Вольфрам при какой температуре плавится: температура плавления, свойства, добыча, месторождения, характеристики, цвет

Содержание

температура плавления, свойства, добыча, месторождения, характеристики, цвет

Главная » Металлы » Свойства и температура плавления вольфрама

На чтение 5 мин

Содержание

  1. Краткое описание
  2. Структура и характеристики
  3. История открытия и изучения
  4. Получение из руды и месторождения
  5. Промышленное получение
  6. Марки
  7. Свойства
  8. Химические
  9. Физические
  10. Сферы применения
  11. Преимущества и недостатки
  12. Сплавы

Вольфрам — самый тугоплавкий металл. Известны разные марки этого материала, которые обладают своим особенностями, свойствами. Температура плавления вольфрама — одна из главных характеристик этого металла. По ней специалисты определяют в каких отраслях промышленности его лучше использовать.

Вольфрам

Краткое описание

Вольфрам — тугоплавкий металл. В таблице Менделеева его можно найти под номером 74. Характерные качества — серый цвет, естественный металлический блеск.

Во Франции, Великобритании и США этот материал называется tungsten, что переводится как «тяжелый камень».

Структура и характеристики

Кристаллы вольфрама имеют объемноцентрированную кубическую решетку. Основная форма, размеры кристаллов не изменяются, если порошок прессуется при низких температурах.

Атомы в кубической ячейке металла расположены по всем вершинам и внутри самой ячейки. Коэффициент компактности вольфрама — 0,68.

История открытия и изучения

Свое название металл получил от минерала вольфрамит. Его начали добывать в XVI веке. Тогда его называли «волчьей пеной». Вольфрам часто встречался в оловянных рудах, мешал выплавлять этот металл. Он переводил его в пену шлаков.

Первое научное упоминание о нахождении нового химического элемента появилось в 1781 году. Тогда знаменитый химик из Швеции Карл Шееле работал с минералом шеелит. Он обрабатывал его азотной кислотой, в ходе чего получил новый химический элемент с желтым оттенком. Он назвал его «тяжелым камнем». Через два года, братья Элюар получили из саксонского минерала новый металл.

Если сравнивать защиту от ионизирующего излучения из свинца или вольфрама, второй вид металла выигрывает. Готовый защитный слой будет задерживать больше частиц при меньшем весе.

Вольфрамит

Получение из руды и месторождения

В природе вольфрам можно встретить окисленными отложениями.  Они образуются из трехокиси этого металла, которая соединяется с кальцием, марганцем, железом. Иногда в составе можно встретить медь, свинец, торий, некоторые редкоземельные элементы.

Минералы, насыщенные вольфрамом, чаще встречаются в грунтовых породах небольшими вкраплениями. В таком случае средняя концентрация тяжелого металла — до 2%.

Самые крупные месторождения вольфрама находятся в США, Китае, Канаде. Среднее мировое производство за год — 50 тысяч тонн.

Критическая отметка температуры для этого металла — 13610°C. При нагревании до таких показателей он превращается в газ.

Промышленное получение

Получение вольфрама промышленными предприятиями начинается с добычи руды, ее доставки на производство. Следующий этап — выделение триоксида из расходного материала. После этого он проходит процесс восстановления для получения очищенного металлического порошка. Процедуру восстановления проводят под воздействием водорода. При этом сырье нагревается до 700°C. Готовый порошок прессуется, спекается при температуре 1300°C в защитной атмосфере из водорода.

Марки

Марки вольфрама:

  1. ВР — соединение вольфрама с рением.
  2. ВТ, ВИ, ВЛ — к основе добавляется присадка окиси лантана, тория, иттрия.
  3. ВРН — металл без присадок. Допускается наличие небольшого количества разных примесей.
  4. ВМ — к основе добавляются разные присадки. Основные — кремнещелочные, алюминиевые.
  5. МВ — соединение молибдена с вольфрамом. Сохраняется пластичность одновременно с повышением прочности.
  6. ВЧ — чистый металл без примесей, присадок.
  7. ВА — соединение основы с алюминием, кремнещелочными присадками.

Лампы накаливания не просто так имеют стеклянную герметичную капсулу. Поскольку вольфрам быстро окисляется на открытом воздухе, капсула заполняется инертным газом.

Лампа накаливания

Свойства

Чтобы понять, где лучше применять вольфрам, нужно знать свойства этого металла. Сейчас про этот материал известно достаточно информации, чтобы определить сферы его применения.

Химические

Свойства:

  1. Валентность чистого металла — 6. У соединений на его основе она может изменяться от 2 до 5.
  2. Молярная масса химического элемента —183,84.
  3. Элемент имеет орбиту, состоящую из двух ярусов.

Вольфрам — химически активный металл. Он вступает в реакции с разными веществами с образованием сложных, простых соединений. При нагревании реакции протекают быстрее. Для дополнительного ускорения реакции можно добавить водяные пары.

Физические

Свойства:

  1. Цвет — серый.
  2. Прозрачность — отсутствует.
  3. Металлический блеск — есть.
  4. Твердость — 7,5 (показатель указан согласно шкале Мооса).
  5. Плотность — 19,3 г/см3.
  6. Радиоактивность — 0.
  7. Теплопроводность — 173 Вт/(м·К).
  8. Электропроводность — 55·10−9 Ом·м.
  9. Показатель твердости по Бринеллю — 488 кгс/мм².
  10. Теплоемкость — 134,4 Дж/(кг·град).
  11. Температура плавления — 3380 °C (показатель зависит от количества примесей).
  12. Сопротивление электричеству — 55·10−9 Ом·м (при условии соблюдения температурного режима в 20°C).
  13. Температура кипения — около 5555 °C.

Лучше всего металл куется при нагревании до 1600°C.

На основе вольфрама изготавливают тяжелые сплавы. Общее содержание основы может достигать 97%. Готовые сплавы применяются для изготовления контейнеров, в которых будут храниться, переноситься радиоактивные вещества. Главная особенность емкости — возможность поглощения части гамма-излучения.

Сферы применения

Вольфрам применяется при изготовлении:

  • нити накаливания;
  • электродов для аргонодуговой сварки;
  • хирургических инструментов;
  • танковой брони, оболочек для снарядов, торпед;
  • защитных костюмов, емкостей, листов от проникающего ионизирующего излучения;
  • ювелирных украшений.

Положительные стороны:

  • тугоплавкость;
  • высокая прочность;
  • применение в разных сферах промышленности;
  • стойкость к большим нагрузкам после сильного нагревания;
  • экологичность.

Из главных недостатков можно выделить низкую пластичность, окисляемость при нагревании свыше 700°, высокую цену.

Сплавы

Известно множество соединений на основе этого металла. Они применяются в разных сферах промышленности. Виды и сферы их применения:

  1. Карбиды — добыча горных пород, бурение скважин.
  2. Сульфиды — изготовление высокотемпературной смазки.
  3. Дителлурид — производство преобразователей тепла в электричество.

Монокристаллы применяются в ядерной физике.

Остальные соединения используются в качестве пигментов, катализаторов. Они используются при изготовлении высоколегированных сталей, которые нужны для производства рабочих частей разных инструментов.

Чистый вольфрам по плотности можно сравнить с золотом 999 пробы. Раньше мошенники вкладывали стержни этого металла в золотые слитки. Определить подлинность золота без распиливания было невозможно.

Продукция из вольфрама выделяется высоким качеством, уникальными свойствами. Она применяется в разных сферах деятельности, не имеет аналогов среди похожих материалов.

( Пока оценок нет )

Поделиться

Самый тугоплавкий металл . От водорода до …?

74. Вольфрам — Wolfram (W)

Температура нити электрической лампочки превышает 2500 °C. Большинство металлов при такой температуре плавится, некоторые же кипят и быстро испаряются. В данном случае выручает вольфрам — самый тугоплавкий из всех металлов. Температура плавления вольфрама достигает 3410 °C. Трудно переоценить значение вольфрама в производстве электрических ламп, особенно если учесть, что в мире ежегодно изготавливают несколько миллиардов электрических лампочек. Несколько миллиардов! Чтобы составить себе представление о грандиозности этих цифр, достаточно сказать, что, например, миллиард минут составляет более 19 столетий. И только 61 год назад, 29 апреля 1902 г., в 10 часов 40 минут, человечество начало считать второй миллиард минут с первого дня нашего летосчисления.

В изломе куска чугуна или стали можно различить отдельные кристаллы. Иногда они крупные и видимы простым глазом, чаще — мелкие, различимые с помощью лупы или только под микроскопом. Но всегда таких кристаллов множество и, как говорят в таких случаях, кусок металла имеет поликристаллическую структуру. Совсем иначе выглядит волосок электролампы: прежде всего — это один кристалл, или, как говорят в технике, монокристалл (от греческого «монос» — один). Много усилий потратили исследователи, пока нашли условия, при которых из вольфрамового порошка можно получить монокристалл в виде проволочки большой длины.

Если учесть, что температура плавления вольфрама равна 3410 °C, можно представить, как трудно его получить в чистом виде. В этом состоит, главным образом, объяснение тому, что вольфрам, открытый еще в 1781 г. и выделенный с примесями в 1783 г. Дон-Фаусто-Дель-Гюаром, был получен в чистом виде лишь через 67 лет.

Вольфрам растворяется лишь в смеси двух кислот: плавиковой и азотной. В «царской водке» происходит лишь медленное окисление вольфрама с поверхности.

Так, волосок электролампы — это монокристалл вольфрама толщиной всего в несколько сотых долей миллиметра. Работа широко используемого в наши дни кенотронного выпрямителя также невозможна без вольфрама. Электроды кенотрона, спираль и пластинка изготовляются из вольфрама. Из вольфрама же делают и антикатоды мощных рентгеновских трубок.

При случае осмотрите контакты прерывателя на магнето, установленном в моторе трактора. В тех местах, где сотни раз в секунду вспыхивает и гаснет электрическая искра, — на контактах прерывателей — укреплена тоненькая табличка из вольфрама. При использовании любого другого материала двигатель не мог бы долго работать: контакты будут «пригорать», окисляться, и продукты окисления надо убирать, счищать. Хорошо, если зачистку контактов можно осуществить на земле, а как быть, например, в воздухе, если откажет мотор самолета? Вольфрам и здесь оказывается незаменимым.

По всей нашей стране известны имена прославленных новаторов производства: Семинского — токаря одного из киевских заводов, москвича Быкова и многих других. Выдающиеся успехи в обработке металлов, достигнутые этими замечательными людьми, стали возможны благодаря присутствию вольфрама в токарном резце. Знатный токарь одного из машиностроительных заводов Колесов разработал собственную конструкцию резцов для токарного станка, позволяющих обрабатывать детали с такой скоростью, что резец нагревается до красного каления. Можно без преувеличения сказать, что достижение успеха объясняется присутствием вольфрама в острие резца. Еще в годы первых пятилеток в нашей стране были разработаны методы получения так называемых сверхтвердых сплавов — победита, стеллита, «ВК» и др.

Эти сверхтвердые сплавы используются для производства пластинок, которые припаиваются к резцу. Собственно, эта напайка и является рабочей частью режущего инструмента. Хотя название «сверхтвердые сплавы» широко распространено в технической литературе, оно не отвечает природе этих материалов. Так называемые сверхтвердые сплавы представляют собой смесь порошков карбидов, сцементированных кобальтом. К тому же получают эти «сплавы» не сплавлением, а, как уже упоминалось, спеканием. Обязательной составной частью сверхтвердых материалов являются карбиды вольфрама. Такие сплавы содержат 78–88 % вольфрама, 6–15 % кобальта и 5–6 % углерода. Допуская огромные скорости обработки металла, они не теряют твердости даже при нагревании до 1000 °C. Аналогичный «сверхтвердый сплав» называется «видиа» — от сокращенного слова: «ви диамант» — «как алмаз». В известной мере такое сравнение законно: пластинки для резцов успешно заменяют роль алмаза в коронках для бурения нефтяных и газовых скважин. По твердости «победит» приближается к алмазу, но выгодно отличается от него меньшей хрупкостью и большей дешевизной.
Много вольфрама используется для получения высокопроцентного сплава вольфрама (50–80 %) с железом — ферровольфрама, расходуемого для разнообразных нужд металлургической промышленности.

В буквальном переводе название «вольфрам» означает «волчья пасть». Происхождение названия связано со следующим явлением. Если в оловянной руде находятся соединения, содержащие вольфрам, количество получаемого олова значительно уменьшается. Вольфрам «съедает» олово, как волк овцу.

Минералы, содержащие вольфрам, имеют большой вес. По этой причине один из таких минералов получил название «тунгстен» — «тяжелый камень». Во Франции и Англии этим названием обозначается и сам вольфрам.

Мировая добыча вольфрама возрастает с каждым годом.

5 интересных фактов о вольфраме

Свойства и применение вольфрамовой проволоки

В то время как наиболее привычное использование вольфрама (лампы накаливания) продолжает исчезать, уникальный набор свойств по-прежнему делает вольфрамовую проволоку незаменимой для ряда продуктов и приложений.

Прецизионная обработка с ЧПУ

Узнайте о преимуществах прецизионной обработки с ЧПУ при производстве небольших сложных деталей, требующих жестких допусков, гладкой поверхности и повторяемости.

Прецизионная резка металла для 2-осевой резки

Различные варианты прецизионной резки металла различаются по характеристикам и применимости, что затрудняет выбор. Это руководство поможет.

Мифы о пластиковых и металлических трубках для медицинских устройств [ВИДЕО]

Были разработаны тысячи компаундов смол, чтобы расширить возможности проектирования трубок в медицинских устройствах. Тем не менее, существует ряд мифов. Узнайте, почему пластик не может быть лучшим выбором по сравнению с металлическими трубками в медицинских целях.

Контроль качества при производстве металлических деталей

Изучите жизненно важные компоненты эффективной программы контроля качества и ее роль в обеспечении того, чтобы металлические детали соответствовали требованиям к конструкции и функционированию.

Использование вольфрама тогда и сейчас

При сравнении обычных применений вольфрама в 2007 году и сегодня становится ясно, что вольфрам остается одним из наиболее широко используемых и выгодных тугоплавких металлов.

Швейцарская обработка костных винтов и анкеров

Прецизионная швейцарская обработка с ЧПУ часто используется для производства костных винтов и анкеров с характеристиками, необходимыми для широкого спектра ортопедических и стоматологических применений.

Что такое допуск калибровки?

Ключом к погрешности калибровки является понимание как того, на что способно устройство, так и погрешности, на которую оно было откалибровано.

Прецизионное шлифование металла

Прецизионное шлифование металла часто является лучшим способом удаления небольших количеств материала и получения надлежащей обработки или жестких допусков на поверхности деталей.

Отклонение и точность в станках с ЧПУ Swiss Machining

Узнайте, как направляющая втулка и другие особенности современных станков с ЧПУ позволяют устранить отклонение для повышения эффективности, стабильности и точности.

Автоматический токарный станок: плюсы и минусы

Хотя токарный автомат может выполнять простую двухосевую резку металлических стержней и труб, он предназначен для более сложных многоэтапных операций обработки.

Швейцарская обработка натяжных колец для медицинских устройств

Натяжные кольца для медицинских устройств могут быть вырезаны из трубы из нержавеющей стали марки 304 или подвергнуты швейцарской обработке для придания специальных характеристик и использования других материалов.

Очарование лазерной резки [ВИДЕО]

Чем лазерная резка отличается от других методов точной резки металла? Посмотрите это видео, чтобы узнать о плюсах и минусах этого метода резки металла.

Вольфрам против золота: битва за биоматериалы

Для некоторых медицинских устройств, требующих биоматериалов, вольфрам и позолоченная вольфрамовая проволока могут быть подходящей альтернативой драгоценным металлам, таким как золото.

План выборочного контроля в контроле качества [ВИДЕО]

Как бы ни были важны проверки, 100-процентная проверка требует времени и затрат без гарантии 100-процентного соответствия. Узнайте, что такое план выборочного контроля и как он решает эту проблему.

Профиль линии по сравнению с профилем поверхности

При использовании профиля линии по сравнению с профилем поверхности первый контролирует изменение в заданных поперечных сечениях, а второй контролирует всю поверхность элемента.

5 вещей, которые необходимо знать о концентричности наружного/внутреннего диаметра

Чтобы избежать проблем с проверкой концентричности наружного/внутреннего диаметра, попробуйте использовать другие применимые символы GD&T вместо концентричности на чертежах и проектах труб.

Швейцарский станок в современном механическом цехе

Швейцарский станок развивался и совершенствовался с тех пор, как был изобретен оригинальный швейцарский токарный станок, что сделало современный метод важной частью прецизионной обработки с ЧПУ.

Топ-5 проблем обработки с ЧПУ [ВИДЕО]

Хотя обработка с ЧПУ может производить множество сложных, прецизионных металлических компонентов, в этом процессе есть некоторые проблемы, о которых вам нужно знать.

Допуск на плоскостность в GD&T

Плоскостность поверхности — это показатель всех точек на поверхности, лежащих в одной плоскости, причем самая высокая и самая низкая точки находятся в пределах диапазона допуска плоскостности.

Секреты выбора нового партнера по контракту [ВИДЕО]

Как квалифицировать нового партнера по поиску поставщиков и обеспечить его эффективную и беспроблемную работу? Рассмотрение этих моментов поможет вам принять решение, в котором вы будете чувствовать себя уверенно.

Специализированные методы внутреннего шлифования

Высокоточные методы внутреннего шлифования, такие как внутреннее шлифование и хонингование, используются для получения гладкой поверхности и жестких допусков на внутренний диаметр отверстия, отверстия и трубы.

Основы двухдискового шлифования

Двойное дисковое шлифование обеспечивает точность размеров для металлических деталей, требующих жестких допусков, параллельности, плоскостности и контроля толщины.

Применение для услуг точной плоской притирки

Прецизионная плоская притирка и другие методы притирки могут использоваться для небольших деталей, требующих строгого контроля чистоты поверхности, плоскостности, толщины и параллельности.

Сложности электрохимического шлифования

Процесс электрохимического шлифования представляет собой узкоспециализированный метод, который сочетает в себе поверхностное шлифование, химию и фиксацию и имеет ограниченное применение.

Основы наружного шлифования

Наружное шлифование используется для придания формы внешней поверхности объектов между центрами и отлично подходит для удаления круговых дефектов и восстановления или создания округлости.

Основы бесцентрового шлифования [ВИДЕО]

Процесс бесцентрового шлифования идеально подходит для чистовой обработки небольших цилиндрических металлических деталей, требующих жестких допусков и крупносерийного производства. Изучите некоторые основы этого процесса.

Что такое притирка? [ВИДЕО]

Что такое притирка? В умелых руках этот малоизвестный процесс может производить детали с тщательно отполированными концами, жесткими допусками по длине и исключительной плоскостностью.

Электрохимическая резка Плюсы и минусы

Электрохимическая резка (ECC) сочетает в себе электрохимическую эрозию и шлифование для получения блестящей поверхности без заусенцев с жестким допуском ±0,005 дюйма (0,127 мм).

Плюсы и минусы холодной резки

Холодная резка позволяет выполнять высокоскоростную резку без заусенцев стержней, труб и профилей, но она не идеальна для очень коротких отрезков, малых наружных/внутренних диаметров или твердых металлов.

Получите доступ к бесплатному руководству по швейцарским винтам. Часто задаваемые вопросы

Примечание: для этого контента требуется JavaScript.

Знаете ли вы, какой метод резки подходит для вашего точного применения?

Примечание: для этого контента требуется JavaScript.

Руководство по аутсорсингу медицинского оборудования

Крайне важно выбрать поставщика, с которым вы можете рассчитывать на долгосрочную работу. Ознакомьтесь с этими практическими рекомендациями, чтобы принять правильное решение.

Загрузите бесплатное руководство по электродам для контактной сварки

Примечание: для этого контента требуется JavaScript.

Материалы для электродов для контактной сварки: информационный документ

Узнайте, как более качественные материалы для электродов для контактной сварки ускоряют процесс сварки. Этот информационный документ призван помочь вам сделать правильный выбор электродных материалов.

Металлические трубы в 21 веке: кому они нужны?

Металлические трубки по-прежнему играют решающую роль в производстве медицинских устройств, но из множества доступных пластиковых материалов может быть трудно определить, какой материал является правильным.

Абразивная резка: плюсы и минусы

Абразивная резка тонким кругом — идеальный метод для крупносерийной двухосевой резки металла, требующей точности, жестких допусков, отсутствия заусенцев и гладкой обработки торца.

Гидроабразивная резка Плюсы и минусы

Гидроабразивная резка обычно используется для резки сложных форм из больших плоских листов металла, но может быть не лучшим выбором для 2-осевой резки мелких деталей.

Семь секретов выбора нового партнера по контракту

Найти поставщика, который может обеспечить качественное и своевременное обслуживание, может быть нелегко, особенно когда речь идет о медицинском оборудовании и других строго регулируемых отраслях. Это руководство делает это простым.

Вольфрамовая проволока 101: обзор уникально полезного материала

Вольфрамовая проволока по-прежнему является продуктом, имеющим большое количество разнообразных применений, для многих из которых нет известной замены. Узнайте, почему вольфрам по-прежнему широко используется.

Узнайте, как оптимизировать ваши запросы предложений для успешного производства

Примечание: для этого контента требуется JavaScript.

Факты о лазерной печати металла

Лазерная печать металла популярна для ряда применений, но можете ли вы использовать ее для печати металла для таких больших количеств таких мелких деталей?

Wire EDM Преимущества и недостатки

Wire EDM Преимущества и недостатки резки для 2-осевой резки зависят от факторов, включая используемый материал, параметры детали и требования к чистоте поверхности.

5 интересных фактов о вихретоковом контроле

Вихретоковый контроль является важным методом неразрушающего контроля, который часто используется для выявления дефектов на поверхности или под поверхностью металлических материалов.

Прослеживаемые стандарты NIST в действии

Узнайте некоторые интересные факты о прослеживаемых стандартах NIST и их важной роли в стандартах СМК.

С Днем Рождения Metal Cutting Corporation!

Празднование 50-летия прецизионного производства: Metal Cutting Corporation искренне рада сообщить, что мы только что прошли важную веху в истории нашей компании.

Проблемы калибровочных стандартов

Калибровочные стандарты для устройств и оборудования, используемых при измерении, проверке и производстве прецизионных металлических деталей, могут создавать некоторые уникальные проблемы.

Круговое биение и полное биение

В круговом биении и полном биении первое управляет изменением круговых элементов детали, а другое — изменением всей поверхности детали. Узнайте разницу и как их измерить здесь.

Сравнение хонингования и притирки

Хотя хонингование и притирка используются для тонкой настройки отделки и размеров металлических деталей, эти два процесса отличаются тем, где и как они достигают результатов.

Цилиндричность в GD&T

Цилиндричность GD&T — это элемент трехмерного допуска, используемый для обозначения как круглости, так и прямолинейности по всей осевой длине цилиндрической детали.

План выборочного контроля при контроле качества

Статистически достоверный план выборочного контроля при контроле качества обеспечивает высокий уровень уверенности в том, что если образец приемлем, то приемлема и вся партия.

Допуски GD&T в производстве деталей

Допуски GD&T обеспечивают руководство по производству, которое должно уравновешивать необходимость обеспечения функциональности детали с необходимостью рентабельного производства детали.

Допуск круглости в мелких металлических деталях

Допуск круглости, основанный на диаметре, помогает контролировать округлость и обеспечивает правильную посадку, плавное перемещение и равномерный износ небольших прецизионных металлических деталей.

Принципы прецизионной шлифовки поверхности

Услуги по шлифовке поверхности используют методы прецизионной шлифовки поверхности, чтобы сделать кубические металлические детали квадратными и параллельными или концы металлических стержней перпендикулярными.

Зачем использовать таблицу шероховатости поверхности?

Таблица шероховатости поверхности металла представляет собой удобное руководство по стандартной шероховатости поверхности и характеристикам, таким как единицы измерения, преобразования и типичные значения Ra.

8 Что нужно знать об ISO 9000

Соблюдение организацией стандартов ISO 9000 говорит клиентам о том, что она привержена внедрению структурированных методов управления качеством.

Удаление заусенцев при массовом производстве мелких металлических деталей

Для удаления заусенцев с мелких металлических деталей в массовом производстве требуется воссоздание действия ручных инструментов с помощью механических устройств, подходящих для крупносерийного производства.

Объяснение пяти основных проблем обработки с ЧПУ

Узнайте о пяти основных проблемах, которые следует учитывать при выборе услуг по обработке с ЧПУ и партнера для производства сложных и точных мелких деталей.

8 Принципы бесцентрового шлифования

Узнайте больше о принципах бесцентрового шлифования и о том, как его можно использовать для получения чистовой обработки поверхности с жесткими допусками на небольших цилиндрических металлических деталях.

6 Что нужно знать о титановой трубке

Узнайте, почему характеристики титановой трубки делают ее хорошим выбором для медицинских устройств и других применений, требующих прочности, легкости и коррозионной стойкости.

Проблемы с размерами при резке металла по длине

Резка металла использует притирку и механическую обработку, а также другие методы для достижения плоскостности и параллельности при резке металла по длине.

Человеческий фактор при контроле металла

Metal Cutting Corporation использует визуальные и механические методы контроля металла, чтобы обеспечить соответствие мелких деталей производственным требованиям клиентов.

5 На что следует обратить внимание при термической обработке металлов

Учитывайте методы, используемые для термической обработки металлов, а также эффекты при определении требований к отрезанию мелких металлических деталей.

Маленькие калибры в металлических деталях Sourcing

Маленькие калибры, такие как штифтовые калибры или штифтовые калибры-пробки, являются полезными инструментами для проверки внутренних диаметров и проверки соответствия металлических труб малого диаметра указанным допускам.

Делает ли резка металла изготовление металла?

Люди часто спрашивают Metal Cutting Corporation, занимаемся ли мы «изготовлением металла» — и правда в том, что ответ зависит от того, как вы определяете этот термин.

Выбор поставщика отрезных металлических деталей

Следуйте этим советам о том, как выбрать поставщика отрезных металлических деталей и получить желаемые результаты для точного производства.

Полировка металлических деталей для медицинских устройств, напечатанных на 3D-принтере

Целью полировки металлических деталей для медицинских устройств, напечатанных на 3D-принтере, является достижение надлежащей чистоты поверхности при сохранении сложных деталей конструкции устройства.

Вольфрамовая проволока отказывается умирать в автомобильном освещении

Лампы накаливания, сделанные с нитями накаливания из вольфрамовой проволоки, продолжают использоваться в автомобильных указателях поворота, несмотря на параллельное внедрение более новой светодиодной технологии.

Услуги по резке металла становятся быстрее

Узнайте, как Metal Cutting Corporation совершенствует операции и ускоряет предоставление стандартных услуг по резке металлов.

Рецепт идеальной электродной инфильтрации

Узнайте, почему инфильтрация, плотность и другие свойства сплава, такого как медь-вольфрам, важны для качества электродов для точечной сварки.

Основные области применения позолоченной вольфрамовой проволоки

Позолоченная вольфрамовая проволока используется в фильтрации, печати, копировании и других областях, а также в качестве альтернативы драгоценным металлам в некоторых медицинских устройствах.

Пристальный взгляд на использование вольфрамовой проволоки для зондов

Свойства прямолинейности вольфрамовой проволоки делают ее ценной для вольфрамовых зондов малого диаметра, используемых при тестировании полупроводниковых пластин и тестировании нервной активности.

Внутренняя пропитка легирующих добавок и рекристаллизация проволоки

Легирующие добавки повышают температуру рекристаллизации вольфрамовой проволоки и других проволок, придавая свойства непровисания вольфрамовым нитям накала ламп и другим изделиям.

5 интересных фактов о вольфраме

Вольфрам, также известный как вольфрам или вольфрам, имеет высокую температуру плавления и другие интересные свойства, которые используются во многих отраслях промышленности и во многих продуктах.

Как на самом деле складываются допуски?

При проектировании детали помните, что для разных допусков могут потребоваться разные процессы, и не все процессы могут давать результаты с одинаковым допуском.

Практический пример прецизионной обрезки и штамповки

Узнайте, как прецизионная обрезка и штамповка сравниваются в достижении бездеформационной плоскостности, острой кромки и точного внешнего диаметра, необходимого для дистанционирующего кольца.

Как несколько допусков могут привести к конфликту

Когда одна деталь имеет несколько противоречащих друг другу допусков, более жесткие и сложные допуски должны определять производство и, в конечном счете, влиять на стоимость детали.

Очарование лазерной резки

Хотя лазерная резка может производить небольшой пропил и жесткие допуски, другие методы прецизионной резки могут быть предпочтительнее для 2-осевой резки небольших металлических деталей.

Процесс резки металла Плюсы и минусы

Процесс резки металла может быть быстрым и недорогим для резки некоторых деталей простой формы, но он имеет недостатки, включая заусенцы и деформацию конца.

Электроды для контактной сварки для вашего применения

Получите ответы на распространенные вопросы о разнородных металлах относительно электродов с высокой и низкой проводимостью и трения в конструкции электрода.

Почему медный вольфрам? | Технологичность

Узнайте, как свойства меди-вольфрама уменьшают или устраняют проблемы, связанные с этими материалами, когда они используются в чистом виде.

Почему медный вольфрам? | EDM Performance

Для электроэрозионных электродов вольфрамовая медь обеспечивает превосходную электропроводность, сопротивление дуговому разряду постоянного тока, теплопроводность и износостойкость.

фактов о вольфраме | Live Science

Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Вот как это работает.

Элемент вольфрам содержится в минерале вольфрамите. (Изображение предоставлено: farbled | Shutterstock)

Вольфрам известен как один из самых прочных материалов, встречающихся в природе. Он очень плотный и его практически невозможно расплавить. Чистый вольфрам представляет собой серебристо-белый металл, и в тонком порошке он может быть горючим и может самовозгораться. Природный вольфрам содержит пять стабильных изотопов и 21 другой нестабильный изотоп.

Вольфрам используется по-разному, потому что он очень прочен и долговечен. Он очень устойчив к коррозии и имеет самую высокую температуру плавления и самую высокую прочность на растяжение среди всех элементов. Однако его сила приходит, когда он превращается в соединения. Чистый вольфрам очень мягкий.

Только факты

Вот свойства вольфрама, согласно Лос-Аламосской национальной лаборатории:

  • Атомный номер: 74
  • Атомный символ: W
  • Атомный вес: 183,84
  • Температура плавления: 6,192 F (3,422 C)
  • Температура кипения: 10,030 F (5,555 C)

История

Первое использование вольфрама было более 30 лет назад. По данным Королевского химического общества, китайские производители фарфора использовали вольфрамовый пигмент уникального персикового цвета.

Гораздо позже, в 1779 году, Питер Вульф исследовал минерал из Швеции и обнаружил, что он содержит новый тип металла, но это все, на чем закончились исследования. В 1781 году Вильгельм Шееле продолжил исследования этого нового металла и выделил кислый белый оксид. Однако ни одному из этих людей не приписывают открытие этого элемента.

Хуан и Фаусто Эльхуяр удостоены этой чести. В семинарии в Вергаре в Испании исследовали этот загадочный металл. В 1783 году они выделили оксид металла из вольфрамита, а затем, в отличие от других, восстановили его до металлического вольфрама, нагревая его с углеродом.

Источники

Большинство ресурсов вольфрама находится в Китае, Южной Корее, Боливии, Великобритании, России и Португалии, а также в Калифорнии и Колорадо. По данным BBC, хотя он встречается во многих местах, 80 процентов мировых поставок контролируется Китаем.

Элемент в природе встречается в минералах шеелите, вольфрамите, гюбнерти и ферберите. Его получают из минералов путем восстановления оксида вольфрама водородом или углеродом.

После получения вольфрам часто добавляют в сплавы. Самые твердые сплавы формируются с помощью алмазов. Только алмазы тверже некоторых вольфрамовых сплавов.

Применение

Одним из наиболее распространенных и самых твердых соединений вольфрама является карбид вольфрама. Из-за своей прочности в соединениях вольфрам используется для упрочнения пильных полотен и изготовления сверл. По данным BBC, на вырезание всего одного сверла из вольфрама с использованием системы алмазной резки может уйти около 10 минут. Некоторые ювелиры также используют карбид вольфрама для изготовления обручальных колец и других колец.

Другим особенно полезным соединением вольфрама является дисульфид вольфрама. По данным лаборатории Джефферсона, он используется в качестве сухой смазки при температурах до 932 градусов по Фаренгейту (500 градусов по Цельсию).

Некоторые другие области применения вольфрама включают работы по выпариванию металла, производство красок, изготовление герметичных стыков между стеклом и металлом и создание электронных и телевизионных трубок.

Военные используют вольфрам для изготовления пуль и ракет, используемых в «кинетической бомбардировке». Этот тип атаки использует сверхплотный материал для разрушения брони вместо взрывчатых веществ.

Его теплостойкость полезна при использовании в нагревательных элементах для электрических печей, космических кораблей, сварки и других высокотемпературных применений. По этой причине он также использовался для изготовления различных типов освещения. Чем горячее может быть нить накала, не плавясь, тем ярче лампочка. В 1908 году изобретатель Уильям Д. Кулидж обнаружил, что вольфрам является идеальным материалом для нити. Однако сегодня в большинстве ламп используются более энергоэффективные материалы. Однако он по-прежнему используется в рентгеновских нитях и в электрических контактах различной электроники.

Биологически некоторые бактерии используют вольфрам для восстановления карбоновых кислот до альдегидов.

Кто знал?

Этот элемент используется для обмана. «Вольфрам может не иметь золотого блеска, но у него есть его плотность (в пределах 0,36 процента), а это означает, что если вы покроете вольфрамовый кирпич золотым покрытием — и вы проверите кирпич, чтобы увидеть, весит ли он столько же, сколько золото — это будет почти правильно», — сказала Live Science Аманда Симсон, доцент химического машиностроения в Университете Нью-Хейвена. «Таким образом, в поддельных золотых слитках был обнаружен вольфрам».

Вольфрам происходит от шведского термина tung sten , что означает «тяжелый камень».

Химический символ вольфрама — буква W, что может показаться странным, поскольку в слове нет буквы W. На самом деле буква W происходит от другого названия элемента, вольфрама. Название вольфрам происходит от минерала, в котором этот элемент был обнаружен, вольфрамита Вольфрамит означает «пожиратель олова», что уместно, поскольку этот минерал мешает плавке олова

Дополнительные ресурсы

  • Биологическая химия: очистка и некоторые свойства вольфрамсодержащей редуктазы карбоновой кислоты из Clostridium formicoaceticum
  • Труды Национальной академии наук: идентификация и характеристика вольфрамсодержащего класса редуктазы бензоил-кофермента А
  • Centers for Disease Контроль и профилактика: токсичность вольфрама

Эта статья была обновлена ​​3 февраля 2020 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *