Вещество cl – Хлор

Содержание

Хлор

Хлор
Атомный номер 17
Внешний вид простого вещества Газ жёлто-зеленого цвета с резким запахом. Ядовит.
Свойства атома
Атомная масса
(молярная масса)
35,4527 а.е.м.(г/моль)
Радиус атома 100 пм
Энергия ионизации
(первый электрон)
1254.9(13.01) 
кДж/моль (эВ)
Электронная конфигурация [Ne] 3s2 3p5
Химические свойства
Ковалентный радиус 99 пм
Радиус иона (+7e)27 (-1e)181 пм
Электроотрицательность
(по Полингу)
3.16
Электродный потенциал 0
Степени окисления 7, 6, 5, 4, 3, 1, −1
Термодинамические свойства простого вещества
Плотность (при −33.6 °C)1,56
г/см³
Молярная теплоёмкость 21.838 Дж/(K·моль)
Теплопроводность 0.009 Вт/(м·K)
Температура плавления 172.2 K
Теплота плавления 6.41 кДж/моль
Температура кипения 238.6 K
Теплота испарения 20.41 кДж/моль
Молярный объём 18.7 см³/моль
Кристаллическая решётка простого вещества
Структура решётки орторомбическая
Параметры решётки a=6,29 b=4,50 c=8,21 Å
Отношение c/a
Температура Дебая n/a K
CI 17
35,4527
[Ne]3s23p5
Хлор

Хлор (χλωρός — зелёный) — элемент главной подгруппы седьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 17. Обозначается символом Cl (лат. Chlorum). Химически активный неметалл. Входит в группу галогенов (первоначально название «галоген» использовал немецкий химик Швейгер для хлора [дословно «галоген» переводится как солерод], но оно не прижилось, и впоследствии стало общим для VII группы элементов, в которую входит и хлор).

Простое вещество хлор (CAS-номер: 7782-50-5) при нормальных условиях — ядовитый газ желтовато-зелёного цвета, с резким запахом. Молекула хлора двухатомная (формула Cl2).

Схема атома хлора

Впервые хлор был получен в 1772 г. Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите:

4HCl + MnO2 = Cl2 + MnCl2 + 2H2O

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства.

Однако Шееле, в соответствии с господствовавшей в химии того времени теории флогистона, предположил, что хлор представляет собой дефлогистированную соляную кислоту, то есть оксид соляной кислоты. Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия, однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор.

Распространение в природе

 

В природе встречаются два изотопа хлора 35Cl и 37Cl. В земной коре хлор самый распространённый галоген. Хлор очень активен — он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений в составе минералов: галита NaCI, сильвина KCl, сильвинита KCl · NaCl, бишофита MgCl2 · 6h3O, карналлита KCl · MgCl2 · 6Н2O, каинита KCl · MgSO4 · 3Н2О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов.

На долю хлора приходится 0,025 % от общего числа атомов земной коры, кларковое число хлора — 0,19%, а человеческий организм содержит 0,25 % ионов хлора по массе. В организме человека и животных хлор содержится в основном в межклеточных жидкостях (в том числе в крови) и играет важную роль в регуляции осмотических процессов, а также в процессах, связанных с работой нервных клеток.

Изотопный состав

В природе встречаются 2 стабильных изотопа хлора: с массовым числом 35 и 37. Доли их содержания соответственно равны 75,78 % и 24,22 %.

Изотоп Относительная масса, а.е.м. Период полураспада Тип распада Ядерный спин
35Cl 34.968852721 Стабилен  — 3/2
36Cl 35.9683069 301000 лет β-распад в 36Ar 0
37Cl 36.96590262 Стабилен  — 3/2
38Cl 37.9680106 37,2 минуты β-распад в 38Ar 2
39Cl 38.968009 55,6 минуты β-распад в 39Ar 3/2
40Cl 39.97042 1,38 минуты β-распад в 40Ar 2
41Cl 40.9707 34 c β-распад в 41Ar  
42Cl 41.9732 46,8 c β-распад в 42Ar  
43Cl 42.9742 3,3 c β-распад в 43Ar  

Физические и физико-химические свойства

При нормальных условиях хлор — жёлто-зелёный газ с удушающим запахом. Некоторые его физические свойства представлены в таблице.

Некоторые физические свойства хлора
Свойство Значение
Температура кипения −34 °C
Температура плавления −101 °C
Температура разложения
(диссоциации на атомы)
~1400°С
Плотность (газ, н.у.) 3,214 г/л
Сродство к электрону атома 3,65 эВ
Первая энергия ионизации 12,97 эВ
Теплоемкость (298 К, газ) 34,94 (Дж/моль·K)
Критическая температура 144 °C
Критическое давление 76 атм
Стандартная энтальпия образования (298 К, газ) 0 (кДж/моль)
Стандартная энтропия образования (298 К, газ) 222,9 (Дж/моль·K)
Энтальпия плавления 6,406 (кДж/моль)
Энтальпия кипения 20,41 (кДж/моль)

При охлаждении хлор превращается в жидкость при температуре около 239 К, а затем ниже 113 К кристаллизуется в орторомбическую решётку с пространственной группой Cmca и параметрами a=6,29 Å b=4,50 Å, c=8,21 Å. Ниже 100 К орторомбическая модификация кристаллического хлора переходит в тетрагональную, имеющую пространственную группу P42/ncm и параметры решётки a=8,56 Å и c=6,12 Å.

Растворимость

Растворитель Растворимость г/100 г
Бензол Растворим
Вода (0 °C) 1,48
Вода (20 °C) 0,96
Вода (25 °C) 0,65
Вода (40 °C) 0,46
Вода (60 °C) 0,38
Вода (80 °C) 0,22
Тетрахлорметан (0 °C) 31,4
Тетрахлорметан (19 °C) 17,61
Тетрахлорметан (40 °C) 11
Хлороформ Хорошо растворим
TiCl4, SiCl4, SnCl4 Растворим

Степень диссоциации молекулы хлора Cl2 → 2Cl. При 1000 К равна 2,07*10-4%, а при 2500 К 0,909 %.

Порог восприятия запаха в воздухе равен 0,003 (мг/л).

В реестре CAS — номер 7782-50-5.

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 10

22 раз хуже серебра. Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

Химические свойства

Строение электронной оболочки

На валентном уровне атома хлора содержится 1 неспаренный электрон: 1S² 2S² 2p6 3S² 3p5, поэтому валентность равная 1 для атома хлора очень стабильна. За счёт присутствия в атоме хлора незанятой орбитали d-подуровня, атом хлора может проявлять и другие валентности. Схема образования возбуждённых состояний атома:

Также известны соединения хлора, в которых атом хлора формально проявляет валентность 4 и 6, например ClO2 и Cl2O6. Однако, эти соединения являются радикалами, то есть у них есть один неспаренный электрон.

Взаимодействие с металлами

Хлор непосредственно реагирует почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании):

Cl2 + 2Na → 2NaCl
3Cl2 + 2Sb → 2SbCl3
3Cl2 + 2Fe → 2FeCl3

Взаимодействие с неметаллами

C неметаллами (кроме углерода, азота, кислорода и инертных газов), образует соответствующие хлориды.

На свету или при нагревании активно реагирует (иногда со взрывом) с водородом по радикальному механизму. Смеси хлора с водородом, содержащие от 5,8 до 88,3 % водорода, взрываются при облучении с образованием хлороводорода. Смесь хлора с водородом в небольших концентрациях горит бесцветным или желто-зелёным пламенем. Максимальная температура водородно-хлорного пламени 2200 °C.:

Cl2 + H2 → 2HCl
5Cl2 + 2P → 2PCl5
2S + Cl2 → S2Cl2

С кислородом хлор образует оксиды в которых он проявляет степень окисления от +1 до +7: Cl2O, ClO2, Cl2O6, Cl2O7. Они имеют резкий запах, термически и фотохимически нестабильны, склонны к взрывному распаду.

При реакции с фтором, образуется не хлорид, а фторид:

Cl2 + 3F2 (изб.) → 2ClF3

Другие свойства

Хлор вытесняет бром и иод из их соединений с водородом и металлами:

Cl2 + 2HBr → Br2 + 2HCl
Cl2 + 2NaI → I2 + 2NaCl

При реакции с монооксидом углерода образуется фосген:

Cl2 + CO → COCl2

При растворении в воде или щелочах, хлор дисмутирует, образуя хлорноватистую (а при нагревании хлорную) и соляную кислоты, либо их соли:

Cl2 + H2O → HCl + HClO
3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O

Хлорированием сухого гидроксида кальция получают хлорную известь:

Cl2 + Ca(OH)2 → CaCl(OCl) + H2O

Действие хлора на аммиак можно получить трёххлористый азот:

4NH3 + 3Cl2 → NCl3 + 3NH4Cl

Окислительные свойства хлора

Хлор очень сильный окислитель.

Cl2 + H2S → 2HCl + S

Реакции с органическими веществами

С насыщенными соединениями:

CH3-CH3 + Cl2 → C2H6-xClx + HCl

Присоединяется к ненасыщенным соединениям по кратным связям:

CH2=CH2 + Cl2 → Cl-CH2-CH2-Cl

Ароматические соединения замещают атом водорода на хлор в присутствии катализаторов (например, AlCl3 или FeCl3):

C6H6 + Cl2 → C6H5Cl + HCl

Хлор способы получения хлора

Промышленные методы

Первоначально промышленный способ получения хлора основывался на методе Шееле, то есть реакции пиролюзита с соляной кислотой:

MnO2 + 4HCl → MnCl2 + Cl2↑ + 2H2O

В 1867 году Диконом был разработан метод получения хлора каталитическим окислением хлороводорода кислородом воздуха. Процесс Дикона в настоящее время используется при рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений.

4HCl + O2 → 2H2O + 2Cl2

Сегодня хлор в промышленных масштабах получают вместе с гидроксидом натрия и водородом путём электролиза раствора поваренной соли:

2NaCl + 2H2О → H2↑ + Cl2↑ + 2NaOH
Анод: 2Cl- — 2е- → Cl20
Катод: 2H2O + 2e- → H2↑ + 2OH-

Так как параллельно электролизу хлорида натрия проходит процесс электролиз воды, то суммарное уравнение можно выразить следующим образом:

1,80 NaCl + 0,50 H2O → 1,00 Cl2↑ + 1,10 NaOH + 0,03 H2

Применяется три варианта электрохимического метода получения хлора. Два из них электролиз с твердым катодом: диафрагменный и мембранный методы, третий — электролиз с жидким ртутным катодом (ртутный метод производства). В ряду электрохимических методов производства самым легким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути.

Диафрагменный метод с твердым катодом

Полость электролизера разделена пористой асбестовой перегородкой — диафрагмой — на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения — диафрагменным электролизом. В анодное пространство диафрагменного электролизера непрерывно поступает поток насыщенного анолита (раствора NaCl). В результате электрохимического процесса на аноде за счёт разложения галита выделяется хлор, а на катоде за счёт разложения воды — водород. При этом прикатодная зона обогащается гидроксидом натрия.

Мембранный метод с твердым катодом

Мембранный метод по сути, аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной полимерной мембраной. Мембранный метод производства эффективнее, чем диафрагменный, но сложнее в применении.

Ртутный метод с жидким катодом

Процесс проводят в электролитической ванне, которая состоит из электролизера, разлагателя и ртутного насоса, объединённых между собой коммуникациями. В электролитической ванне под действием ртутного насоса циркулирует ртуть, проходя через электролизёр и разлагатель. Катодом электролизера служит поток ртути. Аноды — графитовые или малоизнашивающиеся. Вместе с ртутью через электролизер непрерывно течет поток анолита — раствора хлорида натрия. В результате электрохимического разложения хлорида на аноде образуются молекулы хлора, а на катоде выделившийся натрий растворяется в ртути образуя амальгаму.

Лабораторные методы

В лабораториях для получения хлора обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV), перманганатом калия, дихроматом калия):

2KMnO4 + 16HCl → 2KCl + 2MnCl2 + 5Cl2↑ +8H2O
K2Cr2O7 + 14HCl → 3Cl2 + 2KCl + 2CrCl3 + 7H2O

Хранение хлора

Производимый хлор хранится в специальных «танках» или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску — болотный цвет. Следует отметить что при длительной эксплуатации баллонов с хлором в них накапливается чрезвычайно взрывчатый треххлористый азот, и поэтому время от времени баллоны с хлором должны проходить плановую промывку и очистку от хлорида азота.

Стандарты качества хлора

Согласно ГОСТ 6718-93 «Хлор жидкий. Технические условия» производятся следующие сорта хлора

Наименование показателя ГОСТ 6718-93 Высший сорт Первый сорт
Объемная доля хлора, не менее, % 99,8 99,6
Массовая доля воды, не более, % 0,01 0,04
Массовая доля треххлористого азота, не более, % 0,002 0,004
Массовая доля нелетучего остатка, не более, % 0,015 0,10

Применение

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд:

  • В производстве поливинилхлорида, пластикатов, синтетического каучука, из которых изготавливают: изоляцию для проводов, оконный профиль, упаковочные материалы, одежду и обувь, линолеум и грампластинки, лаки, аппаратуру и пенопласты, игрушки, детали приборов, строительные материалы. Поливинилхлорид производят полимеризацией винилхлорида, который сегодня чаще всего получают из этилена сбалансированным по хлору методом через промежуточный 1,2-дихлорэтан.
  • Отбеливающие свойства хлора известны с давних времен, хотя не сам хлор «отбеливает», а атомарный кислород, который образуется при распаде хлорноватистой кислоты: Cl2 + H2O → HCl + HClO → 2HCl + O•. Этот способ отбеливания тканей, бумаги, картона используется уже несколько веков.
  • Производство хлорорганических инсектицидов — веществ, убивающих вредных для посевов насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора. Один из самых важных инсектицидов — гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано ещё в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет — в 30-х годах нашего столетия.
  • Использовался как боевое отравляющее вещество, а так же для производства других боевых отравляющих веществ: иприт, фосген.
  • Для обеззараживания воды — «хлорирования». Наиболее распространённый способ обеззараживания питьевой воды; основан на способности свободного хлора и его соединений угнетать ферментные системы микроорганизмов катализирующие окислительно-восстановительные процессы. Для обеззараживания питьевой воды применяют: хлор, двуокись хлора, хлорамин и хлорную известь. СанПиН 2.1.4.1074-01 устанавливает следующие пределы (коридор)допустимого содержания свободного остаточного хлора в питьевой воде централизованного водоснабжения 0.3 — 0.5 мг/л. Ряд учёных и даже политиков в России критикуют саму концепцию хлорирования водопроводной воды, но альтернативы дезинфицирующему последействию соединений хлора предложить не могут. Материалы, из которых изготовлены водопроводные трубы, по разному взаимодействуют с хлорированной водопроводной водой. Свободный хлор в водопроводной воде существенно сокращает срок службы трубопроводов на основе полиолефинов: полиэтиленовых труб различного вида, в том числе сшитого полиэтилена, большие известного как ПЕКС (PEX, PE-X). В США для контроля допуска трубопроводов из полимерных материалов к использованию в водопроводах с хлорированной водой вынуждены были принять 3 стандарта: ASTM F2023 применительно к трубам из сшитого полиэтилена (PEX) и горячей хлорированной воде, ASTM F2263 применительно к полиэтиленовым трубам всем и хлорированной воде и ASTM F2330 применительно к многослойным (металлополимерным) трубам и горячей хлорированной воде. Положительную реакцию в части долговечности при взаимодействии с хлорированной водой демонстрируют медные трубы.
  • В пищевой промышленности зарегистрирован в качестве пищевой добавки E925.
  • В химическом производстве соляной кислоты, хлорной извести, бертолетовой соли, хлоридов металлов, ядов, лекарств, удобрений.
  • В металлургии для производства чистых металлов: титана, олова, тантала, ниобия.
  • Как индикатор солнечных нейтрино в хлор-аргонных детекторах.

Многие развитые страны стремятся ограничить использование хлора в быту, в том числе потому, что при сжигании хлорсодержащего мусора образуется значительное количество диоксинов.

Биологическая роль хлора

Хлор относится к важнейшим биогенным элементам и входит в состав всех живых организмов.

У животных и человека, ионы хлора участвуют в поддержании осмотического равновесия, хлорид-ион имеет оптимальный радиус для проникновения через мембрану клеток. Именно этим объясняется его совместное участие с ионами натрия и калия в создании постоянного осмотического давления и регуляции водно-солевого обмена. Под воздействием ГАМК (нейромедиатор) ионы хлора оказывают тормозящий эффект на нейроны путём снижения потенциала действия. В желудке ионы хлора создают благоприятную среду для действия протеолитических ферментов желудочного сока. Хлорные каналы представлены во многих типах клеток, митохондриальных мембранах и скелетных мышцах. Эти каналы выполняют важные функции в регуляции объёма жидкости, трансэпителиальном транспорте ионов и стабилизации мембранных потенциалов, участвуют в поддержании рН клеток. Хлор накапливается в висцеральной ткани, коже и скелетных мышцах. Всасывается хлор, в основном, в толстом кишечнике. Всасывание и экскреция хлора тесно связаны с ионами натрия и бикарбонатами, в меньшей степени с минералокортикоидами и активностью Na+/K+ — АТФ-азы. В клетках аккумулируется 10-15 % всего хлора, из этого количества от 1/3 до 1/2 — в эритроцитах. Около 85 % хлора находятся во внеклеточном пространстве. Хлор выводится из организма в основном с мочой (90-95 %), калом (4-8 %) и через кожу (до 2 %). Экскреция хлора связана с ионами натрия и калия, и реципрокно с HCO3- (кислотно-щелочной баланс).

Человек потребляет 5-10 г NaCl в сутки. Минимальная потребность человека в хлоре составляет около 800 мг в сутки. Младенец получает необходимое количество хлора через молоко матери, в котором содержится 11 ммоль/л хлора. NaCl необходим для выработки в желудке соляной кислоты, которая способствует пищеварению и уничтожению болезнетворных бактерий. В настоящее время участие хлора в возникновении отдельных заболеваний у человека изучено недостаточно хорошо, главным образом из-за малого количества исследований. Достаточно сказать, что не разработаны даже рекомендации по норме суточного потребления хлора. Мышечная ткань человека содержит 0,20-0,52 % хлора, костная — 0,09 %; в крови — 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.

Ионы хлора жизненно необходимы растениям. Хлор участвует в энергетическом обмене у растений, активируя окислительное фосфорилирование. Он необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами, стимулирует вспомогательные процессы фотосинтеза, прежде всего те из них, которые связаны с аккумулированием энергии. Хлор положительно влияет на поглощение корнями кислорода, соединений калия, кальция, магния. Чрезмерная концентрация ионов хлора в растениях может иметь и отрицательную сторону, например, снижать содержание хлорофилла, уменьшать активность фотосинтеза, задерживать рост и развитие растений.

Но существуют растения, которые в процессе эволюции либо приспособились к засолению почв, либо в борьбе за пространство заняли пустующие солончаки на которых нет конкуренции. Растения произрастающие на засоленных почвах называются — галофиты, они накапливают хлориды в течение вегетационного сезона, а потом избавляются от излишков посредством листопада или выделяют хлориды на поверхность листьев и веток и получают двойную выгоду притеняя поверхнисти от солнечного света. В России галофиты произрастают на соляных куполах, выходах соляных отложений и засоленных понижениях вокруг соляных озёр Баскунчак, Эльтон.

Среди микроорганизмов, так же известны галофилы — галобактерии — которые обитают в сильносоленых водах или почвах.

Особенности работы и меры предосторожности

Хлор — токсичный удушливый газ, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора). Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na2SO3 или тиосульфата натрия Na2S2O3.

ПДК хлора в атмосферном воздухе следующие: среднесуточная — 0,03 мг/м³; максимально разовая — 0,1 мг/м³; в рабочих помещениях промышленного предприятия — 1 мг/м³.

Дополнительная информация

 

Производство хлора в России

Хлорид золота

Хлорная вода

Хлорная известь

Хлорид первого основания Рейзе

Хлорид второго основания Рейзе

 

Соединения хлора

Гипохлориты

Перхлораты

Хлорангидриды

Хлораты

Хлориды

Хлорорганические соединения

Анализ хлора, выявление хлора — анализируется

— При помощи аналитического лабораторного оборудования, лабораторных и промышленных электродов, в частности: электродов сравнения ЭСр-10101 анализирующих содержание Cl— и К+.

Хлорные запросы, нас находят по запросам хлор

Взаимодействие, отравление, воде, реакции и получение хлора

  • оксид
  • раствор
  • кислоты
  • соединения
  • свойства
  • определение
  • диоксид
  • атом
  • формула
  • масса
  • активный
  • жидкий
  • вещество
  • применение
  • действие
  • степень окисления
  • соли
  • гидроксид

himsnab-spb.ru

Хлор - это... Что такое Хлор?

36Cl35,9683069301000 летβ-распад в править] Физические и химические свойства

При нормальных условиях хлор — жёлто-зелёный газ с удушающим запахом. Некоторые его физические свойства представлены в таблице.

СвойствоЗначение[6]
Цвет (газ)Жёлто-зелёный
Температура кипения−34 °C
Температура плавления−100 °C
Температура разложения
(диссоциации на атомы)
~1400 °C
Плотность (газ, н.у.)3,214 г/л
Сродство к электрону атома3,65 эВ
Первая энергия ионизации12,97 эВ
Теплоемкость (298 К, газ)34,94 (Дж/моль·K)
Критическая температура144 °C
Критическое давление76 атм
Стандартная энтальпия образования (298 К, газ)0 (кДж/моль)
Стандартная энтропия образования (298 К, газ)222,9 (Дж/моль·K)
Энтальпия плавления6,406 (кДж/моль)
Энтальпия кипения20,41 (кДж/моль)
Энергия гомолитического разрыва связи Х-Х243 (кДж/моль)
Энергия гетеролитического разрыва связи Х-Х1150 (кДж/моль)
Энергия ионизации1255 (кДж/моль)
Энергия сродства к электрону349 (кДж/моль)
Атомный радиус0,073 (нм)
Электроотрицательность по Полингу3,20
Электроотрицательность по Оллреду-Рохову2,83
Устойчивые степени окисления−1, 0, +1, +3, (+4), +5, (+6), +7

Газообразный хлор относительно легко сжижается. Начиная с давления в 0,8 МПа (8 атмосфер), хлор будет жидким уже при комнатной температуре. При охлаждении до температуры в −34 °C хлор тоже становится жидким при нормальном атмосферном давлении. Жидкий хлор — жёлто-зелёная жидкость, обладающая очень высоким коррозионным действием (за счёт высокой концентрации молекул). Повышая давление, можно добиться существования жидкого хлора вплоть до температуры в +144 °C (критической температуры) при критическом давлении в 7,6 МПа.

При температуре ниже −101 °C жидкий хлор кристаллизуется в орторомбическую решётку с пространственной группой Cmca и параметрами a=6,29 Å b=4,50 Å, c=8,21 Å[7]. Ниже 100 К орторомбическая модификация кристаллического хлора переходит в тетрагональную, имеющую пространственную группу P42/ncm и параметры решётки a=8,56 Å и c=6,12 Å[7].

Растворимость

РастворительРастворимость г/100 г[8]
БензолРастворим
Вода[9] (0 °C)1,48
Вода (20 °C)0,96
Вода (25 °C)0,65
Вода (40 °C)0,46
Вода (60 °C)0,38
Вода (80 °C)0,22
Тетрахлорметан (0 °C)31,4
Тетрахлорметан (19 °C)17,61
Тетрахлорметан (40 °C)11
ХлороформХорошо растворим
TiCl4, SiCl4, SnCl4Растворим

Степень диссоциации молекулы хлора Cl2 → 2Cl при 1000 К равна 2,07·10−4%, а при 2500 К 0,909 %.

Порог восприятия запаха в воздухе равен 0,003 (мг/л).

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 1022 раз хуже серебра. Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

Химические свойства

Строение электронной оболочки

На валентном уровне атома хлора содержится 1 неспаренный электрон: 1s2 2s2 2p6 3s2 3p5, поэтому валентность равная 1 для атома хлора очень стабильна. За счёт присутствия в атоме хлора незанятой орбитали d-подуровня, атом хлора может проявлять и другие степени окисления. Схема образования возбуждённых состояний атома:

Также известны соединения хлора, в которых атом хлора формально проявляет валентность 4 и 6, например ClO2 и Cl2O6. Однако, эти соединения являются радикалами, то есть у них есть один неспаренный электрон.

Взаимодействие с металлами

Хлор непосредственно реагирует почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании):

Взаимодействие с неметаллами

C неметаллами (кроме углерода, азота, кислорода и инертных газов), образует соответствующие хлориды.

На свету или при нагревании активно реагирует (иногда со взрывом) с водородом по радикальному механизму. Смеси хлора с водородом, содержащие от 5,8 до 88,3 % водорода, взрываются при облучении с образованием хлороводорода. Смесь хлора с водородом в небольших концентрациях горит бесцветным или желто-зелёным пламенем. Максимальная температура водородно-хлорного пламени 2200 °C.:

С кислородом хлор образует оксиды в которых он проявляет степень окисления от +1 до +7: Cl2O, ClO2, Cl2O6, Cl2O7. Они имеют резкий запах, термически и фотохимически нестабильны, склонны к взрывному распаду.

При реакции с фтором, образуется не хлорид, а фторид:

dic.academic.ru

Хлор и его соединения » HimEge.ru

         Хлор — элемент 3-го периода и VII А-группы Периодической системы, порядковый номер 17. Электронная формула атома [10Ne ]3s2Зр5, характерные степени окисления 0, -1, + 1, +5 и +7. Наиболее устойчиво состояние Cl-1 . Шкала степеней окисления хлора:

+7 – Cl2O7 , ClO4 ,HClO4 , KClO4

+5  —  ClO3 , HClO3 ,KClO3

+ 1 – Cl2O , ClO , HClO , NaClO , Ca(ClO)2

0 –  Cl2

— 1 – Cl , HCl, KCl , PCl5

Хлор обладает высокой электроотрицательностью (2,83), проявляет неметаллические свойства. Входит в состав многих веществ — оксидов, кислот, солей, бинарных соединений.

В природе — двенадцатый по химической распространенности элемент (пятый среди неметаллов). Встречается только в химически связанном виде. Третий по содержанию элемент в природных водах (после О и Н), особенно много хлора в морской воде (до 2 % по массе). Жизненно важный элемент для всех организмов.

Хлор С12 . Простое вещество. Желто-зеленый газ с резким удушливым запахом. Молекула Сl2 неполярна, содержит σ-связь С1-С1. Термически устойчив, негорюч на воздухе; смесь с водородом взрывается на свету (водород сгорает в хлоре):

Cl2+H2 ⇌HCl

Хорошо растворим в воде, подвергается в ней дисмутации на 50 % и полностью — в щелочном растворе:

Cl20+H2O ⇌HClIO+HCl-I

Cl2+2NaOH(хол) = NaClO+NaCl+H2O

3Cl2+6NaOH(гор)=NaClO3+5NaCl+H2O

Раствор хлора в воде называют хлорной водой, на свету кислота НСlO разлагается на НСl и атомарный кислород О0, поэтому «хлорную воду» надо хранить в темной склянке. Наличием в «хлорной воде» кислоты НСlO и образованием атомарного кислорода объясняются ее сильные окислительные свойства: например, во влажном хлоре обесцвечиваются многие красители.

Хлор очень сильный окислитель по отношению к металлам и неметаллам:

Сl2 + 2Nа = 2NаСl2

ЗСl2 + 2Fе→2FеСl(200 °С)

Сl2 +Se=SeCl4

Сl2 + РЬ→PbCl(300 °С)

5Cl2+2P→2PCl5  (90 °С)

2Cl2+Si→SiCl4 (340 °С)

Реакции с соединениями других галогенов:

а) Сl2 + 2КВг(Р) = 2КСl + Вr2(кипячение)

б) Сl2(нед.) + 2КI(р) = 2КСl + I2

ЗСl (изб.) + 3Н2O+ КI = 6НСl + КIO3(80 °С)

   Качественная реакция — взаимодействие недостатка СL2 с КI (см. выше) и обнаружение йода по синему окрашиванию после добавления раствора крахмала.

  Получение хлора в промышленности:

2NаСl (расплав)→ 2Nа + Сl2 (электролиз)

2NaCl+ 2Н2O→Н2↑ + Сl2 + 2NаОН (электролиз)

и в лаборатории:

4НСl (конц.) + МnO2 = Сl2↑ + МnСl2 + 2Н2O

(аналогично с участием других окислителей; подробнее см. реакции для НСl и NaСl).

Хлор относится к продуктам основного химического производства, используется для получения брома и йода, хлоридов и кислородсодержащих производных, для отбеливания бумаги, как дезинфицирующее средство для питьевой воды. Ядовит.

Хлороводород НСl. Бескислородная кислота. Бесцветный газ с резким запахом, тяжелее воздуха. Молекула содержит ковалентную σ -связь Н — Сl. Термически устойчив. Очень хорошо растворим в воде; разбавленные растворы называются хлороводородной кислотой, а дымящий концентрированный раствор (35-38 %)- соляной кислотой (название дано еще алхимиками). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Сильный восстановитель в концентрированном растворе (за счет СlI), слабый окислитель в разбавленном растворе (за счет НI). Составная часть «царской водки».

Качественная реакция на ион Сl — образование белых осадков АgСl и Нg2Сl2, которые не переводятся в раствор действием разбавленной азотной кислоты.

Хлороводород служит сырьем в производстве хлоридов, хлорорганических продуктов, используется (в виде раствора) при травлении металлов, разложении минералов и руд.              Уравнения важнейших реакций:

НСl (разб.) + NаОН (разб.) = NaСl + Н2O

НСl (разб.) + NН3 Н2O = NH4Сl + Н2O

4НСl (конц., гор.) + МO2 = МСl2 + Сl2↑ + 2Н2O (М = Мп, РЬ)

16НСl (конц., гор.) + 2КМnO4(т) = 2МnСl2 + 5Сl2↑+ 8Н2O + 2КСl

14НСl (конц.) + К2Сr2O7(т) = 2СrСl3 + ЗСl2↑ + 7Н2O + 2КСl

6НСl (конц.) + КСlO3(Т) = КСl + ЗСl2↑ + 3Н2O (50-80 °С)

4НСl (конц.) + Са(СlO)2(т) = СаСl2 + 2Сl2↑ + 2Н2O

2НСl (разб.) + М = МСl2 + H2(М = Ре, 2п)

2НСl (разб.) + МСO3 = МСl2 + СO2↑+ Н2O (М = Са, Ва)

НСl (разб.) + АgNO3 = НNO3 + АgСl↓

Получение НСl в промышленности — сжигание Н2 в Сl2 (см.), в лаборатории — вытеснение из хлоридов серной кислотой:

NаСl(т) + Н2SO4 (конц.) = NаНSO4 + НСl (50 °С)

2NaСl(т) + Н2SO4 (конц.) = Nа2SO4 + 2НСl↑(120 °С)

Хлориды

      Хлорид натрия NaСl. Бескислородная соль. Бытовое название поваренная соль. Белый, слабогигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, растворимость мало зависит от температуры, раствор имеет характерный соленый вкус. Гидролизу не подвергается. Слабый восстановитель. Вступает в реакции ионного обмена. Подвергается электролизу в расплаве и растворе.

Применяется для получения водорода, натрия и хлора, соды, едкого натра и хлороводорода, как компонент охлаждающих смесей, пищевой продукт и консервирующее средство.

В природе — основная часть залежей каменной соли, или галита, и сильвинита (вместе с КСl),рапы соляных озер, минеральных примесей морской воды (содержание NaСl=2,7%). В промышленности получают выпариванием природных рассолов.

Уравнения важнейших реакций:

2NаСl(т) + 2Н2SO4 (конц.) + МnO2(т) = Сl2↑ + МnSO4 + 2Н2O + Na2SO4(100 °С)

10NаСl(т) + 8Н2SO4(конц.) + 2КМnO4(т)= 5Сl2↑ + 2МnSO4 + 8Н2О + 5Nа2SO4 + К2SO4(100°С)

6NaСl(Т) + 7Н2SO4 (конц.) + К2Сr2O7(т) = 3Сl2 + Сr2(SO4)3 + 7Н2O+ ЗNа2SO4 + К2SO4(100 °С)

2NаСl(т) + 4Н2SO4(конц.) + РЬO2(т) = Сl2↑ + Рb(НSO4)2 + 2Н2O + 2NaНSO4(50 °С)

NaСl(разб.) + АgNO3 = NaNО3 + АgСl↓

NaCl(ж)→2Na+Cl2↑  (850°С, электролиз )

2NаСl + 2Н2O→Н2↑ + Сl2↑ + 2NаОН (электролиз )

2NаСl(р,20%)→ Сl2↑+ 2Nа(Нg)  “амальгама”(электролиз ,на Hg-катоде)

         Хлорид калия КСl. Бескислородная соль. Белый, негигроскопичный. Плавится и   кипит без разложения. Умеренно растворим в воде, раствор имеет горький вкус, гидролиза нет. Вступает в реакции ионного обмена. Применяется как калийное удобрение, для получения К, КОН и Сl2. В природе основная составная часть (наравне с NаСl) залежей сильвинита.

Уравнения важнейших реакций одинаковы с таковыми для NаСl.

       Хлорид кальция СаСl2. Бескислородная соль. Белый, плавится без разложения. Расплывается на воздухе за счет энергичного поглощения влаги. Образует кристаллогидрат СаСl22О с температурой обезвоживания 260 °С. Хорошо растворим в воде, гидролиза нет. Вступает в реакции ионного обмена. Применяется для осушения газов и жидкостей, приготовления охлаждающих смесей. Компонент природных вод, составная часть их «постоянной» жесткости.

Уравнения важнейших реакций:

СаСl2(Т) + 2Н2SO4(конц.) = Са(НSO4)2 + 2НСl↑ (50 °С)

СаСl2(Т) + Н2SO4 (конц.) = СаSO4↓+ 2НСl↑ (100 °С)

СаСl2 + 2NaОН (конц.) = Са(ОН)2↓+ 2NaCl↑

ЗСаСl2 + 2Nа3РO4 = Са3(РO4)2↓ + 6NaCl

СаСl2 + К2СO3 = СаСО3↓ + 2КСl

СаСl2 + 2NaF = СаF2↓+ 2NаСl

СаСl2(ж) → Са + Сl2 (электролиз ,800°С)

Получение:

СаСО3 + 2НСl = СаСl2 + СO3↑ + Н2O

       Хлорид алюминия АlСl3. Бескислородная соль. Белый, легкоплавкий,сильнолетучий. В паре состоит из ковалентных мономеров АlСl3 (треугольное строение,sр2гибридизация, преобладают при 440-800 °С) и димеров Аl2Сl6 (точнее, Сl2АlСl2АlСl2, строение — два тетраэдра с общим ребром, sр3-гибридизация, преобладают при 183-440 °С). Гигроскопичен, па воздухе «дымит». Образует кристаллогидрат, разлагающийся при нагревании. Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, создает в растворе сильнокислотную среду вследствие гидролиза. Реагирует со щелочами, гидратом аммиака. Восстанавливается при электролизе расплава. Вступает в реакции ионного обмена.

    Качественная реакция на ион Аl3+ — образование осадка АlРO4, который переводится в раствор концентрированной серной кислотой.

Применяется как сырье в производстве алюминия, катализатор в органическом синтезе и при крекинге нефти, переносчик хлора в органических реакциях. Уравнения важнейших реакций:

АlСl3.2O →АlСl(ОН)2    (100-200°С, —HCl,H2O)→Аl2O3(250-450°С, -HCl,h3O)

АlСl3(т) + 2Н2O(влага) = АlСl(ОН)2(т) + 2НСl (белый «дым»)

АlCl3 + ЗNаОН (разб.) = Аl(OН)3 (аморф. )↓ + ЗNаСl

АlСl3 + 4NаОН (конц.) = Nа[Аl(ОН)4] + ЗNаСl

АlСl3 + 3(NН3.Н2O)(конц.) = Аl(ОН)3(аморф.) + ЗNН4Сl

АlCl3 + 3(NН3 • Н2O)(конц.) =Аl(ОН)↓ + ЗNН4Сl + Н2O     (100°С)

2Аl3+ + 3Н2O + ЗСО2-3 = 2Аl(ОН)3↓ + ЗСO2↑        (80°С)

2Аl3+ =6Н2O+ 3S2- = 2Аl(ОН)3↓+ 3Н2S↑

Аl3+ + 2НРО42- — АlРO4↓ + Н2РO4

2АlСl3→2Аl + 3Сl2(электролиз,800 °С ,в расплаве NаСl)

       Получение АlСl в промышленности — хлорирование каолина, глинозёма или боксита в присутствии кокса:

Аl2O3 + 3С(кокс) + 3Сl2 = 2АlСl3 + 3СО (900 °С)

    Хлорид железа(II) FеСl2. Бескислородная соль. Белый (гидрат голубовато-зеленый), гигроскопичный. Плавится и кипит без разложения. При сильном нагревании летуч в потоке НСl. Связи Fе — Сl преимущественно ковалентные, пар состоит из мономеров FеСl2 (линейное строение, sр-гибридизация) и димеров Fе2Сl4. Чувствителен к кислороду воздуха (темнеет). Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, слабо гидролизуется по катиону. При кипячении раствора разлагается. Реагирует с кислотами, щелочами, гидратом аммиака. Типичный восстановитель. Вступает в реакции ионного обмена и комплексообразования.

Применяется для синтеза FеСl и Fе2О3, как катализатор в органическом синтезе, компонент лекарственных средств против анемии.

Уравнения важнейших реакций:

FеСl2 • 4Н2O = FеСl2 + 4Н2O          (220 °С, в атм. N2)

FеСl2 (конц.) + Н2O=FеСl(ОН)↓ + НСl↑ (кипячение)

FеСl2(т) + Н2SO4(конц.) = FеSO4 + 2НСl↑ (кипячение)

FеСl2(т) + 4HNO3(конц.) = Fе(NO3)3 + NO2↑ + 2НСl + Н2O

FеСl2 + 2NаОН (разб.) = Fе(ОН)2↓+ 2NaСl (в атм. N2)

FеСl2 + 2(NН3. Н2O) (конц.) = Fе(ОН)2↓ + 2NН4Cl (80 °С)

FеСl2 + Н2 = 2НСl + Fе (особо чистое,выше 500 °С)

4FеСl2 + O2(воздух) → 2Fе(Сl)O + 2FеСl3(t)

2FеСl2(р) + Сl2(изб.) = 2FеСl3(р)

5Fе2+ + 8Н+ + МnО4 = 5Fе3+ + Мn2+ + 4Н2O

6Fе2+ + 14Н+ + Сr2O72- = 6Fе3+ + 2Сr3+ +7Н2O

2+ + S2-(разб.) = FеS↓

2Fе2+ + Н2O + 2СО32-(разб.) = Fе2СO3(OН)2↓+ СO2

FеСl2 →Fе↓ + Сl2(90°С, в разб.    НСl, электролиз)

Получение: взаимодействие Fе с соляной кислотой:

Fе + 2НСl = FеСl2+ Н2

промышленности используют хлороводород и ведут процесс при 500 °С).

       Хлорид железа(III) FеСl3. Бескислородная соль. Черно-коричневый (темно-красный в проходящем свете, зеленый в отраженном), гидрат темно-желтый. При плавлении переходит в красную жидкость. Весьма летуч, при сильном нагревании разлагается. Связи Fе — Сl преимущественно ковалентные. Пар состоит из мономеров FеСl3 (треугольное строение, sр2-гибридизация, преобладают выше 750 °С) и димеров Fе2Сl6 (точнее, Сl2FеСl2FеСl2, строение — два тетраэдра с общим ребром, sр3-гибридизация, преобладают при 316-750 °С). Кристаллогидрат FеСl.2O имеет строение [Fе(Н2O)4Сl2]Сl • 2Н2O. Хорошо растворим в воде, раствор окрашен в желтый цвет; сильно гидролизован по катиону. Разлагается в горячей воде, реагирует со щелочами. Слабый окислитель и восстановитель.

Применяется как хлорагент, катализатор в органическом синтезе, протрава при крашении тканей, коагулянт при очистке питьевой воды, травитель медных пластин в гальванопластике, компонент кровоостанавливающих препаратов.

Уравнения важнейших реакций:

FеСl3 • 6Н2O=[Fе(Н2O)4Сl2]Сl + 2Н2(37 °С)

2(FеСl8 • 6Н2O)=Fе2O3 + 6НСl + 9Н2O (выше 250 °С)

FеСl3(10%) + 4Н2O = Сl + [Fе(Н2O)4Сl2]+(желт.)

2FеСl3 (конц.) + 4Н2O =[Fе(Н2O)4Сl2]+ (желт.) + [FеСl4] (бц.)

FеСl3 (разб., конц.) + 2Н2O →FеСl(ОН)2↓ + 2НСl (100 °С)

FеСl3 + 3NaОН (разб.) = FеО(ОН)↓ + Н2O + 3NаСl (50 °С)

FеСl3 + 3(NН3 • Н2O) (конц,, гор.) =FeO(OH)↓+H2O+3NH4Cl

4FеСl3 + 3O2(воздух) =2Fе2O3 + 3Сl2(350—500 °С)

2FеСl3(р) + Сu→ 2FеСl2 + СuСl2

          Хлорид аммония NН4Сl. Бескислородная соль, техническое название нашатырь. Белый, летучий, термически неустойчивый. Хорошо растворим в воде (с заметным эндо-эффектом, Q = -16 кДж), гидролизуется по катиону. Разлагается щелочами при кипячении раствора, переводит в раствор магний и гидроксид магния. Вступает в реакцию кон мутации с нитратами.

       Качественная реакция на ион NН4+— выделение NН3 при кипячении со щелочами или при нагревании с гашёной известью.

Применяется в неорганическом синтезе, в частности для создания слабокислотной среды, как компонент азотных удобрений, сухих гальванических элементов, при пайке медных и лужении стальных изделий.

Уравнения важнейших реакций:

NH4Cl(т)NH3(г)+HCl(г)  (выше337,8 °С)

4Сl + NаОН (насыщ.) = NаСl + NН3↑+ Н2O (100 °С)

2NН4Сl(Т) + Са(ОН)2(т) = 2NН3 + СаСl2 + 2Н2O     (200°С)

2NН4Сl (конц.) +Mg= Н2 ↑ + МgСl2 + 2NН3↑            (80°С)

2NН4Сl (конц., гор.) + Мg(ОН)2 = MgСl2 + 2NН3↑ + 2Н2O

NH+(насыщ.) + NO2 (насыщ.) =N2↑ + 2Н2O        (100°С)

4Сl + КNO3 = N2O + 2Н2O + КСl (230-300 °С)

Получение: взаимодействие NH3 с НСl в газовой фазе или NН3 Н2О с НСl в растворе.

     Гипохлорит кальция Са(СlО)2. Соль хлорноватистой кислоты НСlO. Белый, при нагревании разлагается без плавления. Хорошо растворим в холодной воде (образуется бесцветный раствор), гидролизуется по аниону. Реакционноспособный, полностью разлагается горячей водой, кислотами. Сильный окислитель. При стоянии раствор поглощает углекислый газ из воздуха. Является активной составной частью хлорной (белильной) извести — смеси неопределенного состава с СаСl2 и Са(ОН)2. Уравнения важнейших реакций:

Са(СlO)2 = СаСl2 + O2(180 °С)

Са(СlO)2(т) + 4НСl (конц.) = СаСl + 2Сl2↑ + 2Н2O (80 °С)

Са(СlO)2 + Н2O + СO2 = СаСО3↓ + 2НСlO  (на холоду)

Са(СlO)2 + 2Н2O2(разб.) = СаСl2 + 2Н2O + 2O2

Получение:

2Са(ОН)2 (суспензия) + 2Сl2(г) = Са(СlO)2 + СаСl2 + 2Н2O

      Хлорат калия КСlO3. Соль хлорноватой кислоты НСlO3, наиболее известная соль кислородсодержащих кислот хлора. Техническое название — бертоллетова соль (по имени ее первооткрывателя К.-Л. Бертолле, 1786). Белый, плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (образуется бесцветный раствор), гидролиза нет. Разлагается концентрированными кислотами. Сильный окислитель при сплавлении.

Применяется как компонент взрывчатых и пиротехнических смесей, головок спичек, в лаборатории — твердый источник кислорода.

Уравнения важнейших реакций:

4КСlO3 = ЗКСlO4 + КСl (400 °С)

2КСlO3 = 2КСl + 3O2(150-300 °С, кат. МпO2)

КСlO3(Т) + 6НСl (конц.) = КСl + 3Сl2↑ + ЗН2O (50-80 °С)

3КСlO3(Т) + 2Н2SO4(конц., гор.) = 2СlO2 + КСlO4 + Н2O + 2КНSO4

(диоксид хлора на свету взрывается: 2СlO2(Г) = Сl2 + 2O2)

2КСlO3 + Е2(изб.) = 2КЕO3 + Сl2(в разб. НNO3, Е = Вr, I)

KClO3 +H2O→H2 +KClO4 (Электролиз)

     Получение КСlO3в промышленности — электролиз горячего раствора КСl (продукт КСlO3 выделяется на аноде):

КСl + 3Н2O →Н2↑+ КСlO3(40—60 °С,Электролиз)

     Бромид калия КВr. Бескислородная соль. Белый, негигроскопичный, плавится без разложения. Хорошо растворим в воде, гидролиза нет. Восстановитель (более слабый, чем

КI).

Качественная реакция на ион Вr — вытеснение брома из раствора КВr хлором и экстракция брома в органический растворитель, например ССl4 (в результате водный слой обесцвечивается, органический слой окрашивается в бурый цвет).

Применяется как компонент травителей при гравировке по металлам, составная часть фотоэмульсий, лекарственное средство.

Уравнения важнейших реакций:

2КВr(т) + 2Н2SO4(КОНЦ., гор,) + МnO2(т) =Вr2↑ + МnSO4 + 2Н2O + К2SO4

5Вr + 6Н+ + ВrО3 = 3Вr2 + 3Н2O

Вr + Аg+ =АgВr↓

2КВr(р) +Сl2(Г)=2КСl + Вг2(р)

КВr + 3Н2O→3Н2↑ + КВrО3(60-80           °С, электролиз)

 

Получение:

К2СO3 + 2НВr = 2КВr + СO2↑+ Н2O

      Иодид калия КI. Бескислородная соль. Белый, негигроскопичный. При хранении на свету желтеет. Хорошо растворим в воде, гидролиза нет. Типичный восстановитель. Водный раствор КI хорошо растворяет I2 за счет комплексообразования.

Качественная реакция на ион I — вытеснение иода из раствора КI недостатком хлора и экстракция иода в органический растворитель, например ССl4 (в результате водный слой обесцвечивается, органический слой окрашивается в фиолетовый цвет).

Уравнения важнейших реакций:

10I + 16Н+ + 2МnO4 = 5I2↓ + 2Мn2+ + 8Н2O

6I+ 14Н+ + Сr2O72- =3I2 ↓ + 2Сr3+ + 7Н2O

2I + 2Н+ + Н2O2 (3%) = I2↓+ 2Н2O

2I + 4Н+ + 2NO2 = I2↓ + 2NO↑ + 2Н2O

5I + 6Н+ + IO3 = 3I2 + 3Н2O

I + Аg+ = АgI (желт.)

2КI(р) + Сl2(р) (нед.) =2КСl + I2

КI + 3Н2O + 3Сl2(р) (изб.) = КIO3 + 6НСl       (80°С)

КI(Р) + I2(т)=K[I(I)2])(Р) (кор.)     («йодная вода»)

КI + 3Н2O→ 3Н2↑ + КIO3   (электролиз,50—60  °С)

Получение:

К2СO3 + 2НI = 2 КI + СO2 ↑+ Н2O

 

himege.ru

Хлор и его соединения. Свободный хлор Cl.

Основаны на процессе окисления анионов Cl-

2Cl-- 2e- = Cl20

Электролиз водных растворов хлоридов, чаще - NaCl:

2NaCl + 2Н2O = Cl2↑ + 2NaOH + H2

Окисление конц. HCI различными окислителями:

4HCI + MnO2 = Cl2↑ + МпCl2 + 2Н2O

16НСl + 2КМпО4 = 5Cl2↑ + 2MnCl2 + 2KCl + 8Н2O

6HCl + КСlO3 = ЗCl2↑ + KCl + 3Н2O

14HCl + К2Сr2O7 = 3Cl2↑ + 2CrCl3 + 2KCl + 7Н2O

Хлор - очень сильный окислитель. Окисляет металлы, неметаллы и сложные вещества, превращаясь при этом в очень устойчивые анионы Cl-:

Cl20+ 2e- = 2Cl-

Активные металлы в атмосфере сухого газообразного хлора воспламеняются и сгорают; при этом образуются хлориды металлов.

Примеры:

Cl2+ 2Na = 2NaCl

3Cl2 + 2Fe = 2FeCl3

Малоактивные металлы легче окисляются влажным хлором или его водными растворами:

Примеры:

Cl2 + Сu = CuCl2

3Cl2 + 2Аu = 2AuCl3

Хлор непосредственно не взаимодействует только с O2, N2, С. С остальными неметаллами реакции протекают при различных условиях.

Образуются галогениды неметаллов. Наиболее важной является реакция взаимодействия с водородом.

Примеры:

Cl2 + Н2 =2НС1

Cl2 + 2S (расплав) = S2Cl2

ЗCl2 + 2Р = 2РCl3 (или РCl5 — в избытке Cl2)

2Cl2 + Si = SiCl4

3Cl2 + I2 = 2ICl3

Примеры:

Cl2 + 2KBr = Br2 + 2KCl

Cl2 + 2KI = I2 + 2KCl

Cl2 + 2HI = I2 + 2HCl

Cl2 + H2S = S + 2HCl

ЗСl2 + 2NH3 = N2 + 6HCl

В результате самоокисления-самовосстановления одни атомы хлора превращаются в анионы Cl-, а другие в положительной степени окисления входят в состав анионов ClO- или ClO3-.

Cl2 + Н2O = HCl + НClO хлорноватистая к-та

Cl2 + 2КОН =KCl + KClO + Н2O

3Cl2 + 6КОН = 5KCl + KClO3 + 3Н2O

3Cl2 + 2Са(ОН)2 = CaCl2 + Са(ClO)2+ 2Н2O

Эти реакции имеют важное значение, поскольку приводят к получению кислородных соединений хлора:

КClO3 и Са(ClO)2 - гипохлориты; КClO3 - хлорат калия (бертолетова соль).

а) замещение атомов водорода в молекулах ОВ

б) присоединение молекул Cl2 по месту разрыва кратных углерод-углеродных связей

H2C=CH2 + Cl2 → ClH2C-CH2Cl 1,2-дихлорэтан

HC≡CH + 2Cl2 → Cl2HC-CHCl2 1,1,2,2-тетрахлорэтан

Хлороводород и соляная кислота

HCl - хлорид водорода. При об. Т - бесцв. газ с резким запахом, достаточно легко сжижается (т. пл. -114°С, т. кип. -85°С). Безводный НСl и в газообразном, и в жидком состояниях неэлектропроводен, химически инертен по отношению к металлам, оксидам и гидроксидам металлов, а также ко многим другим веществам. Это означает, что в отсутствие воды хлороводород не проявляет кислотных свойств. Только при очень высокой Т газообразный HCl реагирует с металлами, причем даже такими малоактивными, как Сu и Аg.
Восстановительные свойства хпорид-аниона в HCl также проявляются в незначительной степени: он окисляется фтором при об. Т, а также при высокой Т (600°С) в присутствии катализаторов обратимо реагирует с кислородом:

2HCl + F2 = Сl2 + 2HF

4HCl + O2 = 2Сl2 + 2Н2O

Газообразный HCl широко используется в органическом синтезе (реакции гидрохлорирования).

1. Синтез из простых веществ:

Н2 + Cl2 = 2HCl

2. Образуется как побочный продукт при хлорировании УВ:

R-H + Cl2 = R-Cl + HCl

3. В лаборатории получают действием конц. H2SO4 на хлориды:

H24(конц.) + NaCl = 2HCl↑ + NaHSО4 (при слабом нагревании)

H24(конц.) + 2NaCl = 2HCl↑ + Na24 (при очень сильном нагревании)

HCl очень хорошо растворяется в воде: при об. Т в 1 л Н2O растворяется ~ 450 л газа (растворение сопровождается выделением значительного количества тепла). Насыщенный раствор имеет массовую долю HCl, равную 36-37 %. Такой раствор имеет очень резкий, удушающий запах.

Молекулы HCl в воде практически полностью распадаются на ионы, т. е. водный раствор HCl является сильной кислотой.

1. Растворенный в воде HCl проявляет все общие свойства кислот, обусловленные присутствием ионов Н+

HCl → H+ + Cl-

Взаимодействие:

а) с металлами (до Н):

2HCl2 + Zn = ZnCl2 + H2

б) с основными и амфотерными оксидами:

2HCl + CuO = CuCl2 + Н2O

6HCl + Аl2O3 = 2АlCl3 + ЗН2O

в) с основаниями и амфотерными гидроксидами:

2HCl + Са(ОН)2 = CaCl2 + 2Н2О

3HCl + Аl(ОН)3 = АlСl3 + ЗН2O

г) с солями более слабых кислот:

2HCl + СаСО3 = CaCl2 + СO2 + Н3O

HCl + C6H5ONa = С6Н5ОН + NaCl

д) с аммиаком:

HCl + NH3 = NH4Cl

Реакции с сильными окислителями F2, MnO2, KMnO4, KClO3, K2Cr2O7. Анион Cl-окисляется до свободного галогена:

2Cl-- 2e- = Cl20

Уравнения реакция см. "Получение хлора". Особое значение имеет ОВР между соляной и азотной кислотами:

Взаимодействие:

а) с аминами (как органическими основаниями)

R-NH2 + HCl → [RNH3]+Cl-

б) с аминокислотами (как амфотерными соедимнеиями)

Оксиды и оксокислоты хлора

Кислородсодержащие соединения хлора - чрезвычайно неустойчивые вещества, так как включают атомы Cl в нестабильных положительных с. о. Тем не менее некоторые из них имеют важное практическое значение.

гипохлориты

хлориты

хлораты

перхлораты

NaClOKClOCa(ClO)2

Ca(ClO2)2

KClO3 бертолетова сольMg(ClO3)2

KClO4NaClO4NH4ClO4

1. Все оксокислоты хлора и их соли являются сильными окислителями.

2. Почти все соединения при нагревании разлагаются за счет внутримолекулярного окисления-восстановления или диспропорционирования.

Примеры:

Хлорная известь

Хлорная (белильная) известь - смесь гипохлорита и хлорида кальция, обладает отбеливающим и дезинфицирующим действием. Иногда рассматривается как пример смешанной соли, имеющей в своем составе одновременно анионы двух кислот:

Жавелевая вода

Водный раствор хлорида и гапохлорита калия KCl + KClO + H2O

examchemistry.com

Хлор — Циклопедия

Хлор

Химический элемент

Желтовато-зелёный газ
Символ, номерCl, 17
Атомная масса35,457 а.е.м.
Электронная конфигурация[Ne] 3s2 3p5
Электроотрицательность3,16 по шкале Поллинга
Степени окисления7; 6; 5; 4; 3; 1; 0; −1
Плотность3,21 г/л (газ)
Температура плавления172,2 K
Температура кипения238,6 K
Структура кристаллической решеткиорторомбическая
Теплопроводность(300 K) 0,009 Вт/(м·К)
Химия 59. Элемент хлор // Академия занимательных наук Хлор и его соединения // Городской методический центр

Хлор — химический элемент № 17 в таблице Менделеева. Относится к галогенам, в нормальных условиях — ядовитый газ желтовато-зелёного цвета.

Впервые хлор был получен в 1774 году шведским химиком Карлом Шееле. Он описал выделение хлора при взаимодействии пиролюзита с соляной кислотой в своем трактате о пиролюзите:

  • 4HCl + MnO2 = Cl2 + MnCl2 + 2H2O.

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства. Однако Шееле, согласно господствующей тогда в химии теории флогистона, предположил, что хлор представляет собой дефлогистированую соляную кислоту, то есть оксид соляной кислоты. Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия, однако попытки его выделения оставались тщетными до времени работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор. В 1810 году ученый Г. Дэви выразил мнение, что этот газ является простым веществом. Через 2 года французский химик и физик Жозеф-Луи Гей-Люссак дал этому газу современное название хлор.

Название происходит от греческого χλωρός — «зеленый».

[править] Распространение в природе

Хлор — достаточно распространенный элемент. В свободном состоянии в природе он не встречается, так как в химическом отношении хлор очень активен. Самым распространенным природным соединением хлора является хлорид натрия NaCl, огромные количества которого растворены в воде морей, океанов и некоторых озер. Во многих местах хлорид натрия в виде минерала галита (или каменной соли) образует мощные залежи. Богатые залежи очень чистой каменной соли расположены в районах Соль-Илецка на Южном Урале и Артёмовска на Донбассе.

Кроме того, очень распространенными соединениями хлора является хлорид калия KCl и хлорид магния MgCl2. Хлорид калия и хлорид натрия образуют минерал сильвинит KCl·NaCl, мощные месторождения которого расположены на Украине (города Калуш и Стебник), а хлорид калия и хлорид магния образуют минерал карналлит KCl·MgCl2·6H2O, большие залежи которого имеются на Урале.

[править] Физические свойства

Хлор — тяжелый газ желтовато-зеленого цвета с резким, удушливым запахом, неметалл. При вдыхании очень раздражает слизистую оболочку и вызывает острый кашель, а в больших количествах — даже смерть.

Под давлением около 6 атмосфер хлор уже при обычной температуре сжижается в желтую тяжелую жидкость, которая под нормальным давлением кипит при −34 °С, а при −102,4 °С замерзает в желтоватую кристаллическую массу. Сжиженный хлор хранят и транспортируют в стальных баллонах.

В воде хлор растворяется хорошо. В одном объеме воды при обычной температуре растворяется более двух объемов хлора. Раствор хлора в воде называют хлорной водой.

[править] Химические свойства

Химически очень активен. Окислитель. Образует соединения почти со всеми элементами. Атомы хлора, имея во внешнем электронном слое семь электронов, легко отнимают валентные электроны от атомов других элементов и превращаются в отрицательно одновалентные ионы Cl. Этим проявляются его резко выраженные окислительные свойства. По своим окислительным свойствам хлор уступает только фтору и примерно равноценен кислороду. Благодаря большому родству его атомов к электрону, хлор непосредственно соединяется со всеми металлами и большинством неметаллов. Причем со многими металлами он реагирует очень энергично с выделением тепла и света. Например, если в наполненный хлором цилиндр внести растертый в порошок сурьмы, он вспыхивает и сгорает, образуя густой белый дым трихлорида сурьмы SbCl3:

Предварительно нагретые кальций, железо, медь и другие металлы тоже энергично сгорают в атмосфере хлора, образуя соответствующие хлориды. Например:

Зажженый на воздухе красный фосфор продолжает энергично гореть в атмосфере хлора:

С водородом хлор тоже реагирует. Но при обычной температуре реакция идет очень медленно, а при нагревании и под воздействием солнечного света — достаточно быстро и даже со взрывом:

[править] Реакции с органическими соединениями

[править] Замещения

При высокой температуре хлор может отнимать водород от различных органических соединений. Зажженная свеча продолжает гореть в атмосфере хлора, выделяя много копоти, потому что с хлором сочетается только водород, входящий в состав вещества свечи, а углерод выделяется в виде копоти:

  • CnH2n+2 + (n+1) Cl2 → n C + (2n+2) HCl

Алканы реагируют с хлором при нагревании, реакция проходит по радикальному механизму:

  • CH3-CH3 + Cl2 → C2H6-xClx + HCl

Ароматические соединения реагируют по ионному механизму, в присутствии катализаторов (например, AlCl3, FeCl3):

  • C6H6 + Cl2 → C6H5Cl + HCl

Кетоны хлорируются гораздо легче, чем соответствующие алканы:

  • CH3-CH2-CO-CH2-CH3 + Cl2 -H+→ CH3-CHCl-CO-CH2-CH3 + HCl
  • CH3-CH2-CO-CH2-CH3 + 4Cl2 -OH-→ CH3-CCl2-CO-CCl2-CH3 + 4HCl

С метилкетонами реакция идет дальше и происходит расщепление

  • CH3-CO-CH3 — Cl2/-OH-→ CHCl3
[править] Присоединения

Хлор присоединяется по двойной связи алкенов

  • CH2=CH2 + Cl2 → Cl-CH2-CH2-Cl
[править] Окисления

Хлор — сильный окислитель, и редко применяется в этом качестве. Он окисляет спирты (до кислот или кетонов), альдегиды (до кислот).

  • CH3-CH2-OH —Cl2 / OH-→ [CH3-CHO] →CHCl3

В лабораторных условиях хлор обычно получают взаимодействием соляной кислоты HCl с двуокисью марганца MnO2 (это также и первый промышленный метод получения):

  • 4HCl + MnO2 → MnCl2 + Cl2 ↑ + 2H2O

Также используют другие окислители:

  • 2KMnO4 + 16HCl → 2KCl + 2MnCl2 + 5Cl2↑ +8H2O
  • K2Cr2O7 + 14HCl → 3Cl2 + 2KCl + 2CrCl3 + 7H2O

[править] Промышленное производство

В технике хлор получают электролизом водного раствора хлорида натрия NaCl. Хлорид натрия в водном растворе диссоциирует на ионы натрия и хлора:

  • [math]NaCl \; \overrightarrow {\leftarrow} Na ^ + + Cl ^ -[/math]

Молекулы воды также частично диссоциируют:

  • [math]H_2O \; \overrightarrow {\leftarrow} H ^ + + OH ^ -[/math]

Таким образом, к катоду привлекаются катионы натрия и катионы водорода, а к аноду — анионы хлора и анионы гидроксила. Катионы водорода восстанавливаются легче, чем катионы натрия, а анионы хлора окисляются легче, чем анионы гидроксила. Поэтому на катоде выделяется водород, а аноде — хлор. Электродные реакции можно обозначить такими уравнениями:

  • Катод: 2Н+ + 2е = Н2
  • Анод: 2Cl — ​​2е = Cl2

Катионы натрия и анионы гидроксила все время накапливаются в растворе и образуют гидроксид натрия NaOH. Он реагирует с хлором, частично растворяется в воде, образуя гипохлорит и хлорид натрия

  • NaOH + Cl2 → NaCl + NaOCl

Раствор NaClO используют как отбеливатель.

В технике хлор применяется очень широко. Используют в производстве хлорорганических соединений (например, винилхлорида, хлоропренового каучука, дихлорэтана и др.), красителей, лекарственных и других веществ, для отбеливания ткани, бумаги, дезинфекции и т. п.

Значительные количества его используют для производства:

  • соляной кислоты
  • хлорной извести

Применение хлора для обеззараживания (хлорирования) питьевой воды пытаются ограничить и заменить озонированием, но на сегодня оно является основным в большинстве стран.

В металлургии хлор применяют для хлорирования руд для получения целого ряда цветных и редких металлов — титана, ниобия, тантала и других — в виде их хлоридов, из которых затем электролизом добывают чистые металлы.

Много хлора потребляет химическая промышленность для получения различных хлорорганических соединений, используемых для борьбы с вредителями и сорняками в сельском хозяйстве, а также для изготовления различных красителей, синтетического каучука, пластмасс и т. п. Самыми известными из них являются:

  • Винилхлорид и его полимер поливинилхлорид (ПВХ), который применяется для производства оконных профилей
  • Хлороформ
  • ДДТ (снято с производства и запрещено к употреблению из-за токсичности)
  • Диоксины

[править] Действие на человека

Ядовит. ПДК в воздухе производственных помещений 1 мг/м3, в атмосфере населенных пунктов одноразовая (кратковременная) — 0,1 мг/м3, среднесуточная — 0,003 мг/м3. Защититься от хлора можно с помощью гражданских или промышленных противогазов.

  • Глоссарий терминов по химии // Й.Опейда, О.Швайка. Ин-т физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецкий национальный университет — Донецк: «Вебер», 2008. — 758 с. ISBN 978-966-335-206-0
  • Горный энциклопедический словарь: в 3 т. / Под ред. В. С. Белецкого. — Донецк: Восточный издательский дом, 2001—2004.
  • Ф. А. Деркач «Химия» Л., 1968.

cyclowiki.org

характеристика химических и физических свойств :: SYL.ru

Как бы мы негативно ни относились к общественным уборным, природа диктует свои правила, и посещать их приходится. Помимо естественных (для данного места) запахов, еще одним привычным ароматом является хлорка, используемая для дезинфекции помещения. Свое название она получила из-за главного действующего вещества в ней – Cl. Дайте узнаем об этом химическом элементе и его свойствах, а также дадим характеристику хлора по положению в периодической системе.

Как был открыт этот элемент

Впервые хлорсодержащее соединение (HCl) было синтезировано в 1772 г. британским священником Джозефом Пристли.

Через 2 года его шведский коллега Карл Шееле сумел описать способ выделения Cl с помощью реакции между соляной кислотой и диоксидом марганца. Однако этот химик так и не понял, что в результате синтезируется новый химический элемент.

Почти 40 лет понадобилось ученым, чтобы научиться добывать хлор на практике. Впервые это было сделано британцем Гемфри Дэви в 1811 г. При этом он использовал другую реакцию, нежели его предшественники-теоретики. Дэви при помощи электролиза разложил на составляющие NaCl (известный большинству как кухонная соль).

Изучив полученное вещество, британский химик осознал, что оно является элементарным. После этого открытия Дэви не только назвал его – chlorine (хлорин), но и смог дать характеристику хлора, правда она была весьма примитивной.

Хлорин превратился в хлор (chlore) благодаря Жозефу Гей-Люссаку и в таком виде существует в французском, немецком, российском, белорусском, украинском, чешском, болгарском и некоторых других языках и сегодня. В английском по сей день употребляется название "хлорин", а в итальянском и испанском "хлоро".

Более подробно рассматриваемый элемент был описан Йенсом Берцелиусом в 1826 г. Именно он смог определить его атомную массу.

Что такое хлор (Cl)

Рассмотрев историю открытия данного химического элемента, стоит узнать о нем подробнее.

Название chlorine было образовано от греческого слова χλωρός («зеленый»). Дано оно было из-за желтовато-зеленоватого цвета данного вещества

Самостоятельно хлор существует как двухатомный газ Cl2,однако в таком виде в природе он практически не встречается. Чаще он фигурирует в различных соединениях.

Помимо отличительного оттенка, для хлора характерен сладковато-едкий запах. Он является очень ядовитым веществом, поэтому при попадании в воздух и вдыхании человеком или животным способен в течение нескольких минут привести к их гибели (зависит от концентрации Cl).

Поскольку хлор тяжелее воздуха почти в 2,5 раза, он всегда будет находиться ниже его, то есть у самой земли. По этой причине при подозрении на наличие Cl следует забраться как можно выше, так как там будет меньшая концентрация данного газа.

Также, в отличие от некоторых других ядовитых веществ, хлорсодержащие обладают характерным цветом, что может позволить зрительно их идентифицировать и принять меры. Большинство стандартных противогазов помогают защитить органы дыхания и слизистые оболочки от поражения Cl. Однако для полной безопасности нужно принимать более серьезные меры, вплоть до нейтрализации ядовитого вещества.

Стоит отметить, что именно с применения немцами хлора как отравляющего газа в 1915 г. начало свою историю химическое оружие. В результате использования почти 200 тонн вещества было за несколько минут отравлено 15 тысяч человек. Треть из них умерла почти мгновенно, треть получила перманентные повреждения, и лишь 5 тысячам удалось спастись.

Почему же столь опасное вещество до сих пор не запрещено и ежегодно добывается миллионами тонн? Все дело в его особых свойствах, а чтобы понять их, стоит рассмотреть характеристику хлора. Проще всего это сделать с помощью таблицы Менделеева.

Характеристика хлора в периодической системе

  • Хлор является простым веществом.
  • Имеет семнадцатый номер по порядку (обладает 17 протонами в атомном ядре).
  • Находится в ІІІ периоде и ІІІ ряду.
  • Хлор располагается в VII группе (подгруппе «а»).
  • Атомная масса Cl – 35,453 а. е. м.
  • Молекула простого вещества хлора состоит из двух атомов: Cl2.
  • Хлор является неметаллом и ходит в группу галогенов. Кстати, в прошлом этот элемент хотели назвать этим термином. Но впоследствии он стал общим наименованием 17-й группы. Помимо хлора, к галогенам относятся фтор, бром, йод, астат и недавно открытый теннессин.
  • Электронная конфигурация хлора - 3s2 3p5.
  • Атом Cl на валентном уровне содержит один неспаренный электрон. За счет этого при валентности І она очень стабильна (NaCl, Cl2↑).
  • Данный элемент на атомном уровне обладает незанятой орбиталью d-подуровня. За счет этого хлор способен проявлять различные степени окисления (от -1 до +7).

Хлор как галоген

Помимо крайней токсичности и едкого запаха (характерных для всех представителей данной группы) Cl отлично растворяется в воде. Практическое подтверждение этому – добавление хлорсодержащих моющих средств в воду для бассейнов.

При контакте с влажным воздухом рассматриваемое вещество начинает дымиться.

Свойства Cl как неметалла

Рассматривая химическую характеристику хлора, стоит обратить внимание на его неметаллические свойства.

Он имеет способность образовывать соединения практически со всеми металлами и неметаллами. В качестве примера можно привести реакцию с атомами железа: 2Fe + 3Cl2↑ → 2FeCl3.

Часто для проведения реакций необходимо использовать катализаторы. В этой роли может выступать Н2О.

Нередко реакции с Cl носят эндотермический характер (поглощают тепло).

Стоит отметить, что в кристаллической форме (в виде порошка) хлор взаимодействует с металлами лишь при нагревании до высоких температур.

Реагируя с другими неметаллами (кроме О2↑, N, F, С и инертных газов), Cl образует соединения - хлориды.

При реакции с О2 образуются крайне нестабильные и склонные к распаду оксиды. В них степень окисления Cl способна проявляться от +1 до +7.

При взаимодействии с F образуются фториды. Степень окисления их может быть разной.

Хлор: характеристика вещества с точки зрения его физических свойств

Помимо химических свойств, рассматриваемый элемент имеет и физические.

  • Как уже было сказано выше, для данного вещества естественным является газообразное состояние (в нормальных условиях). Однако при изменении температур он способен пребывать как в жидком, так и в твердом состоянии.
  • Цвет: желто-зеленый.
  • Плотность Cl при стандартных условиях - 3,214 г/л.
  • При кипении (жидкое состояние) плотность изменяется и становится 1,537 г/см3.
  • Находясь в твердом агрегатном состоянии, Cl приобретает плотность - 1,9 г/см3.
  • Атомный радиус - 0,073 нм.
  • Закипает хлор при t -34 градуса по Цельсию.
  • Температура плавления - −100 градусов по Цельсию.
  • Удельный объем хлора - 1,745 х 10-3 л/г.

Влияние температуры на агрегатное состояние Cl

Рассмотрев физическую характеристику элемента хлора, мы понимаем, что он способен переходить в разные агрегатные состояния. Все зависит от температурного режима.

В нормальном состоянии Cl – это газ, обладающий высокими коррозийными свойствами. Однако он с легкостью способен сжижаться. На это влияет температура и давление. К примеру, если оно равно 8 атмосферам, а температура – +20 градусам по Цельсию, Cl2-кислотно-желтая жидкость. Данное агрегатное состояние он способен сохранять до +143 градусов, если давление также продолжает повышаться.

При достижении-32 °С состояние хлора перестает зависеть от давления, и он продолжает оставаться жидким.

Кристаллизация вещества (твердое состояние) происходит при -101 градусе.

Где в природе существует Cl

Рассмотрев общую характеристику хлора, стоит узнать, где же в природе может встречаться столь непростой элемент.

Из-за своей высокой реакционной активности он практически никогда не встречается в чистом виде (поэтому в начале изучения учеными этого элемента понадобились годы, чтобы научиться его синтезировать). Обычно Cl находится в составе соединений в различных минералах: галит, сильвин, каинит, бишофит и т. п.

Более всего он содержится в солях, добытых из морской или океанической воды.

Влияние на организм

При рассмотрении характеристики хлора уже было не раз сказано, что он крайне ядовит. При этом атомы вещества содержатся не только в минералах, но и практически во всех организмах, начиная от растений до человека.

Из-за особых свойств ионы Cl лучше других проникают сквозь мембраны клеток (поэтому более 80 % всего хлора в теле человека находится в межклеточном пространстве).

Вместе с К, Cl ответственен за регуляцию водно-солевого баланса и как следствие - за осмотическое равенство.

Несмотря на столь важную роль в организме, в чистом виде Cl2↑ убивает все живое – от клеток до целых организмов. Однако в контролированных дозах и при кратковременном воздействии он не успевает причинить повреждений.

Ярким примером последнему утверждению служит любой бассейн. Как известно, воду в таких учреждениях дезинфицируют при помощи Cl. При этом, если человек редко посещает такое заведение (раз в неделю или в месяц) – маловероятно, что он пострадает от наличия данного вещества в воде. Однако работники таких учреждений, особенно те, кто почти весь день пребывают в воде (спасатели, инструкторы) часто страдают кожными заболеваниями или имеют ослабленный иммунитет.

В связи со всем этим после посещения бассейнов обязательно нужно принять душ – чтобы смыть возможные остатки хлора с кожи и волос.

Использования Cl человеком

Помня из характеристики хлора, что он является «капризным» элементом (когда дело доходит до взаимодействия с другими веществами), интересно будет узнать, что в промышленности он весьма часто используется.

В первую очередь с его помощью производится дезинфекция многих веществ.

Также Cl применяется при изготовлении некоторых видов пестицидов, что помогает спасать урожай от вредителей.

Способность этого вещества взаимодействовать почти со всеми элементами таблицы Менделеева (характеристика хлора как неметалла) помогает с его помощью добывать некоторые виды металлов (Ті, Та и Nb), а также известь и соляную кислоту.

Помимо всего вышеперечисленного Cl применяют при производстве промышленных веществ (поливинилхлорид) и медицинских препаратов (хлоргексидин).

Стоит упомянуть, что сегодня найдено более эффективное и безопасное дезинфицирующее средство – озон (О3↑). Однако его производство более дорогостоящее, чем хлора, и этот газ еще более нестабилен, нежели хлор (краткая характеристика физических свойств в 6-7 п.). Поэтому применять озонирование вместо хлорирования пока могут позволить себе немногие.

Как добывается хлор

Сегодня известно немало способов для синтеза данного вещества. Все они делятся на две категории:

  • Химические.
  • Электрохимические.

В первом случае Cl получают вследствие химической реакции. Однако на практике они весьма затратные и малопроизводительны.

Поэтому в промышленности предпочитают электрохимические методы (электролиз). Их три: диафрагменный, мембранный и ртутный электролиз.

www.syl.ru

Хлор — Мегаэнциклопедия Кирилла и Мефодия — статья

Природный хлор представляет смесь двух нуклидов с массовыми числами 35 (в смеси 75, 77% по массе) и 37 (24, 23%). Конфигурация внешнего электронного слоя 3s2p5. В соединениях проявляет главным образом степени окисления –1, +1, +3, +5 и +7 (валентности I, III, V и VII). Расположен в третьем периоде в группе VIIА периодической системы элементов Менделеева, относится к галогенам.

Радиус нейтрального атома хлора 0, 099 нм, ионные радиусы равны, соответственно (в скобках указаны значения координационного числа): Cl- 0, 167 нм (6), Cl5+ 0, 026 нм (3) и Cl7+ 0, 022 нм (3) и 0, 041 нм (6). Энергии последовательной ионизации нейтрального атома хлора равны, соответственно, 12, 97, 23, 80, 35, 9, 53, 5, 67, 8, 96, 7 и 114, 3 эВ. Сродство к электрону 3, 614 эВ. По шкале Полинга электроотрицательность хлора 3, 16.

Важнейшее химическое соединение хлора — поваренная соль (химическая формула NaCl, химическое название хлорид натрия) — было известно человеку с древнейших времен. Имеются свидетельства того, что добыча поваренной соли осуществлялась еще 3-4 тысячи лет до нашей эры в Ливии. Возможно, что, используя поваренную соль для различных манипуляций, алхимики сталкивались и с газообразным хлором. Для растворения «царя металлов» — золота — они использовали «царскую водку» — смесь соляной и азотной кислот, при взаимодействии которых выделяется хлор.

Впервые газ хлор получил и подробно описал шведский химик К. Шееле в 1774 году. Он нагревал соляную кислоту с минералом пиролюзитом MnO2 и наблюдал выделение желто-зеленого газа с резким запахом. Так как в те времена господствовала теория флогистона, новый газ Шееле рассматривал как «дефлогистонированную соляную кислоту», т. е. как окись (оксид) соляной кислоты. А.Лавуазье рассматривал газ как оксид элемента «мурия» (соляную кислоту называли муриевой, от лат. muria — рассол). Такую же точку зрения сначала разделял английский ученый Г. Дэви, который потратил много времени на то, чтобы разложить «окись мурия» на простые вещества. Это ему не удалось, и к 1811 году Дэви пришел к выводу, что данный газ — это простое вещество, и ему отвечает химический элемент. Дэви первым предложил в соответствие с желто-зеленой окраской газа назвать его chlorine (хлорин). Название «хлор» элементу дал в 1812 французский химик Ж. Л. Гей-Люссак; оно принято во всех странах, кроме Великобритании и США, где сохранилось название, введенное Дэви. Высказывалось мнение о том, что данный элемент следует назвать «галоген» (т. е. рождающий соли), но оно со временем стало общим названием всех элементов группы VIIA.Содержание хлора в земной коре составляет 0, 013% по массе, в заметной концентрации он в виде иона Cl присутствует в морской воде (в среднем около 18, 8 г/л). Химически хлор высоко активен и поэтому в свободном виде в природе не встречается. Он входит в состав таких минералов, образующих большие залежи, как поваренная, или каменная, соль (галит) NaCl, карналлит KCl·MgCl2·6H21O, сильвин КСl, сильвинит (Na, K)Cl, каинит КСl·MgSO4·3Н2О, бишофит MgCl2·6H2O и многих других. Хлор можно обнаружить в самых разных породах, в почве.

Для получения газообразного хлора используют электролиз крепкого водного раствора NaCl (иногда используют KCl). Электролиз проводят с использованием катионообменной мембраны, разделяющей катодное и анодное пространства. При этом за счет процесса

2NaCl + 2H2O = 2NaOH + H2 + Cl2
получают сразу три ценных химических продукта: на аноде — хлор, на катоде — водород, и в электролизере накапливается щелочь (1, 13 тонны NaOH на каждую тонну полученного хлора). Производство хлора электролизом требует больших затрат электроэнергии: на получение1 т хлора расходуется от 2, 3 до 3, 7 МВт.

Для получения хлора в лаборатории используют реакцию концентрированной соляной кислоты с каким-либо сильным окислителем (перманганатом калия KMnO4, дихроматом калия K2Cr2O7, хлоратом калия KClO3, хлорной известью CaClOCl, оксидом марганца (IV) MnO2). Наиболее удобно использовать для этих целей перманганат калия: в этом случае реакция протекает без нагревания:

2KMnO4 + 16HCl = 2KСl + 2MnCl2+ 5Cl2+ 8H2O.

При необходимости хлор в сжиженном (под давлением) виде транспортируют в железнодорожных цистернах или в стальных баллонах. Баллоны с хлором имеют специальную маркировку, но даже при ее отсутствии хлорный баллон легко отличить от баллонов с другими неядовитыми газами. Дно хлорных баллонов имеет форму полушария, и баллон с жидким хлором невозможно без опоры поставить вертикально.

При обычных условиях хлор — желто-зеленый газ, плотность газа при 25°C 3, 214 г/дм3 (примерно в 2, 5 раза больше плотности воздуха). Температура плавления твердого хлора –100, 98°C, температура кипения –33, 97°C. Стандартный электродный потенциал Сl2/Сl- в водном растворе равен +1, 3583 В.

В свободном состоянии существует в виде двухатомных молекул Сl2. Межъядерное расстояние в этой молекуле 0, 1987 нм. Сродство к электрону молекулы Сl2 2, 45 эВ, потенциал ионизации 11, 48 эВ. Энергия диссоциации молекул Сl2 на атомы сравнительно невелика и составляет 239, 23 кДж/моль.

Хлор немного растворим в воде. При температуре 0°C растворимость составляет 1, 44 масс.%, при 20°C — 0, 711°C масс.%, при 60°C — 0, 323 масс. %. Раствор хлора в воде называют хлорной водой. В хлорной воде устанавливается равновесие:

Сl2 + H2O H+ = Сl- + HOСl.

Для того, чтобы сместить это равновесие влево, т. е. понизить растворимость хлора в воде, в воду следует добавить или хлорид натрия NaCl, или какую-либо нелетучую сильную кислоту (например, серную).

Хлор хорошо растворим во многих неполярных жидкостях. Жидкий хлор сам служит растворителем таких веществ, как ВСl3, SiCl4, TiCl4.

Из-за низкой энергии диссоциации молекул Сl2 на атомы и высокого сродства атома хлора к электрону химически хлор высоко активен. Он вступает в непосредственное взаимодействие с большинством металлов (в том числе, например, с золотом) и многими неметаллами. Так, без нагревания хлор реагирует с щелочными и щелочноземельными металлами, с сурьмой:

2Sb + 3Cl2 = 2SbCl3

При нагревании хлор реагирует с алюминием:

3Сl2 + 2Аl = 2А1Сl3

и железом:

2Fe + 3Cl2 = 2FeCl3.

С водородом H2 хлор реагирует или при поджигании (хлор спокойно горит в атмосфере водорода), или при облучении смеси хлора и водорода ультрафиолетовым светом. При этом возникает газ хлороводород НСl:

Н2 + Сl2 = 2НСl.

Раствор хлороводорода в воде называют соляной (хлороводородной) кислотой. Максимальная массовая концентрация соляной кислоты около 38%. Соли соляной кислоты — хлориды, например, хлорид аммония NH4Cl, хлорид кальция СаСl2, хлорид бария ВаСl2 и другие. Многие хлориды хорошо растворимы в воде. Практически нерастворим в воде и в кислых водных растворах хлорид серебра AgCl. Качественная реакция на присутствие хлорид-ионов в растворе — образование с ионами Ag+ белого осадка AgСl, практически нерастворимого в азотнокислой среде:

СаСl2 + 2AgNO3 = Ca(NO3)2 + 2AgCl.

При комнатной температуре хлор реагирует с серой (образуется так называемая однохлористая сера S2Cl2) и фтором (образуются соединения ClF и СlF3). При нагревании хлор взаимодействует с фосфором (образуются, в зависимости от условий проведения реакции, соединения РСl3 или РСl5), мышьяком, бором и другими неметаллами. Непосредственно хлор не реагирует с кислородом, азотом, углеродом (многочисленные соединения хлора с этими элементами получают косвенными путями) и инертными газами (в последнее время ученые нашли способы активирования подобных реакций и их осуществления «напрямую»). С другими галогенами хлор образует межгалогенные соединения, например, очень сильные окислители — фториды ClF, ClF3, ClF5 . Окислительная способность хлора выше, чем брома, поэтому хлор вытесняет бромид-ион из растворов бромидов, например:

Cl2 + 2NaBr = Br2 + 2NaCl

Хлор вступает в реакции замещения со многими органическими соединениями, например, с метаном СН4 и бензолом С6Н6:

СН4+ Сl2 = СН3Сl + НСl или С6Н6 + Сl2 = С6Н5Сl + НСl.

Молекула хлора способна присоединятся по кратным связям (двойным и тройным) к органическим соединениям, например, к этилену С2Н4:

С2Н4 + Сl2 = СН2СlСН2Сl.

Хлор вступает во взаимодействие с водными растворами щелочей. Если реакция протекает при комнатной температуре, то образуются хлорид (например, хлорид калия КCl) и гипохлорит (например, гипохлорит калия КClО):

Cl2 + 2КОН = КClО + КСl +Н2О.

При взаимодействии хлора с горячим (температура около 70-80°C) раствором щелочи образуется соответствующий хлорид и хлорат, например:

3Сl2+ 6КОН= 5КСl + КСlО3+ 3Н2О.

При взаимодействии хлора с влажной кашицей из гидроксида кальция Са(ОН)2 образуется хлорная известь («хлорка») СаСlОСl.Степени окисления хлора +1 отвечает слабая малоустойчивая хлорноватистая кислота НСlО. Ее соли — гипохлориты, например, NaClO — гипохлорит натрия. Гипохлориты — сильнейшие окислители, широко используются как отбеливающие и дезинфицирующие агенты. При взаимодействии гипохлоритов, в частности, хлорной извести, с углекислым газом СО2 образуется среди других продуктов летучая хлорноватистая кислота, которая может разлагаться с выделением оксида хлора (I) Сl2О:

2НСlО = Сl2О + Н2О.

Именно запах этого газа Сl2О — характерный запах «хлорки».

Степени окисления хлора +3 отвечает малоустойчивая кислота средней силы НСlО2. Эту кислоту называют хлористой, ее соли — хлориты, например, NaClO2 — хлорит натрия.

Степени окисления хлора +4 соответствует только одно соединение — диоксид хлора СlО2.

Степени окисления хлора +5 отвечает сильная, устойчивая только в водных растворах при концентрации ниже 40%, хлорноватая кислота НСlО3. Ее соли — хлораты, например, хлорат калия КСlО3.

Степени окисления хлора +6 соответствует только одно соединение — триоксид хлора СlО3 (существует в виде димера Сl2О6).

Степени окисления хлора +7 отвечает очень сильная и довольно устойчивая хлорная кислота НСlО4. Ее соли — перхлораты, например, перхлорат аммония NH4ClO4 или перхлорат калия КСlО4. Следует отметить, что перхлораты тяжелых щелочных металлов — калия, и особенно рубидия и цезия мало растворимы в воде. Оксид, соответствующий степени окисления хлора +7 — Сl2О7.

Среди соединений, содержащих хлор в положительных степенях окисления, наиболее сильными окислительными свойствами обладают гипохлориты. Для перхлоратов окислительные свойства нехарактерны.

Хлор — один из важнейших продуктов химической промышленности. Его мировое производство составляет десятки миллионов тонн в год. Хлор используют для получения дезинфицирующих и отбеливающих средств (гипохлорита натрия, хлорной извести и других), соляной кислоты, хлоридов многих металлов и неметаллов, многих пластмасс (поливинилхлорида и других), хлорсодержащих растворителей (дихлорэтана СН2СlСН2Сl, четыреххлористого углерода ССl4 и др.), для вскрытия руд, разделения и очистки металлов и т.д. Хлор применяют для обеззараживания воды (хлорирования) и для многих других целей.Хлор относится к важнейшим биогенным элементам и входит в состав всех живых организмов. Некоторые растения, так называемые галофиты, не только способны расти на сильно засоленных почвах, но и накапливают в больших количествах хлориды. Известны микроорганизмы (галобактерии и др.) и животные, обитающие в условиях высокой солености среды. Хлор — один из основных элементов водно-солевого обмена животных и человека, определяющих физико-химические процессы в тканях организма. Он участвует в поддержании кислотно-щелочного равновесия в тканях, осморегуляции (хлор — основное осмотически активное вещество крови, лимфы и др. жидкостей тела), находясь, в основном, вне клеток. У растений хлор принимает участие в окислительных реакциях и фотосинтезе.

Мышечная ткань человека содержит 0, 20-0, 52% хлора, костная — 0, 09%; в крови — 2, 89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.

Хлор — ядовитый удушливый газ, при попадании в легкие вызывает ожог легочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0, 006 мг/л. Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na2SO3 или тиосульфата натрия Na2S2O3. ПДК хлора в воздухе рабочих помещений 1 мг/м3, в воздухе населенных пунктов 0, 03 мг/м3.
  • Фурман А. А. Неорганические хлориды (Химия и технология). М., 1980.
  • Фурман А. А. Неорганические хлориды. М., 1980.
  • Фрумина Н. С. и др. Хлор. М., 1983.
  • Фрумина Н. С., Лисенко Н. Ф., Чернова М. А. Хлор. М., 1983.
  • Техника безопасности при хранении, транспортировании и применении хлора. - М.: Химия, 1990.

megabook.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *