Сталь 40 х характеристики: Конструкционная сталь характеристики, свойства

Отличия сталей 45 и 40х

Сплавы 45 и 40х относятся к конструкционным разновидностям стали. Основная разница в материалах обуславливается различным содержанием углерода. Легирующей добавкой в модификации 40х выступает хром, что свидетельствует о высокой прочности продукции металлопроката.

Отличия сталей 45 и 40х

Сталь марки 45 подходит для производства небольших деталей и узлов, не подвергающихся высоким нагрузкам. Прочные и твердые изделия меняют свои свойства под воздействием высоких температур, что грозит истиранием поверхности материала.

К отличиям изделий из стали 40х относятся:

  • равномерная твердость поверхности;
  • высокая прочность;
  • отличные антикоррозийные характеристики;
  • подверженность обработке точением, шлифованием, фрезерованием;
  • возможность применения в условиях температурных перепадов, влажной и агрессивной среде.

Сплав 40х отличается низкой податливостью к сварке – для соединения элементов необходимо проведение дополнительных процедур подогрева и отжига.

Преимуществом металлопроката выступает отсутствие необходимости в предварительной очистке и обработке поверхности.

Сравнение физических и химических характеристик разновидностей Ст45 и 40х приведено в таблице.

Наименование показателя

45

40х

Расшифровка

Сортовой прокат из углеродистой конструкционной качественной стали

Прокат из конструкционной легированной стали

ГОСТ

1050-88

4543-71

Иностранные заменители:

США

Германия

Япония

Китай

 

1045

С45

S45С

ML45

 

5140

41 Cr 4

S Gr 440

НЕТ

Хим. состав, %

Железо – 97

Углерод – 0,5

Марганец – 0,5-0,8

Сера – 0,04

Фосфор – 0,035

Хром – 0,25

Кремний – 0,37

Медь – 0,3

Мышьяк – 0,08

Никель – 0,3

Железо – 96,7

Углерод – 0,36-0,44

Марганец – 0,5-0,8

Сера – 0,035

Фосфор – 0,035

Хром – 0,8-1,1

Кремний – 0,37

Медь – 0,3

Мышьяк – НЕТ

Никель – 0,3

Показатель твердости по Бринеллю

229

269

Показатель плотности, кг/м3

7826

7820

Теплоемкость удельная, при 100 °C

473

466

Температура начала плавления

730

743

Коэффициент линейного теплорасширения

11,9

11,9

Показатель теплопроводности,

t = 100°

48

46

Показатель прочности сопротивления при деформациях

610

980

Модуль упругости

200000

214000

Коэффициент Пуассона

0,3

0,3

Обе разновидности материала выпускаются в форме сортового проката, листов, прутков и лент, полос, труб, заготовок.

Разница в химическом содержании элементов обуславливает свойства и назначение готовых изделий.

Применение материалов

Марка 45 востребована в промышленности – ее применяют в изготовлении деталей и узлов агрегатов. Из сплава 40х производят пружины и карбюраторные иглы для автомобилей, трубопроводную арматуру, кухонную утварь, медицинские хирургические инструменты.

Сталь 40х. Ее описание и сфера применения

Сталь является одним из самых важных конструкционных металлов. Она нашла широчайшее применение в строительстве, машиностроении, а также многих других отраслях. У этого металла много самых разных марок, и все они отличаются друг от друга характеристиками. Сталь 40х – конструкционная легированная марка этого материала. И здесь мы о ней поговорим подробнее.

Кроме обычных примесей, в марке 40х содержится определенное количество элементов, которые специально вводятся. Благодаря этому обеспечиваются особенные свойства. Здесь, как легирующий элемент, применяется хром. Именно из-за него в маркировке стали присутствует буква Х.

В данной стали есть особенность – это трудная свариваемость. В связи с этим сталь 40х в процессе сварки подвергается нагреву до 300оС, а после нее – термической обработке. Кроме этой особенности, имеется склонность к отпускной способности, а еще флокеночувствиетльность.

Сталь 40х характеристики имеет следующие:

– удлинение относительное – 13-17%;

– ударная вязкость – до 800 кДж/кв. метр;

– предел прочности – до 900 МПа.

Есть и другие особенности, характерные для этой марки стали:

– предел выносливости достаточно высокий;

– возможность проводить обработку способом резания, путем сваривания или под давлением;

– стойкость к короблению и обезуглероживанию при термовоздействии.

Для всех подобных материалов это самые важные свойства. Именно они позволяют применять сталь 40х в машиностроительной отрасли.

При ковке стали этой марки температура в начале процесса составляет 1250 оС, а в конце – 800 оС.

Очень часто эта сталь находит применение при изготовлении улучшаемых деталей, которые отличаются повышенной прочностью. Это такие изделия, как плунжеры, шпиндели, оси, валы, кольца, вал-шестерни, коленчатые и кулачковые валы, болты, полуоси, рейки, втулки, губчатые венцы, оправки и другие нужные детали.

Сталь 40 широко применяется для изготовления метчиков, сверл, напильников. Как видите, это все инструменты, которыми приходится работать при небольшой скорости, а температура нагрева составляет не больше 2000 градусов. Эти изделия представляют собой прутки, у которых круговое поперечное сечение. Изготавливаются они согласно ГОСТу 5950-2000.

В случае если нужна сталь, обладающая устойчивостью к коррозии, нужно обратить внимание на марку 40х13. Это нержавеющая коррозийно-стойкая сталь. Устойчивость к коррозии она приобретает после закалки, ведь при этом полностью растворяется карбид. Сталь 40х13 производится в индукционных печах, а также открытого дугового типа. Полученный материал прекрасно деформируется при температуре 850-1100 оС. А чтобы не было трещин, нагрев и последующее охлаждение нужно проводить медленно.

Напоследок стоит дать рекомендацию покупателям. Лучше всего сталь 40х, а также изделия из нее покупать у заводов-изготовителей напрямую. Здесь всегда стоимость будет без наценок, ведь вы «обходите» посредников. Также изделия могут быть изготовлены по заказанным вами параметрам. Кроме того, заводы часто предлагают скидки оптовым покупателям, а также есть гарантия качественности товара. А в случае брака вы будете знать, к кому обращаться.

Сталь

40: характеристики, свойства, аналоги Сталь

40 — конструкционная высококачественная углеродистая сталь, предназначенная для строительства и машиностроения. Соответствует ГОСТ 1050-88 и ДСТУ 7809.

Классификация: Высококачественная конструкционная углеродистая сталь.

Товар: Толстый стальной лист в листах и ​​рулонах, прокат, в том числе фасонный.

 

Химический состав стали 40 по ДСТУ 7809, %

С

Си

Мн

Никель

Р

С

Кр

Медь

0,37-0,45

0,17-0,37

0,50-0,80

≤0,30

≤0,035

≤0,040

≤0,25

≤0,30

 

Механические свойства стали 40 после нормализации

Предел ползучести, не менее

Кратковременное сопротивление растяжению ReH, не менее

Коэффициент минимального удлинения, %, не менее

Коэффициент сжатия, %, не менее

 335

570

19

45

 

Аналоги стали 40

США

1040, 1042, Г10400, Г10420

Япония

С40К, С43К, СВРЧ48К, СВРЧ50К

ЕС

1. 1186, С35, С40, С40Е

Китай

40, МЛ40

Швеция

1555, 1650

Польша

40, 40А, 40рс, Д40, П40

Румыния

ОЛК40, ОЛК40С

Чехия

12041

Австралия

1040, М1040

Южная Корея

СМ40К

 

Применение

40 сталь широко используется в поршневых штоках, зубчатых колесах, коленчатых валах, зубчатых венцах, маховиках, осях и болтах. Он также присутствует в компонентах среднего размера, таких как длинные оси, питающие стержни, зубья и т. д. , которые используются в компонентах для трубопроводной арматуры после предварительной закалки, которая проводится при сборке сельскохозяйственных транспортных средств. Сталь 40 применяется для крепления трубопроводов/котлов тепловых и атомных электростанций, блочных/соединительных элементов турбин.

 

Сварка

40 сталь имеет ограниченную способность к сварке (для получения качественного сварного шва сталь необходимо предварительно нагревать перед сваркой и отжигать после сварки). Способы сварки этой стали – ручная дуговая, автоматическая дуговая и электрошлаковая сварка. Может применяться безграничная контактная сварка.

Свойства стальных материалов — SteelConstruction.info

Свойства конструкционной стали определяются как ее химическим составом, так и методом ее производства, включая обработку во время изготовления. Стандарты на продукцию определяют пределы состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций.

В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация стальных конструкций описана в отдельной статье.

 

Схематическая диаграмма напряжения/деформации для стали

Содержание

  • 1 Свойства материала, необходимые для проектирования
  • 2 Факторы, влияющие на механические свойства
  • 3 Прочность
    • 3.1 Предел текучести
      • 3.1.1 Горячекатаные стали
      • 3.1.2 Холоднодеформированные стали
      • 3.1.3 Нержавеющая сталь
  • 4 Прочность
  • 5 Пластичность
  • 6 Свариваемость
  • 7 Прочие механические свойства стали
  • 8 Прочность
    • 8.1 Атмосферостойкая сталь
    • 8.2 Нержавеющая сталь
  • 9 Каталожные номера
  • 10 ресурсов
  • 11 См. также

[наверх]Свойства материалов, необходимые для проектирования

Свойства, которые должны учитываться проектировщиками при выборе стальных строительных изделий:

  • Прочность
  • Прочность
  • Пластичность
  • Свариваемость
  • Прочность.


При проектировании механические свойства определяются на основе минимальных значений, указанных в соответствующем стандарте на продукцию. Свариваемость определяется химическим составом сплава, который регламентируется стандартом на продукцию. Долговечность зависит от конкретного типа сплава — обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[вверх]Факторы, влияющие на механические свойства

Механические свойства стали определяются сочетанием химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали. Прочность стали можно увеличить за счет добавления таких сплавов, как марганец, ниобий и ванадий. Однако эти добавки к сплаву могут также неблагоприятно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму содержания серы может повысить пластичность, а ударная вязкость может быть улучшена за счет добавления никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также по-разному реагируют, когда материал подвергается термической обработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинацию термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка происходит во время прокатки или формовки стали. Чем больше стали прокатывают, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, определяют снижение уровней предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется ссылкой на различные технологические процессы, которые могут использоваться в производстве стали, основными из которых являются:

  • Сталь после проката
  • Нормализованная сталь
  • Прокат нормализованный
  • Сталь термомеханически катаная (TMR)
  • Сталь, подвергнутая закалке и отпуску (Q&T).


Сталь охлаждается во время прокатки, при этом типичная температура конца прокатки составляет около 750°C. Сталь, которой затем дают остыть естественным путем, называют материалом в состоянии после прокатки. Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900°C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность остыть естественным путем. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованно-прокатный процесс, при котором температура выше 900°C после завершения прокатки. Это оказывает такое же влияние на свойства, как и нормализация, но исключает лишний процесс повторного нагрева материала. Нормализованные и нормализованные прокаты имеют обозначение «Н».

Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязкой трещины. Следовательно, более прочные стали требуют улучшенной ударной вязкости и пластичности, что может быть достигнуто только при использовании чистых сталей с низким содержанием углерода и при максимальном измельчении зерна. Внедрение процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханически прокатанная сталь использует особый химический состав стали, чтобы обеспечить более низкую конечную температуру прокатки около 700°C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются до тех пор, пока она не будет повторно нагрета выше 650°C. Сталь, прокатанная термомеханическим способом, имеет обозначение «М».

Процесс производства закаленной и отпущенной стали начинается с нормализованного материала при температуре 900°C. Его быстро охлаждают или «закаливают» для получения стали с высокой прочностью и твердостью, но с низкой ударной вязкостью. Прочность восстанавливается повторным нагревом до 600°C, поддержанием температуры в течение определенного времени и последующим естественным охлаждением (отпуск). Закаленные и отпущенные стали имеют обозначение «Q».

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Он часто используется в сочетании с отпуском, который представляет собой вторую стадию термообработки до температур ниже диапазона аустенизации. Эффект отпуска заключается в размягчении ранее закаленных структур и повышении их прочности и пластичности.

 

Схематическая диаграмма температуры/времени процессов прокатки

[наверх] Прочность

[наверх] Предел текучести

Предел текучести является наиболее распространенным свойством, которое необходимо проектировщику, поскольку оно является основой для большинства правил, приведенных в нормах проектирования. В европейских стандартах на конструкционные углеродистые стали (включая атмосферостойкие стали) основное обозначение относится к пределу текучести, например Сталь S355 представляет собой конструкционную сталь с указанным минимальным пределом текучести 355 Н/мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности при растяжении (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх]Горячекатаные стали

Для горячекатаных углеродистых сталей число, указанное в обозначении, представляет собой значение предела текучести для материала толщиной до 16 мм. Конструкторы должны учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый, и обработка увеличивает прочность). Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальные значения предела текучести и минимального предела прочности при растяжении показаны в таблице ниже для сталей в соответствии со стандартом BS EN 10025-2 9.0421 [1] .

Минимальный предел текучести и предел прочности при растяжении для обычных марок стали
Марка Предел текучести (Н/мм 2 ) для номинальной толщины t (мм) Прочность на растяжение (Н/мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 < t ≤ 40 40 < t ≤ 63 63 < t ≤ 80 3 < t ≤ 100 100 < t ≤ 150
S275 275 265 255 245 410 400
S355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для определенной толщины в качестве номинального (характеристического) предела текучести f y и минимальный предел прочности при растяжении f u использовать в качестве номинального (характеристического) предела прочности.

Аналогичные значения даны для других марок в других частях BS EN 10025 и для полых профилей в BS EN 10210-1 [3] .

[top]Стали холодной штамповки

Существует широкий диапазон марок стали для полосовой стали, подходящей для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 9.0421 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности при растяжении f u , которые следует использовать в качестве характеристических значений при проектировании.

[top]Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1,4401 для типичной аустенитной стали), а не системой обозначения «S» для углеродистых сталей. Соотношение напряжение-деформация не имеет четкого различия в пределе текучести, и предел текучести нержавеющей стали для нержавеющей стали обычно указывается в терминах условного предела прочности, определенного для определенного смещения постоянной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей находится в диапазоне от 170 до 450 Н/мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит номинальные (характеристические) значения предела текучести f y и предельной минимальной прочности на растяжение f u для сталей в соответствии с BS EN 10088-1 [7] для использования в конструкции.

[вверх] Прочность

 

Образец для испытания на ударный изгиб с V-образным надрезом

Природа всех материалов состоит в том, чтобы иметь некоторые дефекты. В стали эти дефекты принимают форму очень маленьких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и приводить к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с толщиной, растягивающим напряжением, концентраторами напряжения и при более низких температурах. Прочность стали и ее способность сопротивляться хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на ударную вязкость по Шарпи с V-образным надрезом — см. изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при определенной температуре одним ударом маятника.

В различных стандартах на продукцию указаны минимальные значения энергии удара для различных марок основания каждого класса прочности. Для нелегированных конструкционных сталей основные обозначения марок: JR, J0, J2 и K2. Для мелкозернистых сталей и закаленных и отпущенных сталей (которые, как правило, более прочные, с более высокой энергией удара) используются разные обозначения. Сводная информация об обозначениях ударной вязкости приведена в таблице ниже.

Минимальная энергия удара для оснований из углеродистой стали
Стандартный Основание Ударная вязкость Температура испытания
БС ЕН 10025-2 [1]
БС ЕН 10210-1 [3]
ДЖР 27Дж 20 или С
Дж0 27Дж 0 или С
Дж2 27Дж -20 о С
К2 40Дж -20 или С
БС ЕН 10025-3 [8] Н 40Дж -20 или в
НЛ 27Дж -50 или в
БС ЕН 10025-4 [9] М 40Дж -20 или в
МЛ 27Дж -50 о с
БС ЕН 10025-5 [10] Дж0 27Дж 0 или С
Дж2 27Дж -20 или С
К2 40Дж -20 или С
Дж4 27Дж -40 или С
Дж5 27Дж -50 или С
БС ЕН 10025-6 [11] В 30Дж -20 или в
QL 30Дж -40 или в
QL1 30Дж -60 или в

Для тонколистовых сталей для холодной штамповки требования к энергии удара не установлены для материала толщиной менее 6 мм.

Выбор соответствующего грунтового основания для обеспечения достаточной прочности в расчетных ситуациях приведен в BS EN 19.93-1-10 [12] и связанный с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжения и т. д. с «предельной толщиной» для каждой марки стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору соответствующего грунтового основания дано в ED007.

 

SCI-P419

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет незначительную роль, чрезвычайно безопасно.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является конструктивным соображением. Эти новые пределы были получены с использованием точно такого же подхода, который используется в правилах проектирования Еврокода, но они существенно уменьшают рост трещин из-за усталости. Употреблено слово «уменьшать», так как допущение отсутствия роста означало бы полное устранение эффекта утомления. Допускается некоторая усталость (20 000 циклов) на основе ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции — в действительности может быть некоторое ограниченное циклическое воздействие нагрузки, но обычно это не рассматривается — подход к проектированию заключается в том, чтобы рассматривать все нагрузки как статические. Ключом к новому подходу является формула для выражения роста трещины при 20 000 циклов. Эксперты из Аахенского университета (участвовавшие в разработке Еврокода) дали это чрезвычайно важное выражение.

Дополнительную информацию можно найти в технической статье в сентябрьском выпуске журнала NSC за 2017 г.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . В стандарте BS EN 1993-1-4 [6] указано, что аустенитные и дуплексные стали достаточно прочны и не подвержены хрупкому разрушению при рабочих температурах до -40°C.

[top]Пластичность

Пластичность — это мера степени деформации или удлинения материала между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже. Конструктор полагается на пластичность в ряде аспектов конструкции, включая перераспределение напряжения в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостных трещин, а также в производственных процессах сварки, гибки и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому расчетные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряженно-деформационное поведение стали

[вверх]Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное расплавление стали, которая впоследствии охлаждается. Охлаждение может быть довольно быстрым, потому что окружающий материал, напр. луч предлагает большой «радиатор», а сварной шов (и подводимое тепло) обычно относительно мал. Это может привести к упрочнению «зоны термического влияния» (ЗТВ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эта восприимчивость может быть выражена как «значение углеродного эквивалента» (CEV), и различные стандарты на продукцию для углеродистых сталей дают выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех охватываемых изделий из конструкционной стали, и для тех, кто контролирует сварку, несложно обеспечить, чтобы используемые спецификации процедуры сварки были квалифицированы для соответствующей марки стали и CEV.

[наверх]Другие механические свойства стали

Другие механические свойства конструкционной стали, важные для проектировщика, включают:

  • Модуль упругости, E = 210 000 Н/мм²
  • Модуль сдвига, G = E/[2(1 + ν )] Н/мм², часто принимается равным 81 000 Н/мм²
  • Коэффициент Пуассона, ν = 0,3
  • Коэффициент теплового расширения, α = 12 x 10 -6 /°C (в диапазоне температур окружающей среды).

[вверх]Долговечность

 

Защита от коррозии за пределами объекта
(Изображение предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве. Исключением является атмосферостойкая сталь.

Наиболее распространенным средством защиты от коррозии конструкционной стали является покраска или цинкование. Требуемый тип и степень защиты покрытия зависят от степени воздействия, местоположения, расчетного срока службы и т. д. Во многих случаях в сухих условиях внутри не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[top]Сталь, устойчивая к атмосферным воздействиям

Сталь, устойчивая к атмосферным воздействиям, представляет собой высокопрочную низколегированную сталь, которая устойчива к коррозии, образуя прилипшую защитную «патину» ржавчины, препятствующую дальнейшей коррозии. Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и снаружи некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[верх]Нержавеющая сталь

 

Типичные кривые напряжения-деформации для нержавеющей стали и углеродистой стали в отожженном состоянии

Нержавеющая сталь представляет собой материал с высокой коррозионной стойкостью, который можно использовать в конструкции, особенно там, где требуется высококачественная отделка поверхности. Подходящие сорта для воздействия в типичных условиях приведены ниже.

Деформационно-напряженное поведение нержавеющих сталей отличается от поведения углеродистых сталей в ряде аспектов. Наиболее важное отличие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение вплоть до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлый отклик без четко определенного предела текучести. Таким образом, предел текучести нержавеющей стали, как правило, определяется для определенного смещения постоянной деформации (обычно 0,2% деформации), как показано на рисунке справа, который показывает типичные экспериментальные кривые напряжения-деформации для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут поставляться, и не должны использоваться при проектировании.

Указанные механические свойства обычных нержавеющих сталей по EN 10088-4 [15]
Описание Марка Минимум 0,2 % предела текучести (Н/мм 2 ) Предел прочности при растяжении (Н/мм 2 ) Удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1. 4301 210 520 – 720 45
1.4307 200 500 – 700 45
Молибден-хромоникелевые аустенитные стали 1.4401 220 520 – 670 45
1.4404 220 520 – 670 45
Дуплексные стали 1.4162 450 650 – 850 30
1.4462 460 640 – 840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17 % выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (очень низкий) Пустыни и арктические районы (очень низкая влажность) 1. 4301/1.4307, 1.4162
C2 (низкий) Засушливые условия или низкий уровень загрязнения (сельская местность) 1.4301/1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401/1.4404, 1.4162
(1.4301/1.4307)
C4 (Высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными отложениями солей
Дорожная среда с противогололедными солями
1.4462, (1.4401/1.4404), другие более высоколегированные дуплексы или аустениты
C5 (Очень высокий) Сильно загрязненная промышленная атмосфера с высокой влажностью
Морская атмосфера с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустениты

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут оказаться нерентабельными. Материалы, указанные в квадратных скобках, могут быть рассмотрены, если приемлема некоторая умеренная коррозия. Накопление агрессивных загрязняющих веществ и хлоридов будет выше в защищенных местах; следовательно, может быть необходимо выбрать рекомендуемую марку из следующего более высокого класса коррозии.

[наверх]Ссылки

  1. 1,0 1,1 1,2 BS EN 10025-2:2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей BSI.
  2. ↑ NA+A1:2014 к BS EN 1993-1-1:2005+A1:2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие нормы и правила для зданий, BSI
  3. 3.0 3.1 BS EN 10210-1:2006 Горячедеформированные конструкционные полые профили из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
  4. ↑ BS EN 10346:2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. БСИ
  5. ↑ BS EN 1993-1-3:2006 Еврокод 3: Проектирование стальных конструкций. Общие правила — Дополнительные правила для холодногнутых элементов и листов, BSI.
  6. 6.0 6.1 BS EN 1993-1-4:2006+A1:2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ БС ЕН 10088-1:2014 Нержавеющие стали. Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3. Технические условия поставки нормализованного / нормализованного проката свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4. Технические условия поставки для термомеханического проката свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5:2019, Горячекатаный прокат из конструкционных сталей, Часть 5. Технические условия поставки конструкционных сталей с повышенной атмосферной коррозионной стойкостью, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6. Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10:2005 Еврокод 3. Проектирование стальных конструкций. Прочность материала и свойства по толщине, BSI.
  13. ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. БСИ
  14. ↑ PD 6695-1-10:2009 Рекомендации по проектированию конструкций по BS EN 1993-1-10. БСИ
  15. 15,0 15,1 BS EN 10088-4:2009 Нержавеющие стали. Технические условия поставки листа и ленты из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223:2012 Коррозия металлов и сплавов, Коррозионная активность атмосфер, Классификация, определение и оценка. БСИ

[наверх] Ресурсы

  • SCI ED007 Выбор марки стали в соответствии с Еврокодами, 2012 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *