Жаропрочная сталь до 1500 градусов – Жаропрочная нержавеющая труба — тех.характеристики и сфера применения. Нержавеющая сталь жаростойкая

Содержание

Жаростойкая нержавеющая сталь – какая бывает и где применяется. Жаропрочная сталь до 1500 градусов



Жаростойкая нержавеющая сталь – какая бывает и где применяется

Сделать заказ можно по телефону

Наши специалисты с радостью вам помогут

+7 495 775-50-79

Для стали есть два основополагающих параметра, которые определяют ее устойчивость к высоким температурам – жаропрочность и жаростойкость. Несмотря на то что параметры созвучны они отражают различные свойства материалов.

  • Жаростойкая нержавеющая сталь – это материал способный противостоять образованию коррозии и окалины при температурах более 500 градусов Цельсия. Высокое процентное содержание легирующих примесей связывает атомы железа и не дает распространяться процессу окисления.

  • Жаропрочная нержавеющая сталь – этот материал способен не подвергаться пластической деформации под действием высоких температур.

Если необходима максимальная жаростойкость конструкции, то для ее изготовления применяется жаростойкая нержавеющая сталь с высоким процентным содержанием хрома.

Какие жаростойкие нержавеющие стали встречаются

В зависимости от содержания легирующих примесей жаростойкие стали могут классифицироваться как:

  • Хромистые;
  • Хромоникелевые;
  • Хромокремнистые;

При этом содержание примесей легирующих элементов в нержавеющем металле можно определить по его маркировке. Например, сталь нержавеющая 12Х18Н10Т содержит:

  • 12 сотых долей процента углерода;
  • 18 сотых долей процента хрома;
  • 10 сотых долей процента никеля;
  • Менее 1 сотой доли процента титана.

Где применяются жаропрочные нержавеющие стали

Самые распространенные из нержавеющих жаропрочных материалов с высоким содержанием хрома могут выдерживать температуры выше 1000 градусов если на них не воздействуют механические нагрузки. Основное применение материал нашел для изготовления конструкций эксплуатирующийся при температуре +18 градусов и выше.

Хромокремнистые нержавеющие стали с добавлением большого процента молибдена, применяются для изготовления впускных клапанов системы двигателей внутреннего сгорания. Применяются как для дизельных агрегатов, так и для высокооктановых авиационных моторов.

Хромоникеле

pellete.ru

Жаропрочная сталь. Марка жаропрочной стали

«Нижегород Металл» реализует как обычный металлопрокат, так и характеризующийся повышенной жаропрочностью, жаропрочная сталь некоторых видов может длительное время в эксплуатационном режиме (под нагрузкой) держать температуру до 1500 градусов.

Консультанты помогают принять решение

При покупке металлопроката в Нижнем Новгороде во всех случаях стоит обращаться к услугам менеджеров-консультантов профильного ресурса. Они подскажут оптимальный вариант решения с учетом цен, характеристик, правильности выполнения тех или иных операций в отношении металлопрокатных изделий. Например, в случаях покупки арматурной стали, вы можете получить грамотный и максимально полный ответ на вопрос, как вязать арматуру.

В иных ситуациях помогут определиться и решить, исходя из требуемых показателей по предельному уровню непрерывной деформации, конкретную технологическую задачу: какая марка жаропрочной стали должна применяться в техпроцессе. Важно учитывать сопротивление стали воздействию такого мощного разрушающего фактора, как высокая температура.

В ассортименте «Нижегород Металл» наличествует металлопрокат, изготавливаемый из сталей ферритных, мартенситных, аустенитных и иных классов.

Здесь можно подобрать жаропрочные стали марки которых предусматривают высокий показатель длительной прочности, соответствующий состав легирующих элементов, в том числе оказывающего влияние на жаростойкость хрома (Cr). Консультанты сайта компании владеют нюансами информации по структурному состоянию, режимам термобработки сплавов.

  • ПОХОЖИЕ ТОВАРЫ

nizhmet.ru

ВЫСОКОЛЕГИРОВАННЫЕ ЖАРОПРОЧНЫЕ И ЖАРОСТОЙКИЕ СТАЛИ. Жаропрочная сталь до 1000 градусов



Жаростойкие и жаропрочные стали и сплавы

 

К жаростойким (окалиностойким) относят стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550ºС и работающие в ненагруженном или слабонагруженном состоянии.

При высокой температуре в условиях эксплуатации в среде нагретого воздуха, в продуктах сгорания топлива происходит окисление стали (газовая коррозия). На поверхности стали образуется сначала тонкая пленка окислов, которая с течением времени увеличивается и образуется окалина.

Жаростойкость принято характеризовать температурой начала интенсивного окалинообразования в воздушной среде.

На интенсивность окисления влияет состав и строение окисной пленки. Если она пористая, окисление происходит интенсивно. Если плотная–окисление замедляется или даже совершенно прекращается.

Для получения плотной (защитной) окисной пленки сталь легируют хромом, также кремнием или алюминием. Степень жаростойкости зависит от количества находящегося в стали легирующего элемента. Так, например, сталь 15Х5 с содержанием 4,5-6,0% хрома жаростойка до температуры 700ºС, сталь 12Х17 (17% Сr )—до 900ºС, сталь 15Х28 (28% Сr)–до 1100-1150ºС (стали 12Х17 и 15Х28 являются также и нержавеющими). Еще более высокой жаростойкостью (1200ºС) обладают сплавы на никелевой основе с хромом и алюминием, например, сплав ХН7ОЮ (26-29 % хрома;2,8-3,5% алюминия).

Структура стали на жаростойкость не влияет.

К жаропрочным относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

В отличие от прочности при нормальной (комнатной) температуре, прочность при высоких температурах, т.е. сопротивлении механическим нагрузкам при высоких температурах, называют жаропрочностью.

Характерным является, не только уменьшение прочности стали при высоких температурах, но и влияние на прочность стали при высоких температурах длительности действия приложенной нагрузки. В последнем случае под действием постоянной нагрузки сталь «ползет», поэтому данное явление названо ползучестью. Итак, ползучесть–это деф

pellete.ru

Жаростойкие и жаропрочные сплавы. Классификация, свойства, применение, химический состав, марки

Нихром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Фехраль

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Нихром в изоляции

Продукция

Цены

Стандарты

Статьи

Фото

Титан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Вольфрам

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Молибден

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Кобальт

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Термопарная проволока

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Провода термопарные

Продукция

Цены

Стандарты

Статьи

Фото

Никель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Монель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Константан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Мельхиор

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Твердые сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Порошки металлов

Продукция

Цены

Стандарты

Статьи

Фото

Нержавеющая сталь

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Жаропрочные сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ферросплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Олово

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Жаростойкие и жаропрочные сплавы обладают высокой жаропрочностью и жаростойкостью, что определяет их применение в качестве конструкционных материалов для изготовления изделий с повышенными требованиями к механической прочности и коррозионной стойкости при высоких температурах. На странице представлено описание данных сплавов: свойства, области применения, марки жаростойких и жаропрочных сплавов, виды продукции.

Основные сведения о жаростойких и жаропрочных сплавах

Жаропрочные сплавы и стали — материалы, работающие при высоких температурах в течение заданного периода времени в условиях сложно-напряженного состояния и обладающие достаточным сопротивлением к коррозии в газовых средах.

Жаростойкие сплавы и стали — материалы, работающие в ненагруженном или слабо-нагруженном состоянии при повышенных температурах (более 550 °C) и обладающие стойкостью к коррозии в газовых средах.

Активный интерес к подобным материалам стал проявляться в конце 30-х годов XX века, когда появилась необходимость в материалах способных работать при достаточно высоких температурах. Это связано с развитием реактивной авиации и газотурбинных двигателей.

Основой жаростойких и жаропрочных сплавов могут быть никель, кобальт, титан, железо, медь, алюминий. Наиболее широкое распространение получили никелевые сплавы. Они могут быть литейными, деформируемыми и порошковыми. Наиболее распространенными среди жаропрочных являются литейные сложнолегированные сплавы на никелевой основе, способные работать до температур 1050-1100 °C в течение сотен и тысяч часов при высоких статических и динамических нагрузках.

Классификация жаропрочных и жаростойких сплавов

Поскольку речь идет о жаростойких и жаропрочных сталях и сплавах, то стоит дать определение терминам жаропрочность, жаростойкость.

Термины и определения

Жаропрочность — способность сталей и сплавов выдерживать механические нагрузки при высоких температурах в течение определенного времени. При температурах до 600°С обычно применяют термин теплоустойчивость. Можно дать более строгое определение жаропрочности.

Под жаропрочностью также понимают напряжение, вызывающее заданную деформацию, не приводящую к разрушению, которое способен выдержать металлический материал в конструкции при определенной температуре за заданный отрезок времени. Если учитываются время и напряжение, то характеристика называется пределом длительной прочности; если время, напряжение и деформация — пределом ползучести.

Ползучесть — явление непрерывной деформации под действием постоянного напряжения. Длительная прочность — сопротивление материала разрушению при длительном воздействии температуры.

Жаростойкость характеризует сопротивление металлов и сплавов газовой коррозии при высоких температурах.

Классификация

Можно выделить несколько классификаций сплавов и сталей, которые работают при повышенных и высоких температурах.

Наиболее общей является следующая классификация жаростойких и жаропрочных сталей и сплавов:

  • Теплоустойчивые стали — работают в нагруженном состоянии при температурах до 600°С в течение длительного времени. Примером являются углеродистые, низколегированные и хромистые стали ферритного класса.
  • Жаропрочные стали и сплавы — работают в нагруженном состоянии при высоких температурах в течение определенного времени и обладают при этом достаточной жаростойкостью. Примерами являются стали аустенитного класса на хромоникелевой или хромоникельмарганцевой основах с различными легирующими элементами и сплавы на никелевой или кобальтовой основе.
  • Жаростойкие (окалиностойкие) стали и сплавы — работают в ненагруженном или слабонагруженном состоянии при температурах выше 550°С и обладают стойкостью против химического разрушения поверхности в газовых средах. В качестве примера можно привести хромокремнистые стали мартенситного класса, хромоникелевые аустенитные стали, хромистые и хромоалюминиевые стали ферритного класса, а также сплавы на основе хрома и никеля.
Также существует классификация по способу производства:
  • литейные;
  • деформируемые.

Свойства жаростойких и жаропрочных сплавов

Для жаропрочных сплавов и сталей основным полезным свойством с практической точки зрения является способность материала выдерживать механические нагрузки в условиях высоких температур. Существуют различные схемы нагружения жаропрочных материалов: статические растягивающие, изгибающие или скручивающие нагрузки, термические нагрузки вследствие изменений температуры, динамические переменные нагрузки различной частоты и амплитуды, динамическое воздействие скоростных газовых потоков на поверхность. При этом указанные материалы должны выдерживать соответствующий тип нагружения.

Основным практически полезными свойствами жаростойких сталей и сплавов является коррозионная стойкость материала в газовых средах при высоких температурах.

В то же время, с точки зрения производства готовых изделий важную роль играют технологические свойства. При создании деформируемых сплавов необходимо обеспечить достаточную технологическую пластичность при обработке давлением, в том числе при температурах 700-800 °С, а литые сплавы должны иметь удовлетворительные литейные свойства (жидкотекучесть, пористость).

Марки жаропрочных и жаростойких сплавов

Жаропрочные стали и сплавы на никелевой основе

В настоящее время сплавы на никелевой основе имеют наибольшее значение в качестве жаропрочных материалов, предназначенных для работы при температурах от 700 до 1100°С.

Сплав ХН77ТЮР (ЭИ437Б и ЭИ437БУВД)
Химический состав по ГОСТ 5632-72, ТУ 14-1-402-72, % (по массе):

  • сплава ЭИ437Б — 19-22 Cr; 2,4-2,8 Ti; 0,6-1,0 Al;
  • сплава ЭИ437БУ — 19-22 Cr; 2,5-2,9 Ti; 0,6-1,0 Al;
Технологические данные:
  • сплав изготавливается в открытых дуговых или индукционных печах с применением вакуумного дугового переплава;
  • температура деформации — начало 1180 °С, ко­нец не ниже 900 °С, охлаждение после деформации иа воздухе;
  • рекомендуемые режимы термической обработки: ХН77ТЮР (ЭИ437Б) — нагрев до 1080 °С, выдержка 8 ч, охлаждение на воз­духе;
  • старение при 700 или 750 °С, выдержка 16 ч, охлаждение иа воздухе; ХН77ТЮР (ЭИ437БУ) — нагрев до 1080 °С, выдержка 8 ч, охлаждение на воздухе; старение при 750 или 775 °С, выдержка 16 ч, охлаждение на воздухе.

Сплав ХН70ВМТЮ (ЭИ617)
Химический состав по ГОСТ 5632-72, % (по массе): 13-16 Cr; 2-4 Мо; 5-7 W; 0,1-0,5 V; 1,8-2,3 Ti; 1,7-2,3 Al; ; остальное никель.

Технологические данные:

  • сплав изготавливается в дуговых и индукционных электропечах и с применением вакуумного дугового переплава;
  • температура деформации — начало 1160, конец выше 1000 °С, охлаждение после деформации иа воздухе;
  • рекомендуемые режимы термической обработки: нагрев до 1190±10 °С, выдержка 2 ч, охлаждение на воздухе; нагрев до 1050 °С, выдержка 4 ч, охлаждение на воздухе; старение при 800 °С в течение 16 ч, охлаждение на воздухе;
  • нагрев до 1180 °С, выдержка 6 ч, охлаждение на воздухе; нагрев до 1000 °С, охлаждение с печью до 900 °С, выдержка 8 ч, охлаждение на воздухе; старение при 850 °С в течение 15 ч, охлаждение на воздухе.

Жаростойкие стали и сплавы на основе никеля и железа

Основными жаростойкими материалами, которые используют в газовых турбинах, печах и различного рода высокотемпературных установках с рабочей температурой до 1350 °С, являются сплавы на основе железа и никеля. Высокое сопротивление окислению сталей и сплавов связано в первую очередь с большим количеством хрома, входящего в состав сплавов. Например, максимальное содержание хрома (по массе) в количестве 26-29 % имеет сплав на основе никеля ХН70Ю.

Сплав ХН70Ю (ЭИ652)
Химический состав по ГОСТ 5632-72, % (по массе): 26-29 Cr; 2,8-3,5 Al;

Технологические данные:

  • сплав выплавляется в открытых дуговых или индукционных электропечах;
  • температура деформации — начало 1180, конец выше 900 °С, охлаждение после деформации на воздухе;
  • рекомендуемый режим термической обработки — нагрев до 1100-1200 °С, выдержка 10 мин, охлаждение на воздухе;
  • сварка сплава в тонких сечениях может производиться всеми видами сварки;
  • сплав обладает способностью к глубокой вытяжке, предельный коэффициент вытяжки K = D / (d + s) = 2,17, где D — диаметр заготовки; d — диаметр пуансона; s — толщина стенки в мм.
Сплав ХН78Т (ЭИ435)
Химический состав по ГОСТ 5632-72, % (по массе): 19-22 Cr;

Технологические данные:

  • сплав выплавляется в открытых дуговых или индукционных электропечах;
  • температура деформации — начало 1160, конец не ниже 950 °С, охлаждение после деформации на воздухе;
  • рекомендуемый режим термической обработки — нагрев до 980-1020 °С, охлаждение на воздухе или в воде;
  • сварка сплава может производиться всеми видами сварки;
  • сплав обладает способностью к глубокой вытяжке при штамповке.
Сплав ХН60ВТ (ЭИ868)
Химический состав по ГОСТ 5632-72, % (по массе): 23,5-26,5 Cr; 13-16 W;

Технологические данные:

  • сплав выплавляется в открытых дуговых или индукционных электропечах;
  • температура деформации — начало 1180, конец не ниже 1050 °С, охлаждение после деформации на воздухе;
  • рекомендуемый режим термической обработки — нагрев до 1150-1200 °С, выдержка листа 10 минут, прутков 2-2,5 часов, охлаждение на воздухе;
  • сварка сплава может производиться всеми видами сварки;
  • сплав обладает способностью к глубокой вытяжке, предельный коэффициент вытяжки составляет 2,06.
Сплавы ХН65МВ (ЭП567), ХН65МВУ (ЭП760) (хастеллой)
Химический состав по ГОСТ 5632-72, % (по массе): 14,5-16,5 Cr; 15-17 Mo; 3-4,5 W;

Полуфабрикаты из указанных сплавов подвергаются термической обработке, которая заключается в закалке при температуре 1050-1090 °С и последующем охлаждении в воде.

Применяются для сварки конструкций, работающих при повышенных температурах в достаточно агрессивных средах (серная, уксусная кислота, хлориды и др.).

Высоколегированные стали

Сталь СВ-06Х15Н60М15 (ЭП367)
Химический состав по ГОСТ 2246-70, % (по массе): 14-16 Cr; 14-16 Mo;

Указанная сталь не относится к категории жаропрочных или жаростойких, но используется для сварки конструкций из таких сплавов. Она применяется для сварки деталей из сплавов на никелевой основе, например, ХН78Т, ХН70ВМЮТ и подобных, а также для сварки разнородных металлов, например, хромистых сталей со сплавами на никелевой основе. Помимо сварки может осуществляться наплавка.

Достоинства / недостатки жаростойких и жаропрочных сплавов

    Достоинства:
  • обладают высокой жаропрочностью;
  • имеют хорошие показатели жаростойкости.
    Недостатки:
  • сплавы с содержанием хрома и особенно никеля имеет высокую стоимость;
  • имея в своем составе большое количество различных компонентов, достаточно трудоемки в производстве.

Области применения жаропрочных И жаростойких сплавов

Указанные материалы применяются при изготовлении деталей ракетно-космической техники, в газовых турбинах двигателей самолетов, кораблей, энергетических установок, в нефтехимическом оборудовании. К таким деталям можно отнести рабочие лопатки, турбинные диски, кольца и другие элементы газовых турбин, а также камеры сгорания, узлы деталей печей и прочих изделий, длительно работающих при повышенных температурах. Диапазон рабочих температур, как правило, составляет 500-1350 °С. Полуфабрикаты из некоторых сплавов используются в качестве присадочного материала при сварке.

Продукция из жаростойких и жаропрочных сплавов

www.metotech.ru

Марки стали. Сталь жаропрочная высоколегированная.

Из этих сталей изготавливаются детали, предназначенные для длительной работы в условиях температур до 600°C — детали теплообменников, реакторов, установок сверхвысокого давления. Стали имеют повышенное содержании никеля, хрома и молибдена.

Марка сталиНазначение стали
Марка стали
20Х20Н14С2
печные конвейеры, ящики для цементации и другие детали термических печей.
Марка стали
08Х15Н24В4ТР
рабочие и направляющие лопатки, крепежные детали, диски газовых турбин с длительным сроком службы при температурах 650-700 град. ; сталь аустенитного класса.
Марка стали
08Х15Н25М3ТЮБ
диски, лопатки, крепеж для работы до 700 град.
Марка стали
08Х16Н11М3
листы, поковки, трубы, длительно работающие при температурах до 700 град.
Марка стали
08Х16Н13М2Б
поковки для дисков и роторов, лопатки и болты, длительно работающие при температурах до 600 град.; сталь аустенитного класса.
Марка стали
08Х20Н14С2
для труб; сталь жаростойкая, устойчива в науглероживающих средах.
Марка стали
08Х21Н6М2Т
теплообменники, реакторы, трубопроводы, арматура, длительно работающие при температурах до 300 град.; сталь аустенитно — ферритного класса.
Марка стали
09Х14Н16Б
турбины пароперегревателей и трубопроводы установок сверхвысокого давления для длительной службы при температурах до 650 град.; сталь аустенитного класса.
Марка стали
09Х14Н16Б
турбины пароперегревателей и трубопроводы установок сверхвысокого давления для длительной службы при температурах до 650 град.; сталь аустенитного класса.
Марка стали
09Х14Н19В2БР
паропроводные и пароперегревательные трубы установок сверхвысокого давления с длительным сроком службы при температурах до 700 град.С ; сталь аустенитного класса.
Марка стали
09Х14Н19В2БР1
роторы, диски, лопатки турбин с длительным сроком службы при температурах 650-700 град.; сталь аустенитного класса.
Марка стали
09Х16Н15М3Б
трубы пароперегревателей и паропроводов высокого давления, длительно работающие при температурах до 350 °С. ; сталь аустенитного класса.
Марка стали
09Х16Н16МВ2БР
трубы пароперегревателей, паропроводов, коллекторов, длительно работающие при температурах 600-700 град.
Марка стали
10Х11Н20Т2Р
трубы пароперегревателей, паропроводов, коллекторов, длительно работающие при температурах 600-700 град.
Марка стали
10Х11Н20Т3Р
турбинные диски, кольцевые детали, крепежные детали, детали компрессора и рабочей части турбины с рабочей температурой до 700 град.; сталь аустенитного класса.
Марка стали
10Х11Н23Т3МР
пружины и детали крепежа с ограниченным сроком работы при при температурах до 700 °С; сталь аустенитного класса.
Марка стали
10Х13СЮ
для клапанов автотракторных моторов и т.д.; сталь жаростойкая, устойчива в серосодержащих средах.
Марка стали
10Х15Н25В3ТЮ
диски, лопатки, крепеж для работы до 700 град.
Марка стали
10Х15Н25М3В3ТЮК
диски, лопатки, крепеж для работы до 700 град.
Марка стали
10Х18Н18Ю4Д
ролики щелевых печей, чехлы термопар, теплообменники и др. детали, длительно работающие при температурах до 1100 град.
Марка стали
10Х23Н18
листовые детали, трубы, арматура (при пониженных нагрузках), работающие при 1000 °С.
Марка стали
10Х25Н25ТР
сортовой материал и лист для камер сгорания газовых турбин и других деталей с рабочей температурой до 1000 град.
Марка стали
10Х7МВФБР
в энергетическом машиностроении — трубы и детали для длительной работы при температурах 600-620 град.
Марка стали
11Х11Н2В2МФ
нагруженные детали, длительно работающие при температурах до 600 °С.; сталь мартенситного класса.
Марка стали
12Х12МВФБР
трубы для длительной работы при температурах до 630 град С.
Марка стали
12Х14Н14В2М
трубы пароперегревателей, паропроводов и коллекторов для длительной службы при температурах до 550-650 град.
Марка стали
12Х25Н16Г7АР
лист, проволока, трубы, лента, детали, работающие до 950 °С. при умеренных напряжениях.
Марка стали
12Х2МВ8ФБ
энергетическое машиностроение (трубы для длительной работы при температурах до 650 град.С.)
Марка стали
12Х8ВФ
трубы печей, аппаратов и коммуникаций нефтезаводов, длительно работающие при температурах до 500 °С.; температура окалинообразования 650 °С.; сталь мартенситного класса.
Марка стали
13Х11Н2В2МФ
нагруженные детали, длительно работающие при температурах до 600 °С.; сталь мартенситного класса.
Марка стали
13Х12Н2В2МФ
различные детали газовых турбин, длительно работающие при температурах до 600 град.
Марка стали
13Х14Н3В2ФР
высоконагруженные детали, длительно работающие при температурах до 550 °С. в условиях повышенной влажности; температура окалинообразования 700 °С. ; сталь мартенситного класса.
Марка стали
15Х11МФ
турбинные лопатки, поковки, бандажи и др. детали, длительно работающие при температурах до 560 °С; температура окалинообразования 750 °С.; сталь мартенситного класса.
Марка стали
15Х12ВНМФ
лопатки, поковки, крепежные детали турбин для длительного срока службы при температурах до 580 °С; температура окалинообразования 750 °С.; сталь мартенситно — ферритного класса.
Марка стали
15Х18СЮ
трубы пиролизных установок, аппаратура; сталь жаростойкая.
Марка стали
16Х11Н2В2МФ
диски компрессора, лопатки и другие нагруженные детали.
Марка стали
18Х11МНФБ
высоконагруженные детали паровых и газовых турбин, длительно работающие при температурах до 600 °С.; сталь мартенситного класса.
Марка стали
18Х11МФБ
лопатки паровых турбин, поковки дисков и роторов для длительной службы при температурах до 600 град.
Марка стали
18Х12ВМБФР
лопатки паровых турбин, трубы и крепежные детали для длительного срока службы при температурах до 620 град. ; сталь мартенситно — ферритного класса.
Марка стали
20Х12ВНМФ
высоконагруженные детали паровых и газовых турбин, длительно работающие при температурах до 600 °С.; сталь мартенситного класса.
Марка стали
20Х12Н2В2МФ
диски компрессора, лопатки и и другие нагруженные детали, длительно работающие при температуре до 600 град.
Марка стали
20Х23Н13
детали, работающие при высоких температурах в слабонагруженном состоянии. Сталь жаростойкая до 900—1000 °С.
Марка стали
20Х23Н18
работающие и направляющие лопатки, поковки и бандажи, работающие при температурах 650-700 град., детали камер сгорания и др. печное оборудование, работающее при температурах 1000-1050 град.
Марка стали
20Х25Н20С2
детали печей; работающие при температуре до 1100 °С. в воздушной и углеводородной атмосферах
Марка стали
2Х12Н2ВМФ
диски компрессора, лопатки и др. нагруженные детали, длительно работающие при температурах до 600 град.
Марка стали
30Х13Н7С2
для клапанов автомобильных моторов; сталь жаростойкая.
Марка стали
31Х19Н9МВБТ
поковки, лопатки, крепежные детали, длительно работающие при температурах до 630 град.
Марка стали
36Х18Н25С2
головки форсунок, детали печей, ящики для цементации, длительно работающие при температурах до 1000 град.
Марка стали
37Х12Н8Г8МФБ
диски, крепежные и другие детали, работающие с ограниченным сроком службы при 600—650 °С.; сталь аустенитного класса.
Марка стали
40Х10С2М
клапаны авиадвигателей, автомобильных и тракторных дизельных двигателей, крепежные детали двигателей. Сталь обладает высокими механическими свойствами до 600 °С, однако при длительных выдержках при 500 °С и особенно при 600 °С ударная вязкость резко снижается до 150 кДж/м2.; сталь мартенситного класса.
Марка стали
40Х15Н7Г7Ф2МС
лопатки газовых турбин, крепежные детали, работающие при температуре 650 град.С ограниченное время; сталь аустенитного класса.
Марка стали
40Х9С2
клапаны впуска и выпуска двигателей, трубки рекуператоров, теплообменники, колосники, крепежные детали; сталь жаростойкая, мартенситного класса.
Марка стали
45Х14Н14В2М
клапаны моторов, поковки, детали трубопроводов, длительно работающие при температурах до 650 °С.; сталь аустенитного класса.
Марка стали
45Х22Н4М3
клапаны моторов.
Марка стали
4Х14Н14В2М
детали арматуры, поковки, крепеж для длительной работы при температурах до 600 град.С и ограниченного срока службы при 650 град.С.
Марка стали
4Х15Н7Г7Ф2МС
лопатки газовых турбин, крепежные детали с ограниченным сроком службы при температурах 650 град.С.
Марка стали
55Х20Г9АН4
клапаны автомобильных моторов.

xn--80agxmaficjea0j.xn--p1ai

Жаростойкая нержавеющая сталь – какая бывает и где применяется

Сделать заказ можно по телефону

Наши специалисты с радостью вам помогут

+7 495 775-50-79

Для стали есть два основополагающих параметра, которые определяют ее устойчивость к высоким температурам – жаропрочность и жаростойкость. Несмотря на то что параметры созвучны они отражают различные свойства материалов.

  • Жаростойкая нержавеющая сталь – это материал способный противостоять образованию коррозии и окалины при температурах более 500 градусов Цельсия. Высокое процентное содержание легирующих примесей связывает атомы железа и не дает распространяться процессу окисления.

  • Жаропрочная нержавеющая сталь – этот материал способен не подвергаться пластической деформации под действием высоких температур.

Если необходима максимальная жаростойкость конструкции, то для ее изготовления применяется жаростойкая нержавеющая сталь с высоким процентным содержанием хрома.

Какие жаростойкие нержавеющие стали встречаются

В зависимости от содержания легирующих примесей жаростойкие стали могут классифицироваться как:

  • Хромистые;
  • Хромоникелевые;
  • Хромокремнистые;

При этом содержание примесей легирующих элементов в нержавеющем металле можно определить по его маркировке. Например, сталь нержавеющая 12Х18Н10Т содержит:

  • 12 сотых долей процента углерода;
  • 18 сотых долей процента хрома;
  • 10 сотых долей процента никеля;
  • Менее 1 сотой доли процента титана.

Где применяются жаропрочные нержавеющие стали

Самые распространенные из нержавеющих жаропрочных материалов с высоким содержанием хрома могут выдерживать температуры выше 1000 градусов если на них не воздействуют механические нагрузки. Основное применение материал нашел для изготовления конструкций эксплуатирующийся при температуре +18 градусов и выше.

Хромокремнистые нержавеющие стали с добавлением большого процента молибдена, применяются для изготовления впускных клапанов системы двигателей внутреннего сгорания. Применяются как для дизельных агрегатов, так и для высокооктановых авиационных моторов.

Хромоникелевые сплавы применяются для изготовления механизмов, работающих при небольших нагрузках. Максимальная жаростойкость материала составляет 900-1050 градусов Цельсия. Сплавы делятся на две основные категории – ферритные и аустенитные. Первые являются наиболее хрупкими и не выдержив/products/stainless-sheets/»>нержавеющие листы, трубы, арматуру к ним.


www.globus-stal.ru

Жаропрочная сталь — WiKi

Жаропро́чная сталь — это вид стали, который используется в условиях высоких температур (от 0,3 части от температуры плавления) в течение определённого времени, а также в условиях слабонапряжённого состояния.

Главной характеристикой, определяющей работоспособность стали, является жаропрочность.

Жаропрочность — это способность стали работать под напряжением в условиях повышенных температур без заметной остаточной деформации и разрушения. Основными характеристиками жаропрочности являются ползучесть и длительная прочность.

Ползучесть

Явление непрерывной деформации под действием постоянного напряжения называется ползучестью. Характеристикой ползучести является предел ползучести, характеризующий условное растягивающее напряжение, при котором скорость и деформация ползучести за определённое время достигают заданной величины. Если допуск даётся по скорости ползучести, то предел ползучести обозначается σ(сигма) с двумя индексами: нижний соответствует заданной скорости ползучести в %/ч (проценты в час), а верхний — температуре испытания. Если задаётся относительное удлинение, то в обозначение предела ползучести вводят три индекса: один верхний соответствует температуре испытания, два нижних — деформации и времени. Для деталей, работающих длительный срок (годы), предел ползучести должен характеризоваться малой деформацией, возникающей при значительной длительности приложения нагрузки. Для паровых турбин, лопаток паровых турбин, работающих под давлением, допускается суммарная деформация не более 1 % за 100000 часов, в отдельных случаях допускается 5 %. У лопаток газовых турбин деформация может быть 1-2 % на 100—500 часов.

Длительная прочность

Сопротивление стали разрушению при длительном воздействии температуры характеризуется длительной прочностью.

Длительная прочность — это условное напряжение, под действием которого сталь при данной температуре разрушается через заданный промежуток времени

Жаропрочные свойства в первую очередь определяются температурой плавления основного компонента сплава, затем его легированием и режимами предшествующей термообработки, определяющими структурное состояние сплава. Основой жаропрочных сталей являются твёрдые растворы или перенасыщенные растворы, способные к дополнительному упрочнению вследствие дисперсионного твердения.

Для кратковременной службы применяются сплавы с высокодисперсным распределением второй фазы, а для длительной службы — структурно-стабильные сплавы. Для длительной службы выбирается сплав не склонный к дисперсионному твердению.

Самым распространённым легирующим элементом в жаропрочных сталях является хром (Cr), который благоприятно влияет на жаростойкость и жаропрочность.

Высоколегированные жаропрочные стали из-за различных систем легирования относятся к различным классам:

Внутри каждого класса различаются стали с различным типом упрочнения:

карбидным,
интерметаллидным,
смешанным (карбидно-интерметаллидным).

Для котельных установок, работающих длительное время (10 000—100 000 часов) при температурах 500—580 °C, рекомендуются стали перлитного класса, введение молибдена в которые повышает температуру рекристаллизации феррита и тем самым повышает его жаропрочность.

Однако бо́льшую часть жаропрочных сталей, работающих при повышенных температурах, составляют аустенитные стали на хромоникелевой и хромомарганцевой основах с различным дополнительным легированием. Эти стали подразделены на три группы:

  • гомогенные (однофазные) аустенитные стали, жаропрочность которых обеспечивается в основном легированностью твёрдого раствора;
  • стали с карбидным упрочнением;
  • стали с интерметаллидным упрочнением.

ru-wiki.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *