Лазерный станок для резки фанеры своими руками – Ультрабюджетный лазерный СО2 станок своими руками

Собираем ЧПУ лазерный станок своими руками

В этом посте мы расскажем вам историю о том, как построить ЧПУ лазерный станок своими руками, которую нам поведал один из подписчиков.

Предисловие

Пару месяцев назад я просматривал записи с конкурса, в котором увидел несколько довольно крутых гравировальных машин, и я подумал: «Почему бы мне не создать свою собственную?». И так я и сделал, но не хотелось копировать чужой проект, я хотел сделать свой собственный уникальный ЧПУ станок своими руками. И так началась моя история …

Технические характеристики

Этот лазерный гравер оснащен 1,8 Вт 445 нм лазерным модулем, конечно, это ничто по сравнению с промышленными лазерными резаками, которые используют лазеры более 50 Вт. Но для нас будет достаточно и этого лазера. Он может вырезать бумагу и картон, и может выгравировать все виды древесины или изделия из фанеры. Я еще не тестировал другие материалы, но уверен, что он может наносить гравировку на многие другие поверхности. Сразу зайду наперед и скажу, что он имеет большое рабочее поле размером около 500×380 мм.

Кому под силу сделать такой лазерный станок? Каждому, не важно, вы инженер, юрист, учитель или студент, как я! Все, что вам необходимо – терпение и большое желание получить действительно качественный станок.

Мне потребовалось около трех месяцев, чтобы спроектировать и построить эту гравировальную машину, в том числе я около месяца ждал детали. Конечно, такую работу можно выполнить и быстрее, но мне всего 16 лет, поэтому работать я мог только на выходных.

 

Нужные материалы для сборки

Понятно, что вы не сможете сделать лазерный гравер, не имея нужных деталей, поэтому я составил спецификацию с почти всем необходимым для его изготовления. Практически все детали куплены на Aliexpress, потому что это дешево, и есть бесплатная доставка для большинства товаров. Другие детали, такие как обработанные стержни и листы МДФ (можно сделать из фанеры), были куплены в местном строительном магазине. Лазер и драйвер лазера были заказаны на ebay.
Я попытался найти самые низкие цены для всех деталей (не включая доставку).

Было потрачено много времени, прежде чем я пришел к этому дизайну. Сначала я сделал несколько других, но именно этот был действительно самым красивым из всех остальных. Первым делом я нарисовал все детали в графическом редакторе и распечатал их в натуральном размере.
Весь гравер я собираю из листов МДФ толщиной 18 мм и 12 мм.
Выбор пал на этот дизайн также потому что можно было легко прикрепить ось Z и инструмент, превратив наш станок в фрезерный.

Конечно, я мог бы сделать другой, более простой дизайн … Но нет! Хотелось чего-то особенного!

Процесс сборки

Распечатав чертежи, у меня появились детали, которые необходимо было собрать в кучу. Первое, что я сделал, – это установил дверь корпуса электроники с левой стороны и замок с петлей (дверца устанавливается без трудностей, поэтому я сделал это в первую очередь. Чтобы собрать корпус для электроники, я использовал множество L-образных железных скоб с отверстиями под саморезы. Если корпус планируется изготавливать из фанеры, то предварительно необходимо просверлить в ней также отверстия под саморезы.

Сначала была взята снова левая сторона корпуса электроники и установлена на нее передняя и задняя части корпуса при помощи скоб. Я не использовал винты или гвозди для установки крышки и панели управления, а прикрутил те же скобы к стенкам и просто положил крышку с панелью на них чтобы в дальнейшем при установке электроники не возникало никаких неудобств.

Отложив корпус электроники в сторону и взяв опорную плиту и опорные части оси Х необходимо установить их таким образом, как показано на фотографиях, убедившись, что ось Х и крепление мотора находятся на правой стороне станка с ЧПУ. Теперь можно смело установить корпус электроники таким же образом, как и показано на рисунках.

Далее были взяты два 700-мм вала, нанизаны на них по два линейных подшипника на каждый, и они были зафиксированы на самом станке при помощи специальных концевых опор для шлифованных валов.
На данном этапе у меня получилось вот что:


Уберите в сторону эту половину лазерного станка на некоторое время и займитесь подвижной частью X, а ось Y поддержите и прикрепите на весу опоры вала к движущейся части оси X гайками и болтами и прикрепите двумя гайками опору на ось Х.

  1. Теперь возьмите два 500-миллиметровых вала, наденьте по одному линейному подшипнику на каждый вал, наденьте опору вала на каждый конец каждого вала и установите их на станок.
  2. Прикрепите ходовую гайку оси Y на подвижную часть оси Y с помощью гаек и болтов, и прикрутите ее к линейным подшипникам с помощью саморезов.
  3. Прикрепите ходовой винт и шаговый двигатель.
  4. Подсоедините все это к другой половине гравера и закрепите ходовой винт и шаговый двигатель.

Теперь у вас должно выйти что-то похожее на то, что изображено на этом фото:


Электроника для станка

Я также установил деревянную деталь в корпус электроники, чтобы закрепить шаговый двигатель.

Далее была прикреплена верхняя часть корпуса электроники, пульт управления и рабочий стол уже после того, как была установлены несколько печатных плат, схема к которым прилагается в комплекте.

Ну или можно просто положить крышку и панель на гравёре, чтобы полюбоваться проделанной работой и великолепным дизайном.»

Выводы

Это, пожалуй, и вся информацию, которую он нам донес, но это довольно неплохая инструкция для тех, у кого есть мечта собрать собственноручно хороший самодельный лазерный станок для домашних и хоббийных целей.

Сама сборка лазерного гравера не особо затратная, поскольку количество деталей минимально, да и стоимость их не особо высока. Самыми дорогими деталями являются, наверное, шаговые двигатели, направляющие и, конечно же, детали самой лазерной головки с системой охлаждения.

Именно этот станок заслуживает особого внимания, поскольку не каждый лазерный гравер позволяет быстро устанавливать на 3 ось фрезерную машинку и превращать станок в полноценный ЧПУ фрезер.

В заключение хочется сказать: если вам действительно хочется самому собрать качественный станок ЧПУ своими руками, который будет служить верой и правдой долгие годы, не нужно экономить на каждой детали и пытаться сделать направляющие ровнее заводских или заменять ШВП на шпильку с гайкой. Такой станок работать хоть и будет, но качество его работы и постоянная настройка механики и программного обеспечения просто расстроит вас, заставив пожалеть о потраченном на него времени и средствах.

vseochpu.ru

Лазерный резак/гравер своими руками

 Перевел SaorY для mozgochiny.ru

Доброго дня, мозгоинженеры! Сегодня поделюсь с вами руководством о том, как сделать лазерный резак мощностью 3Вт и рабочим столом 1.2х1.2 метра под управлением микроконтроллера Arduino.

 

 


Эта мозгоподелка родилась для создания журнального столика в стиле «пиксель-арт». Нужно было нарезать материал кубиками, но вручную это затруднительно, а через онлайн-сервис очень дорого. Тогда и появился этот 3-х ватный резак/гравер для тонких материалов, уточню, что промышленные резаки имеют минимальную мощность около 400 ватт. То есть легкие материалы, такие как пенополистирол, пробковые листы, пластик или картон, этот резак осиливает, а вот более толстые и плотные только гравирует.

 

 

Шаг 1: Материалы

• Arduino R3
• Proto Board – плата с дисплеем
• шаговые двигатели
• 3-х ватный лазер
• охлаждение для лазера
• блок питания
• регулятор DC-DC
• транзистор MOSFET
• платы управления двигателями
• концевые выключатели
• корпус (достаточно большой, чтобы вместить почти все детали списка)
• зубчатые ремни
• шарикоподшипники 10мм
• шкивы для зубчатых ремней
• шарикоподшипники
• 2 доски 135х 10х2 см
• 2 доски 125х10х2 см
• 4 гладких стержня диаметром 1см

• различные болты и гайки
• винты 3.8см
• смазка
• стяжки-хомуты
• компьютер
• циркулярная Пила
• отвертка
• различные сверла
• наждачная бумага
• тиски

 

 

 

Шаг 2: Электросхема

 


Электроцепь лазерной самоделки информативно представлена на фото, есть лишь несколько уточнений.

Шаговые двигатели: думаю, вы заметили, что два двигателя запускаются от одной платы управления. Это нужно для того чтобы одна сторона ремня не отставала от другой, то есть два двигателя работают синхронно и сохраняют натяжения зубчатого ремня, нужное для качественной работы поделки.

Мощность лазера: при настройке регулятора DC-DC убедитесь, что на лазер подается постоянное напряжение, не превышающее технические характеристики лазера, иначе вы его просто сожжете. Мой лазер рассчитан на 5В и 2.4А, поэтому регулятор выставлен на 2А и напряжение немного ниже 5В.

Транзистор MOSFET: это важная деталь данной мозгоподелки, так как именно этот транзистор включает и выключает лазер, получая сигнал от Arduino. Так как ток от микроконтроллера очень слабый, то только этот транзистор MOSFET может его воспринимать и запирать или отпирать контур питания лазера, другие транзисторы на такой слаботочный сигнал просто не реагируют. MOSFET монтируется между лазером и «землей» от регулятора постоянного тока.

Охлаждение: при создании своего лазерного резака я столкнулся с проблемой охлаждения лазерного диода, для избежания его перегрева. Проблема решилась установкой компьютерного вентилятора, с которым лазер отлично функционировал даже при работе 9 часов подряд, а простой радиатор не справлялся с задачей охлаждения. Еще я установил кулеры рядом с платами управления двигателями, так как они тоже прилично греются, даже если резак не работает, а просто включен.

 

 

Шаг 3: Сборка

 

 


В приложенных файлах корпус находится 3D модель лазерного резака, показывающая размеры и принцип сборки рамки рабочего стола.

Челночная конструкция: она состоит одного челнока отвечающего за ось Y, и двух спаренных челнока отвечающих за ось X. Ось Z не нужна, так как это не 3D принтер, но вместо нее лазер будет попеременно включаться и выключаться, то есть ось Z заменяется глубиной прожига. Все размеры челночной конструкции я постарался отразить на фото, уточню лишь, что все установочные отверстия для стержней в бортах и челноках глубиной 1.2см.

Направляющие стержни: стержни стальные (хотя алюминиевые предпочтительней, но стальные проще достать), довольно большим диаметром в 1 см, но такая толщина стержня позволит избежать провисания. Заводская смазка со стержней удалена, а сами стержни тщательно отшлифованы шлифмашинкой и наждачной бумагой до идеальной гладкости для хорошего скольжения. А после шлифовки стержни обработаны смазкой с белым литием, которая предотвращает окисление и улучшает скольжение.

Ремни и шаговые двигатели: Для установки шаговых двигателей и зубчатых ремней я пользовался обычными инструментами и материалами, попавшимися под руку. Сначала монтируются двигатели и шарикоподшипники, а затем сами ремни. В качестве кронштейна для двигателей был использован лист металла примерно одинаковый по ширине и в два раза больше по длине, чем сам двигатель. В этом листе просверлено 4 отверстия для крепления на двигатель и два для крепления к корпусу самоделки, лист согнут под углом 90 градусов и прикручен саморезами к корпусу. С противоположной стороны от места крепления двигателя аналогичным образом установлена подшипниковая система, состоящая из болта, двух шарикоподшипников, шайбы и металлического листа. По центру этого листа сверлиться отверстие, с помощью которого он крепится к корпусу, далее лист загибается пополам и уже по центру обоих половинок сверлится отверстие для установки подшипниковой системы. На полученную таким образом пару двигатель-подшипник надевается зубчатый ремень, который крепится к деревянному основанию челнока обычным саморезом. Более понятно этот процесс представлен на фото.

 

 

 

Шаг 4: Софт

 


К счастью программное обеспечение для данной мозгоподелки бесплатно и с открытым исходным кодом. Все необходимое находится по нижеприведенным ссылкам:

Inkscape (для создания и преобразования контуров для прожига), с расширением для лазерного гравера.

UniversalGcodeSender-v1.0.7

Arduino IDE

With the GBRL Library
Все необходимое загружается на компьютер и сохраняется. Далее устанавливается Inkscape, и распаковывается архивlasergraver. Все что было в архиве копируется в папку Inkscape, чтобы было вот так C: \ Program Files (x86) \ Inkscape \ Share \ Extensions. На картинке показано что именно нужно копировать. Далее по отдельности устанавливается Arduino IDE и GRBL библиотека, а потом просто распаковывается UniversalGcodeSender-v1.0.7.zip. Этот Universal G code является программой, которая посылает данные дизайна (контуров гравировки/резки) в Arduino. После распаковки этого архива, нужно найти и запустить файл start-windows.bat.

Настройка параметров Arduino: Первым делом загружается GRBL код в Arduino, для этого в Arduino IDE открывается вкладка Sketch/Import Library и выбирается пункт GRBL, затем из списка выбирается нужный код и загружается на Arduino. Для дополнительной информации полезно перейти по ссылке With the GRBL Library. Когда код загружен, необходимо настроить параметры в соответствии со своим лазерным резаком и в этом поможет вот эта ссылка, где подробно описывается каждый параметр настройки. А еще полезна эта ссылка, которая поможет рассчитать значения параметров для используемых материалов.

 

 

Шаг 5: Контуры для резки

 

 


Важные моменты: необходимо понимать и помнить, что это мозгоподелка не заполняет контур, если рисунок закрашен. Более понятно это показано на рисунке. И еще, файл дизайна примерфайлаконтура использует не пиксельный формат, как jpeg, а векторный. То есть изображение состоит из точек, а не пикселей, и его можно как угодно масштабировать, то есть изменять размеры контура для резки.

Создание векторного рисунка: После определения того, что нужно вырезать/выгравировать, необходимо перенести это в векторный рисунок. Для этого подходят Inkscape или Adobe Illustrator, но не Photoshop или GIMP, так как последние не работают с векторной графикой.

Преобразование векторного рисунка: Векторный рисунок должен быть преобразован в формат понятный лазерному резаку и для этого подходит расширение Inkscape Laserengraver. Более подробно на видео.

 

 

Шаг 6: Настройка и резка

 

 


На видео показано как подключить лазерную самоделку к компьютеру, настроить параметры софта и подготовить резак к работе.

Настройка параметров программы: главное убедиться, что максимальные значения X и Y совпадают со значениями, полученными при преобразовании векторного файла.

Регулировка оборудования: На фото показано, какой регулятор я подкручивал, чтобы понизить ток, шаг не обязательный, это просто быстрый и простой способ сфокусировать мозголазер без прожига материала.

Резка: скорость задана, лазер сфокусирован и направлен под нужным углом, остается только запустить лазерный резак и ждать!

БУДЬТЕ ОСТОРОЖНЫ ВО ВРЕМЯ РАБОТЫ ЛАЗЕРА. Перед началом обязательно ознакомьтесь с информацией о том, что такое лазерное излучение, чем оно вредно и как с ним обращаться. Знайте, что неправильное использование лазера может вызвать ожоги или слепоту, поэтому обязательно ознакомьтесь с этой ссылкой.

 

Во и все что я хотел рассказать о своем лазерном резаке/гравере. Благодарю за внимание!

Удачных самоделок!

 

(A-z Source)


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!

About SaorY

mozgochiny.ru

Станок для лазерной резки фанеры настольный, чпу, своими руками

Фанера достаточно легко пилится, режется, однако, если внимательно рассмотреть полученный результат, можно убедиться, что контуры полученного изделия далеки от идеальных. Это объясняется наличием клея, а также использованием шпона из разной древесины. Обычные ручные инструменты, увы, не годятся для тонкой фигурной резки.

Станок

Лазерная резка

Осуществляется лазерным лучом относительно высокой мощности. Луч сжигает и испаряет материал на площади равной диаметру луча, а эта величина очень мала. В результате материал нарезается с самой высокой возможной точностью.

Фанера – не самый лучший вариант и для лазерной резки в отличие от металла и пластика. Дело в неоднородности ее состава. Клей и дерево, а тем более разное дерево, прожигается при разной температуре. Поэтому, прежде чем приступать к выполнению такого рода работы, имеет смысл провести пробный тест.

Использование станка лазерной резки обеспечивает несколько важных преимуществ:

  • очень высокая точность резки;
  • минимальное наличие отходов – материал прожигается, а не распиливается;
  • минимальный допуск реза;
  • возможность гравировки;
  • не прилагаются никакие механические усилия;
  • при использовании ЧПУ возможно формирование сколь угодно сложного рисунка, причем уровень сложности на стоимость работы не влияет.

К недостаткам лазерной обработки относят неизбежное потемнение реза.

Технология работы

Станок для лазерной резки ЧПУ имеет по умолчанию. В конце концов, просто раскроить листы фанеры можно и на обычном фрезеровочном станке. Лазерная резка применяется для действительно сложных изделий. А в этом случае без ЧПУ не обойтись. Этот модуль позволяет загружать любые изображения, разрабатывать соответствующие программу для движения приводов и переносить предложенные контуры на материал.

Порядок действий таков:

  • выбирается рисунок – его можно создать самостоятельно или загрузить в память готовое изображение;
  • выбирается режим резки – ЧПУ автоматически рассчитывает оптимальный режим для работы, но подтвердить его должен оператор или откорректировать своими руками, если в этом есть нужда. Режим во многом зависит от мощности лазера. Минимум составляет 20 Вт;
  • фанеру размещают на координатном столе станка. 3 шаговых двигателя, как например, на станке Старт 2М,  обеспечивают перемещение лазерной головки по осям X, Y, Z. Подчиняясь заданной программе, двигатели перемещают лазерный резак в точности по заложенным в память машины контурам.

Скорость формирования реза зависит от толщины фанеры и мощности лазера. Стоит отметить, что при повышении мощности излучения, увеличивается площадь потемнения.

Устройство станка для лазерной резки

Это оборудование относится к категории профессиональных. Станок для лазерной резки фанеры дома использовать, безусловно, не выгодно, поскольку установкой одной лишь лазерной головки здесь не обойтись. Машина требует обустройства соответствующей вентиляции, системы охлаждения, определенного ухода и прочего, что организовать своими руками весьма сложно.
Устройство можно рассмотреть на примере станка для лазерной резки фанеры, металла и пластика Старт 2М. Это типичная портальная конструкция, очень удобная для выполнения работ на листах большой площади.

Координатный стол включает станину и портал из металлического профиля.

  • На портале закреплена ось Z , перемещаемая с помощью шагового двигателя.
  • На оси установлен лазерный резак в вертикальной позиции. Лазер закрепляется любого рода, но обычно речь идет о газовых CO2 лазерах.
  • Движением по осям X и Y также управляют шаговые двигатели. Они спрятаны в металлических корпусах. Предпочтителен именно этот тип привода, поскольку он отличается высокой повторяемостью позиционирования.
  • Лазерная установка управляется ЧПУ с соответствующим программным обеспечением.
  • Станок для лазерной резки фанеры и металла оборудован системой отвода дыма.
  • Для охлаждения лазера используется жидкостная охладительная установка по типу теплового насоса.

На видео демонстрируется работа машины лазерной обработки.

Самодельные варианты

Настольный лазерный станок для резки фанеры, как правило, подразумевает под собой несколько иное устройство. Рабочим органом его выступает лазерный диод из пишущего DVD. Однако это устройство маломощное и годится только для нанесения узора: луч прожигает слой древесины толщиной в 0,01–0,02 мм.

Чтобы изготовить дома настольную конструкцию, ряд деталей, включая лазерную головку, придется заказывать. Кроме того, понадобятся и все остальные управляющие элементы, без которых лазер работать не будет: DSP-контроллер, а также драйвера для кареток и приводов.

  • Основой настольного варианта для дома является станина из профильной трубы. Корпус выполняется из ДСП своими руками.
  • На станине самодельной настольной конструкции закрепляют направляющие – по ним будут двигаться каретки.
  • На каретки устанавливают еще 1 наплавляющую. Здесь закрепляется каретка для движения головки и сам лазер.
  • Приводами служат шаговые электродвигатели. Две каретки, которые перемещаются вдоль направляющих, приводятся в движение одним мотором, иначе возникают проблемы с синхронизацией.
  • Устанавливают DSP-контроллер, драйверы, а также блок питания в отсек из ДСП.
  • В качестве охлаждающей установки используется маломощная водяная помпа и емкость объемом в 100 л. Вода прокачивается через рубашку трубки. На фото – самодельный вариант конструкции.

Конечно, по эффективности он никак не сравнится с промышленным оборудованием, в то время как стоимость его весьма изрядна.

thefanera.ru

Лазерная резка фанеры - основы и тонкости

Каждый из нас знает, что из себя представляет фанера. Являясь слоистым материалом, состоящим из листов лущеного шпона, прочно склеенных между собой, фанера характеризуется прочностью и стабильностью формы. Поэтому она широко используется в производстве мебели и различных предметов декора интерьера.

Для того чтобы придать листу фанеры нужную форму, а в некоторых случаях это дизайнерские узоры или орнамент, производится лазерная резка фанеры. Являясь новейшим из современных способов раскроя листовых и пластинчатых материалов, лазерная резка позволяет воплотить в жизнь и выполнить из фанеры наиболее сложные конструкторские и дизайнерские задумки.

Нужно отметить, что лазерная резка фанеры не такое простое дело, как кажется на первый взгляд. Композитная структура материала, неоднородность толщин слоев шпона и смолы, разнонаправленность волокон и пузыри воздуха - все это требует определенных навыков.

Долгое время лазерное оборудование было достаточно дорогостоящим, поэтому умельцы были вынуждены изобретать собственные устройства для этих целей. В результате на таких устройствах многими аматорами производится довольно высококачественная лазерная резка фанеры своими руками.

Принцип резки фанеры лазером

Для выполнения работ по резке фанеры необходим ручной или электрический станок. Лазерная резка фанеры обуславливается точечным воздействием луча на поверхность, т. е. выполняется бесконтактным способом и исключает возникновение отходов при этом.

Самодельный лазер

Сконструировать лазер для резки фанеры можно самостоятельно с помощью спичечного коробка с DWD-приводом. Такое устройство обеспечивает резкий всплеск температуры в точке контакта луча с обрабатываемой поверхностью, что приводит к прожигу древесины толщиной 0,01-0,02 мм. Такая обработка фанеры актуальна для граверных работ и вырезания мелких изделий. Но она имеет свою особенность - оставляет темные края в месте резки.

Резка фанеры лазером своими руками

Лазерная резка фанеры своими руками выполняется с помощью трубки с газом (азот+гелий+оксид углерода), мощностью от 20 Вт основного источника, создающего излучение. На нее подается электрический разряд, который обуславливает возникновение монохромного излучения, направляемого на обрабатываемую поверхность с помощью системы зеркал. Также следует позаботиться о правильных элементах для трансформации питания.

Для комфортной и правильной работы трубку следует оснастить мощной системой охлаждения. Это необходимо, поскольку во время работы ее оболочка очень сильно нагревается. Для предотвращения перегрева трубка «одевается» во вторую оболочку, через которую при работе постоянно циркулирует охладительная жидкость.
Такую систему охлаждения можно сделать с помощью емкости для жидкости объемом 80-100 л и водяного насоса. В качестве охлаждающей жидкости чаще всего используется фреон. Также следует позаботиться о качественном трансформаторе для хорошего излучения и вытяжке для отвода продуктов горения.

Профессиональная резка фанеры лазером

Но конечно же, самодельные конструкции по лазерной обработке фанеры не целесообразны для выполнения одной или нескольких мелких работ. В этом случае гораздо проще обратиться в компанию, в которой выполняется профессиональная лазерная резка фанеры. Цена этой работы определяется толщиной материала, длиной реза и практически не зависит от сложности и формы обработки.

Нужно учитывать и тот факт, что лазерная резка фанеры лучше всего подходит к материалу марки ФК. В нем слои фанеры склеиваются карбамидной смолой. Дело в том, что она менее термостойка, нежели фенольная или бакелитовый лак и, соответственно, лучше поддается лазерной обработке. Т.е. требуется гораздо меньше затрат луча лазера для разрыва ее полимерной связи и распада молекулы. А это, в свою очередь, существенно повышает производительность резки.

Поэтому, если вам необходим раскрой фанеры лазером, а вы при этом не являетесь экспертом в данной области, посоветуйтесь предварительно с профессионалами насчет материала и рисунка резки. Несомненно, сделав все согласно их рекомендациям, вы обязательно получите изделие, которое будет привлекать к себе внимание и радовать глаз безукоризненностью своей формы.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *