль упругости, E = 210 000 Н/мм²
  • Модуль сдвига, G = E/[2(1 + ν )] Н/мм², часто принимается равным 81 000 Н/мм²
  • Коэффициент Пуассона, ν = 0,3
  • Коэффициент теплового расширения, α = 12 x 10 -6 /°C (в диапазоне температур окружающей среды).

[вверх]Долговечность

 

Защита от коррозии за пределами объекта
(Изображение предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве. Исключением является атмосферостойкая сталь.

Наиболее распространенным средством защиты от коррозии конструкционной стали является покраска или цинкование. Требуемый тип и степень защиты покрытия зависят от степени воздействия, местоположения, расчетного срока службы и т. д. Во многих случаях в сухих условиях внутри не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[top]Стойкая атмосферостойкая сталь

Атмосферостойкая сталь представляет собой высокопрочную низколегированную сталь, которая устойчива к коррозии, образуя прилипшую защитную «патину» ржавчины, которая препятствует дальнейшей коррозии. Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и снаружи некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[верх]Нержавеющая сталь

 

Типичные кривые напряжения-деформации для нержавеющей стали и углеродистой стали в отожженном состоянии

Нержавеющая сталь представляет собой материал с высокой коррозионной стойкостью, который можно использовать в конструкции, особенно там, где требуется высококачественная отделка поверхности. Подходящие сорта для воздействия в типичных условиях приведены ниже.

Деформационно-напряженное поведение нержавеющих сталей отличается от поведения углеродистых сталей в ряде аспектов. Наиболее важное отличие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение вплоть до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлый отклик без четко определенного предела текучести. Таким образом, предел текучести нержавеющей стали, как правило, определяется для определенного смещения постоянной деформации (обычно 0,2% деформации), как показано на рисунке справа, который показывает типичные экспериментальные кривые напряжения-деформации для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут поставляться, и не должны использоваться при проектировании.

Указанные механические свойства обычных нержавеющих сталей по EN 10088-4 [15]
Описание Марка Минимум 0,2% предела текучести (Н/мм 2 ) Предел прочности при растяжении (Н/мм 2 ) Удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1. 4301 210 520 – 720 45
1.4307 200 500 – 700 45
Молибден-хромоникелевые аустенитные стали 1.4401 220 520 – 670 45
1.4404 220 520 – 670 45
Дуплексные стали 1.4162 450 650 – 850 30
1,4462 460 640 – 840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17 % выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (очень низкий) Пустыни и арктические районы (очень низкая влажность) 1. 4301/1.4307, 1.4162
C2 (низкий) Засушливые условия или низкий уровень загрязнения (сельская местность) 1.4301/1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401/1.4404, 1.4162
(1.4301/1.4307)
C4 (высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными отложениями солей
Дорожная среда с противогололедными солями
1.4462, (1.4401/1.4404), другие более высоколегированные дуплексы или аустениты
C5 (Очень высокая) Сильно загрязненная промышленная атмосфера с высокой влажностью
Морская атмосфера с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустениты

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут оказаться нерентабельными. Материалы, указанные в квадратных скобках, могут быть рассмотрены, если приемлема некоторая умеренная коррозия. Накопление агрессивных загрязняющих веществ и хлоридов будет выше в защищенных местах; следовательно, может быть необходимо выбрать рекомендуемую марку из следующего более высокого класса коррозии.

[наверх]Ссылки

  1. 1,0 1,1 1,2 BS EN 10025-2:2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей BSI.
  2. ↑ NA+A1:2014 к BS EN 1993-1-1:2005+A1:2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие нормы и правила для зданий, BSI
  3. 3.0 3.1 BS EN 10210-1:2006 Горячедеформированные конструкционные полые профили из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
  4. ↑ BS EN 10346:2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. БСИ
  5. ↑ BS EN 1993-1-3:2006 Еврокод 3: Проектирование стальных конструкций. Общие правила — Дополнительные правила для холодногнутых элементов и листов, BSI.
  6. 6.0 6.1 BS EN 1993-1-4:2006+A1:2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ БС ЕН 10088-1:2014 Нержавеющие стали. Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3. Технические условия поставки нормализованного / нормализованного проката свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4. Технические условия поставки термомеханически свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5:2019, Горячекатаный прокат из конструкционных сталей, Часть 5. Технические условия поставки конструкционных сталей с повышенной атмосферной коррозионной стойкостью, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6. Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10:2005 Еврокод 3. Проектирование стальных конструкций. Прочность материала и свойства по толщине, BSI.
  13. ↑ NA to BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. БСИ
  14. ↑ PD 6695-1-10:2009 Рекомендации по проектированию конструкций по BS EN 1993-1-10. БСИ
  15. 15,0 15,1 BS EN 10088-4:2009 Нержавеющие стали. Технические условия поставки листа и ленты из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223:2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. БСИ

[наверх] Ресурсы

  • SCI ED007 Выбор марки стали в соответствии с Еврокодами, 2012 г.
  • SCI P419 Хрупкий излом: выбор марки стали в соответствии с BS EN 1993-1-10, 2017

[наверх] См. также

  • Производство стали
  • Спецификация металлоконструкций
  • Атмосферостойкая сталь
  • Защита от коррозии
  • Коды и стандарты проектирования
  • Производство
  • Сварка

Свойства стальных материалов — SteelConstruction.info

Свойства конструкционной стали определяются как ее химическим составом, так и методом производства, включая обработку во время изготовления. Стандарты на продукцию определяют пределы состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций. В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация стальных конструкций описана в отдельной статье.

 

Схематическая диаграмма напряжения/деформации для стали

Содержание

  • 1 Свойства материала, необходимые для проектирования
  • 2 Факторы, влияющие на механические свойства
  • 3 Сила
    • 3. 1 Предел текучести
      • 3.1.1 Горячекатаные стали
      • 3.1.2 Холоднодеформированные стали
      • 3.1.3 Нержавеющая сталь
  • 4 Прочность
  • 5 Пластичность
  • 6 Свариваемость
  • 7 Прочие механические свойства стали
  • 8 Прочность
    • 8.1 Атмосферостойкая сталь
    • 8.2 Нержавеющая сталь
  • 9 Каталожные номера
  • 10 ресурсов
  • 11 См. также

[наверх]Свойства материалов, необходимые для проектирования

Свойства, которые должны учитываться проектировщиками при выборе стальных строительных изделий:

  • Прочность
  • Прочность
  • Пластичность
  • Свариваемость
  • Прочность.


При проектировании механические свойства определяются на основе минимальных значений, указанных в соответствующем стандарте на продукцию. Свариваемость определяется химическим составом сплава, который регламентируется стандартом на продукцию. Долговечность зависит от конкретного типа сплава — обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[вверх]Факторы, влияющие на механические свойства

Механические свойства стали определяются сочетанием химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали. Прочность стали можно увеличить за счет добавления таких сплавов, как марганец, ниобий и ванадий. Однако эти добавки к сплаву могут также неблагоприятно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму содержания серы может повысить пластичность, а ударная вязкость может быть улучшена за счет добавления никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также дают различную реакцию, когда материал подвергается термической обработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинацию термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка происходит во время прокатки или формовки стали. Чем больше стали прокатывают, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, определяют снижение уровней предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется ссылкой на различные технологические процессы, которые могут использоваться в производстве стали, основными из которых являются:

  • Сталь после проката
  • Нормализованная сталь
  • Прокат нормализованный
  • Сталь термомеханически катаная (TMR)
  • Сталь, подвергнутая закалке и отпуску (Q&T).


Сталь охлаждается во время прокатки, при этом типичная температура конца прокатки составляет около 750°C. Сталь, которой затем дают остыть естественным путем, называют материалом в состоянии после прокатки. Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900°C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность остыть естественным путем. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованно-прокатный процесс, при котором температура выше 900°C после завершения прокатки. Это оказывает такое же влияние на свойства, как и нормализация, но исключает лишний процесс повторного нагрева материала. Нормализованные и нормализованные прокаты имеют обозначение «Н».

Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязкой трещины. Следовательно, более прочные стали требуют улучшенной ударной вязкости и пластичности, что может быть достигнуто только при использовании чистых сталей с низким содержанием углерода и при максимальном измельчении зерна. Внедрение процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханически прокатанная сталь использует особый химический состав стали, чтобы обеспечить более низкую конечную температуру прокатки около 700°C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются до тех пор, пока она не будет повторно нагрета выше 650°C. Сталь, прокатанная термомеханическим способом, имеет обозначение «М».

Процесс производства закаленной и отпущенной стали начинается с нормализованного материала при температуре 900°C. Его быстро охлаждают или «закаливают» для получения стали с высокой прочностью и твердостью, но с низкой ударной вязкостью. Прочность восстанавливается повторным нагревом до 600°C, поддержанием температуры в течение определенного времени и последующим естественным охлаждением (отпуск). Закаленные и отпущенные стали имеют обозначение «Q».

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Он часто используется в сочетании с отпуском, который представляет собой вторую стадию термообработки до температур ниже диапазона аустенизации. Эффект отпуска заключается в размягчении ранее закаленных структур и повышении их прочности и пластичности.

 

Схематический температурно-временной график процессов прокатки

[вверх] Прочность

[вверх] Предел текучести

Предел текучести является наиболее распространенным свойством, которое необходимо проектировщику, поскольку оно является основой для большинства правил, приведенных в нормах проектирования. В европейских стандартах на конструкционные углеродистые стали (включая атмосферостойкие стали) основное обозначение относится к пределу текучести, например Сталь S355 представляет собой конструкционную сталь с указанным минимальным пределом текучести 355 Н/мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности при растяжении (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх]Горячекатаные стали

Для горячекатаных углеродистых сталей число, указанное в обозначении, представляет собой значение предела текучести для материала толщиной до 16 мм. Конструкторы должны учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый, и обработка увеличивает прочность). Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальные значения предела текучести и минимального предела прочности при растяжении показаны в таблице ниже для сталей в соответствии со стандартом BS EN 10025-2 9.0123 [1] .

Минимальный предел текучести и предел прочности при растяжении для обычных марок стали
Марка Предел текучести (Н/мм 2 ) для номинальной толщины t (мм) Прочность на растяжение (Н/мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 < t ≤ 40 40 < t ≤ 63 63 < t ≤ 80 3 < t ≤ 100 100 < t ≤ 150
S275 275 265 255 245 410 400
С355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для определенной толщины в качестве номинального (характеристического) предела текучести f y и минимальный предел прочности при растяжении f u использовать в качестве номинального (характеристического) предела прочности.

Аналогичные значения даны для других марок в других частях BS EN 10025 и для полых профилей в BS EN 10210-1 [3] .

[top]Стали холодной штамповки

Существует широкий диапазон марок стали для полосовой стали, подходящей для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 9.0123 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности при растяжении f u , которые следует использовать в качестве характеристических значений при проектировании.

[наверх]Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1,4401 для типичной аустенитной стали), а не системой обозначения «S» для углеродистых сталей. Соотношение напряжение-деформация не имеет четкого различия в пределе текучести, и предел текучести нержавеющей стали для нержавеющей стали обычно указывается в терминах условного предела прочности, определенного для определенного смещения постоянной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей находится в диапазоне от 170 до 450 Н/мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит номинальные (характеристические) значения предела текучести f y и предельной минимальной прочности на растяжение f u для сталей в соответствии с BS EN 10088-1 [7] для использования в конструкции.

[вверх] Прочность

 

Образец для испытания на ударный изгиб с V-образным надрезом

Природа всех материалов состоит в том, чтобы иметь некоторые дефекты. В стали эти дефекты принимают форму очень маленьких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и приводить к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с толщиной, растягивающим напряжением, концентраторами напряжения и при более низких температурах. Прочность стали и ее способность сопротивляться хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на ударную вязкость по Шарпи с V-образным надрезом — см. изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при определенной температуре одним ударом маятника.

В различных стандартах на продукцию указаны минимальные значения энергии удара для различных марок основания каждого класса прочности. Для нелегированных конструкционных сталей основные обозначения марок: JR, J0, J2 и K2. Для мелкозернистых сталей и закаленных и отпущенных сталей (которые, как правило, более прочные, с более высокой энергией удара) используются разные обозначения. Сводная информация об обозначениях ударной вязкости приведена в таблице ниже.

Минимальная энергия удара для оснований из углеродистой стали
Стандарт Основание Ударная вязкость Температура испытания
БС ЕН 10025-2 [1]
БС ЕН 10210-1 [3]
Младший 27Дж 20 или С
Дж0 27Дж 0 или С
Дж2 27Дж -20 о С
К2 40Дж -20 или С
БС ЕН 10025-3 [8] Н 40Дж -20 о в
НЛ 27Дж -50 о в
БС ЕН 10025-4 [9] М 40Дж -20 о в
МЛ 27Дж -50 о с
БС ЕН 10025-5 [10] Дж0 27Дж 0 или С
Дж2 27Дж -20 или С
К2 40Дж -20 или С
Дж4 27Дж -40 или С
Дж5 27Дж -50 или С
БС ЕН 10025-6 [11] В 30Дж -20 о в
QL 30Дж -40 о в
QL1 30Дж -60 о в

Для тонколистовых сталей для холодной штамповки требования к энергии удара не указаны для материала толщиной менее 6 мм.

Выбор подходящей марки основания для обеспечения достаточной прочности в расчетных ситуациях приведен в BS EN 19.93-1-10 [12] и связанный с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжения и т. д. с «предельной толщиной» для каждой марки стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору соответствующего грунтового основания дано в ED007.

 

SCI-P419

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет незначительную роль, чрезвычайно безопасно.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является расчетным соображением. Эти новые пределы были получены с использованием точно такого же подхода, как и правила проектирования Еврокода, но они существенно уменьшают рост трещин из-за усталости. Употреблено слово «уменьшать», так как допущение отсутствия роста означало бы полное устранение эффекта утомления. Допускается некоторая усталость (20 000 циклов) на основе ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции — в действительности может быть некоторое ограниченное циклическое воздействие нагрузки, но обычно это не рассматривается — подход к проектированию заключается в том, чтобы рассматривать все нагрузки как статические. Ключом к новому подходу является формула для выражения роста трещины при 20 000 циклов. Эксперты из Аахенского университета (участвовавшие в разработке Еврокода) дали это чрезвычайно важное выражение.

Дополнительную информацию можно найти в технической статье в сентябрьском выпуске журнала NSC за 2017 г.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . В стандарте BS EN 1993-1-4 [6] указано, что аустенитные и дуплексные стали достаточно прочны и не подвержены хрупкому разрушению при рабочих температурах до -40°C.

[top]Пластичность

Пластичность — это мера степени деформации или удлинения материала между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже. Конструктор полагается на пластичность в ряде аспектов конструкции, включая перераспределение напряжения в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостных трещин, а также в производственных процессах сварки, гибки и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому расчетные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряженно-деформационное поведение стали

[вверх]Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное расплавление стали, которая впоследствии охлаждается. Охлаждение может быть довольно быстрым, потому что окружающий материал, напр. луч предлагает большой «радиатор», а сварной шов (и подводимое тепло) обычно относительно мал. Это может привести к упрочнению «зоны термического влияния» (ЗТВ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эта восприимчивость может быть выражена как «значение углеродного эквивалента» (CEV), и различные стандарты на продукцию для углеродистых сталей дают выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех охватываемых изделий из конструкционной стали, и для тех, кто контролирует сварку, несложно обеспечить, чтобы используемые спецификации процедуры сварки были квалифицированы для соответствующей марки стали и CEV.

Другие механические свойства стали

Другие механические свойства конструкционной стали, важные для проектировщика, включают:

  • Модуль упругости, E = 210 000 Н/мм²
  • Модуль сдвига, G = E/[2(1 + ν )] Н/мм², часто принимается равным 81 000 Н/мм²
  • Коэффициент Пуассона, ν = 0,3
  • Коэффициент теплового расширения, α = 12 x 10 -6 /°C (в диапазоне температур окружающей среды).

[вверх]Долговечность

 

Защита от коррозии за пределами объекта
(Изображение предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве. Исключением является атмосферостойкая сталь.

Наиболее распространенным средством защиты от коррозии конструкционной стали является покраска или цинкование. Требуемый тип и степень защиты покрытия зависят от степени воздействия, местоположения, расчетного срока службы и т. д. Во многих случаях в сухих условиях внутри не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[top]Стойкая атмосферостойкая сталь

Атмосферостойкая сталь представляет собой высокопрочную низколегированную сталь, которая устойчива к коррозии, образуя прилипшую защитную «патину» ржавчины, которая препятствует дальнейшей коррозии. Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и снаружи некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[верх]Нержавеющая сталь

 

Типичные кривые напряжения-деформации для нержавеющей стали и углеродистой стали в отожженном состоянии

Нержавеющая сталь представляет собой материал с высокой коррозионной стойкостью, который можно использовать в конструкции, особенно там, где требуется высококачественная отделка поверхности. Подходящие сорта для воздействия в типичных условиях приведены ниже.

Деформационно-напряженное поведение нержавеющих сталей отличается от поведения углеродистых сталей в ряде аспектов. Наиболее важное отличие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение вплоть до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлый отклик без четко определенного предела текучести. Таким образом, предел текучести нержавеющей стали, как правило, определяется для определенного смещения постоянной деформации (обычно 0,2% деформации), как показано на рисунке справа, который показывает типичные экспериментальные кривые напряжения-деформации для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут поставляться, и не должны использоваться при проектировании.

Указанные механические свойства обычных нержавеющих сталей по EN 10088-4 [15]
Описание Марка Минимум 0,2% предела текучести (Н/мм 2 ) Предел прочности при растяжении (Н/мм 2 ) Удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1. 4301 210 520 – 720 45
1.4307 200 500 – 700 45
Молибден-хромоникелевые аустенитные стали 1.4401 220 520 – 670 45
1.4404 220 520 – 670 45
Дуплексные стали 1.4162 450 650 – 850 30
1,4462 460 640 – 840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17 % выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (очень низкий) Пустыни и арктические районы (очень низкая влажность) 1. 4301/1.4307, 1.4162
C2 (низкий) Засушливые условия или низкий уровень загрязнения (сельская местность) 1.4301/1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401/1.4404, 1.4162
(1.4301/1.4307)
C4 (высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными отложениями солей
Дорожная среда с противогололедными солями
1.4462, (1.4401/1.4404), другие более высоколегированные дуплексы или аустениты
C5 (Очень высокая) Сильно загрязненная промышленная атмосфера с высокой влажностью
Морская атмосфера с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустениты

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут оказаться нерентабельными. Материалы, указанные в квадратных скобках, могут быть рассмотрены, если приемлема некоторая умеренная коррозия. Накопление агрессивных загрязняющих веществ и хлоридов будет выше в защищенных местах; следовательно, может быть необходимо выбрать рекомендуемую марку из следующего более высокого класса коррозии.

[наверх]Ссылки

  1. 1,0 1,1 1,2 BS EN 10025-2:2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей BSI.
  2. ↑ NA+A1:2014 к BS EN 1993-1-1:2005+A1:2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие нормы и правила для зданий, BSI
  3. 3.0 3.1 BS EN 10210-1:2006 Горячедеформированные конструкционные полые профили из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
  4. ↑ BS EN 10346:2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. БСИ
  5. ↑ BS EN 1993-1-3:2006 Еврокод 3: Проектирование стальных конструкций. Общие правила — Дополнительные правила для холодногнутых элементов и листов, BSI.
  6. 6.0 6.1 BS EN 1993-1-4:2006+A1:2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ БС ЕН 10088-1:2014 Нержавеющие стали. Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3. Технические условия поставки нормализованного / нормализованного проката свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4. Технические условия поставки термомеханически свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5:2019, Горячекатаный прокат из конструкционных сталей, Часть 5. Технические условия поставки конструкционных сталей с повышенной атмосферной коррозионной стойкостью, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6. Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10:2005 Еврокод 3. Проектирование стальных конструкций. Прочность материала и свойства по толщине, BSI.
  13. ↑ NA to BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. БСИ
  14. ↑ PD 6695-1-10:2009 Рекомендации по проектированию конструкций по BS EN 1993-1-10. БСИ
  15. 15,0 15,1 BS EN 10088-4:2009 Нержавеющие стали. Технические условия поставки листа и ленты из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223:2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. БСИ

[наверх] Ресурсы

  • SCI ED007 Выбор марки стали в соответствии с Еврокодами, 2012 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *