устройство, принцип работы, типы, управление
Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.
Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.
Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.
Устройство и описание ДПТ
Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.
Самый простой ДПТ состоит из следующих основных узлов:
- Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
- Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
- Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
- Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.
Статор (индуктор)
В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.
Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:
- с независимым возбуждением обмоток;
- соединение параллельно обмоткам якоря;
- варианты с последовательным возбуждением катушек ротора и статора;
- смешанное подсоединение.
Схемы подключения наглядно видно на рисунке 2.
Рисунок 2. Схемы подключения обмоток статора ДПТРотор (якорь)
В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.
В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.
Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.
Рисунок 3. Ротор с тремя обмоткамиРисунок 4. Якорь со многими обмоткамиПодобные роторы довольно часто встречаются в небольших маломощных электродвигателях.
Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.
Рисунок 5. Схема электромотора с многообмоточным якоремКоллектор
Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.
Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.
Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.
В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.
Принцип работы
Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине.
В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.
Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.
Рис. 6. Принцип работы ДПТЕсли вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.
Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.
Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.
Типы ДПТ
Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.
Рассмотрим основные отличия.
По наличию щеточно-коллекторного узла
Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.
Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.
В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.
По виду конструкции магнитной системы статора
В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.
О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.
Управление
Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.
Механическая характеристика
Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.
Примеры механических характеристик ДПТ независимого возбужденияРегулировочная характеристика
Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.
Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.
Пример регулировочных характеристик двигателя с якорным управлениемБлагодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.
Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.
Области применения
Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:
- бытовые и промышленные электроинструменты;
- автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
- трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.
Преимущества и недостатки
К достоинствам относится:
- Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
- Легко регулируемая частота вращения;
- хорошие пусковые характеристики;
- компактные размеры.
У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.
Недостатки:
- ограниченный ресурс коллектора и щёток;
- дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
- ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
- дороговизна в изготовлении якорей.
По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.
Видео в дополнение к написанному
Принцип действия электродвигателя постоянного тока
Электрический двигатель – неоценимое изобретение человека. Благодаря этому устройству наша цивилизация за последние сотни лет ушла далеко вперёд. Это настолько важно, что принцип работы электродвигателя изучают ещё со школьной скамьи. Круговое вращение электроприводного вала легко трансформируется во все остальные виды движения. Поэтому любой станок, созданный для облегчения труда и сокращения времени на изготовление продукции, можно приспособить под выполнение множества задач. Каков же принцип действия электродвигателя, как он работает и каково его устройство – обо всём этом понятным языком рассказывается в представленной статье. Как работает двигатель постоянного токаПодавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта). При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода. Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора. Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс. Принцип действия современных электродвигателейСовременный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя. Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное. Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко. Что касается электрической то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше. На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления. • Скачать лекцию: двигатели постоянного тока
Свежие записи: |
Электродвигатели постоянного тока. Устройство и работа. Виды
Электрические двигатели, приводящиеся в движение путем воздействия постоянного тока, применяются значительно реже, по сравнению с двигателями, работающими от переменного тока. В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, с питанием от обычных батареек с постоянным током. На производстве электродвигатели постоянного тока приводят в действие различные агрегаты и оборудование. Питание для них подводится от мощных батарей аккумуляторов.
Устройство и принцип работы
Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.
Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.
Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.
Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.
Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.
Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.
Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.
Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.
ВидыЭлектродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждениеПри таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.
Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.
Параллельное возбуждениеОбмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.
Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.
Последовательное возбуждениеВ этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.
Смешанное возбуждениеТакая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.
Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.
Особенности эксплуатацииЭлектродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.
Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.
Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.
Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.
Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.
На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.
Преимущества электродвигателей постоянного тока- Небольшие габаритные размеры.
- Легкое управление.
- Простая конструкция.
- Возможность применения в качестве генераторов тока.
- Быстрый запуск, особенно характерный для моторов с последовательной схемой возбуждения.
- Возможность плавной регулировки скорости вращения вала.
- Для подключения и эксплуатации необходимо приобретать специальный блок питания постоянного тока.
- Высокая стоимость.
- Наличие расходных элементов в виде медно-графитных быстроизнашивающихся щеток, изнашивающегося коллектора, что значительно снижает срок эксплуатации, и требует периодического технического обслуживания.
Широко популярными двигатели постоянного тока стали в электрическом транспорте. Такие двигатели обычно входят в конструкции:
- Электромобилей.
- Электровозов.
- Трамваев.
- Электричек.
- Троллейбусов.
- Подъемно-транспортных механизмов.
- Детских игрушек.
- Промышленного оборудования с необходимостью управлением скорости вращения в большом диапазоне.
Похожие темы:
устройство и принцип действия, конструкция и управление, применение дпт
Устройство, которое преобразует электрическую энергию в механическую, может использоваться как двигатель или генератор, так как конструкция и принцип действия двигателя постоянного тока (ДПТ) аналогична конструкции генератора. Особенностью ДПТ является механический инвертор (коммутатор). Этот коммутатор имеет скользящие контакты в виде щёток, которые расположены так, что они изменяют полярность обмоток якоря (катушек) во время вращательного движения.
Особенности и устройство ДПТ
ДПТ представляет собой вращающуюся электрическую машину, работающую от постоянного тока. В зависимости от направления потока мощности проводится различие между двигателем (электродвигатель с электрической и механической мощностью) и генератором (электрический генератор, на который подаётся механическая мощность, а также электроэнергия). ДПТ могут запускаться под нагрузкой, их скорость легко изменить. В режиме генератора ДПТ преобразует напряжение переменного тока, подаваемое ротором, в пульсирующее постоянное напряжение.
История изобретения
Основываясь на развитии первых гальванических элементов в первой половине XIX века, первыми электромеханическими преобразователями энергии были машины постоянного тока. Первоначальная форма электродвигателя была разработана в 1829 году, а в 1832 году француз Ипполит Пиксии построил первый генератор. Антонио Пачинотти построил в 1860 году электродвигатель постоянного тока с многокомпонентным коммутатором. Фридрих фон Хефнер-Алтенек разработал барабанный якорь в 1872 году, который открыл возможность промышленного использования в области крупномасштабного машиностроения.
В последующие десятилетия такие машины из-за развития трехфазного переменного тока потеряли свою значимость в крупномасштабном машиностроении. Синхронные машины и системы с низким уровнем обслуживания асинхронного двигателя заменили их во многих устройствах.
Конструкция двигателя
Чтобы понять принцип действия ДПТ, нужно сначала изучить его конструктивные особенности, одной из которых является то, что в магнитном поле постоянного магнита установлен вращающийся проводящий контур.
Упрощая эту структуру, можно сказать, что двигатель состоит из двух основных компонентов:
- Основной магнит (постоянный магнит), который прикреплён к статору. Магнитное поле также может быть электрически сгенерировано. На статоре находятся так называемые возбуждающие обмотки (катушки).
- Проводящая петля (арматура) на сердечнике якоря, обычно состоящая из слоистых металлических листов.
Обе конструкции называются двигателями постоянного тока с внешним возбуждением. Электродинамический закон указывает, что токопроводящая петля проводника в магнитном поле представляет собой силу [F], зависящую от тока [I] и напряжённости магнитного поля [B]. Токопроводящий проводник окружен круговым магнитным полем. Если объединить магнитное поле магнитного поля с магнитным полем проводящей петли, можно обнаружить суперпозицию двух полей, а также результирующий силовой эффект.
Обмотка якоря состоит из двух половин катушки. Если применить напряжение постоянного тока к двум концам обмотки якоря, можно представить, что движущиеся носители заряда поступают в нижнюю половину катушки из верхней половины катушки.
Каждая токопроводящая катушка развивает собственное магнитное поле, и магнитное поле постоянного магнита накладывается на магнитное поле нижней половины катушки и поле верхней половины катушки. Линии поля постоянного магнитного поля всегда одного направления, они всегда показывают с севера на южный полюс. Напротив, поля двух половин катушки имеют противоположные направления.
В левой части поля половины катушки полевые линии поля возбудителя и поля катушки имеют одно и то же направление. Благодаря этому силовому эффекту в противоположном направлении на нижнем и верхнем концах арматуры создаётся крутящий момент, который вызывает вращательное движение якоря.
Якорь представляет собой так называемый двутавровый якорь. Эта конструкция получила название из-за своей формы, которая напоминает два составных «Т». Катушки якоря соединены с платами коммутатора (коллектора). Подача тока в обмотке якоря обычно осуществляется через угольные щётки, которые обеспечивают скользящий контакт с вращающимся коммутатором и подают катушкам электричество. Щётки изготавливаются из самосмазывающихся графитов, частично смешанных с медным порошком для небольших двигателей.
Принцип действия и использование
Это устройство представляет собой электромашину, которая преобразовывает электрическую энергию в механическую. Принцип работы двигателя постоянного тока заключается в том, что всякий раз, когда проводник, переносимый током, помещается в магнитное поле, он испытывает механическую силу.
Постоянный магнит преобразовывает электрическую энергию в механическую через взаимодействие двух магнитных полей. Одно поле создаётся сборкой постоянными магнитами, другое — электрическим током, протекающим в обмотках двигателя. Эти два поля приводят к крутящему моменту, который имеет тенденцию вращать ротор. Когда ротор вращается, ток в обмотках коммутируется, обеспечивая непрерывный выход крутящего момента.
Коммутатор состоит из проводящих сегментов (стержней) из меди, которые представляют собой завершение отдельных катушек проволоки, распределённых вокруг арматуры. Вторая половина механического выключателя комплектуется щётками. Эти щётки обычно остаются неподвижными с корпусом двигателя.
По мере прохождения электрической энергии через щётки и арматуру создаётся крутильная сила в виде реакции между полем двигателя и якорем, вызывающим поворот якоря двигателя. Когда арматура поворачивается, щётки переключаются на соседние полосы на коммутаторе. Это действие переносит электрическую энергию на соседнюю обмотку и якорь.
Движение магнитного поля достигается переключением тока между катушками внутри двигателя. Это действие называется коммутацией. Очень многие двигатели имеют встроенную коммутацию. Это означает, что при вращении двигателя механические щётки автоматически коммутируют катушки на роторе.
Настройка скорости
ДПТ можно легко регулировать. Скорость можно изменить с помощью следующих переменных:
- Напряжение якоря U_A (управление напряжением).
- Основной поток поля (полевое управление), сила магнитного поля.
- Анкерное сопротивление.
Простейшим методом управления скоростью вращения является управление приводным напряжением. Чем выше напряжение, тем выше скорость, которую двигатель пытается достичь. Во многих приложениях простое регулирование напряжения может привести к большим потерям мощности в цепи управления, поэтому широко используется метод широтно-импульсной модуляции.
В основном способе с широтно-импульсной модуляцией рабочая мощность включается и выключается для модуляции тока. Отношение времени включения к «выключенному» времени определяет скорость двигателя.
Электродвигатель с внешним возбуждением легко контролировать, поскольку токи через обмотки якоря и статора можно контролировать отдельно. Поэтому такие двигатели имели определённое значение, особенно в области высоко динамичных приводных систем, например, для привода станков с точной регулировкой скорости и крутящего момента.
Современное применение
ДПТ используются в различных областях.
Он является важным элементом в различных продуктах:
- игрушках;
- сервомеханических устройствах;
- приводах клапанов;
- роботах;
- автомобильной электронике.
Высококачественные предметы повседневного назначения (кухонные приборы) используют серводвигатель, известный как универсальный двигатель. Эти универсальные двигатели являются типичными ДПТ, в которых стационарные и вращающиеся катушки представляют собой последовательные провода.
Принцип действия электродвигателя
Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями. Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла. Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.
Принцип работы электродвигателя — основные функциональные элементы
Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором. Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой. Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи.
Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа. Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.
Принцип работы электродвигателя — разновидности и типы
На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.
Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.
Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.
Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%. Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом, они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ. К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.
Устройство и принцип действия двигателя постоянного тока.
Устройство простейшего электродвигателя постоянного тока. На рис. 1-1 представлен простейший электродвигатель постоянного тока, а на рис. 1-2 дано его схематическое изображение в осевом направлении. Неподвижная часть двигателя, называемая индуктором, состоит из полюсов и круглого стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в электродвигателе основного магнитного потока. Индуктор изображенной на рис. 1-1 простейшего электродвигателя имеет два полюса 1 (ярмо индуктора на рис. 1-1 не показано). Вращающаяся часть электродвигателя состоит из укрепленных на валу цилиндрического якоря 2 и коллектора. 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанном на рис. 1-1 и 1-2 простейшем электродвигателе имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью. Основной магнитный поток в нормальных электродвигателях постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов. Режим генератора. Рассмотрим сначала работу электродвигателя в режиме генератора.
Рис. 1-1. Простейший электродвигатель постоянного тока Рис. 1-2. Работа простейшего электродвигателя постоянного тока в режиме Генератора (а) и двигателя (б).
Предположим, что якорь электродвигателя (рис. 1-1 и 1-2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется ЭДС, направление которой может быть определено по правилу правой руки (рис. 1-3, а) и показано на рис. 1-1 и 1-2, а. Поскольку поток полюсов предполагается неизменным, то эта ЭДС индуктируется только вследствие вращения якоря и называется ЭДС вращения. В обоих проводниках вследствие симметрии индуктируются одинаковые ЭДС, которые по контуру витка складываются. Частота ЭДС f в двухполюсном электродвигателе равна скорости вращения якоря n, выраженной в оборотах в секунду: f = n, а в общем случае, когда машина имеет р пар полюсов с чередующейся полярностью: f = pn
Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи. Рис. 1-3. Правила правой (а) и левой (б) руки.
Способы пуска в ход двигателей постоянного тока
При включении двигателя возникает большой пусковой ток, превышающий номинальный в 10 — 20 раз. Для ограничения пускового тока двигателей мощностью более 0,5 кВт последовательно с цепью якоря включают пусковой реостат (рис. 7).Величину сопротивления пускового реостата можно определить по выражению
Rn =U/(1,8 — 2,5)Iном-Rя
где U — напряжение сети, В;
Iном — номинальный ток двигателя. А;
Rя — сопротивление обмотки якоря, Ом.
Перед включением двигателя необходимо убедиться в том, что рычаг 2 пускового реостата (рис.7) находится на холостом контакте 0. затем включают рубильник и рычаг реостата переводят на первый промежуточный контакт. При этом двигатель возбуждается, а в цепи якоря появляется пусковой ток, величина которого ограничена всеми четырьмя секциями сопротивления Rn. По мере увеличения частоты вращения якоря пусковой ток уменьшается и рычаг реостата переводят на второй, третий контакт и т.д., пока он не окажется на рабочем контакте. Пусковые реостаты рассчитаны на кратковременный режим работы, а поэтому рычаг реостата нельзя длительно задерживать на промежуточных контактах: в этом случае сопротивления реостата перегреваются и могут перегореть. Прежде чем отключить двигатель от сети, необходимо рукоятку реостата перевести в крайнее левое положение. При этом двигатель отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В противном случае могут появиться большие перенапряжения в обмотке возбуждения в момент размыкания цепи. При пуске в ход двигателей постоянного тока регулировочный реостат в цепи обмотки возбуждения следует полностью вывести для увеличения потока возбуждения. Для пуска двигателей с последовательным возбуждением применяют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием только двух зажимов — Л и Я.
Механическая характеристика двигателей постоянного тока (n=f(M)) с параллельным, последовательным и смешанным возбуждением.
Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).
По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения. Схемы двигателей и генераторов с данным видом возбуждения одинаковы (рис. 9-1). В двигателях независимого возбуждения токи якоря 1а и нагрузки равны: I = 1а, в двигателях параллельного и смешанного возбуждения I= Iа +Ibи в двигателях последовательного возбуждения I = 1а = Iв. С независимым возбуждением от отдельного источника тока обычно выполняются мощные двигатели с целью более удобного и экономичного регулирования величины тока возбуждения. По своим свойствам двигатели независимого и параллельного возбуждения почти одинаковы, и поэтому первые ниже отдельно не рассматриваются.
Рис 10-1 Энергетическая диаграмма двигателя параллельного возбуждения
Энергетическая диаграмма двигателя параллельного возбуждения изображена на рис. 10-1. Первичная мощность Рх является электрической и потребляется из питающей сети. За счет этой мощности покрываются потери на возбуждение рв и электрические потери рдла = PaRa в цепи якоря, а оставшаяся часть составляет электромагнитную мощность якоря РЭм = EJa, которая превращается в механическую мощность Рмх. Потери магнитные рмг, добавочные рд и механические рмх покрываются за счет механической мощности, а остальная часть этой мощности представляет собой, полезную механическую мощность Р2 на валу. Аналогичные энергетические диаграммы, иллюстрирующие преобразование энергии в двигателе, можно построить и для других типов двигателей
Работа и схемы электродвигателей постоянного тока
Моторы, работающие на постоянном токе редко встречаются в домашнем хозяйстве. Но они всегда стоят во всех детских игрушках, работающих от батареек, которые ходят, бегают, ездят, летают и т. п. Двигатели постоянного тока (ДПТ) устанавливаются в автомобилях: в вентиляторах и различных приводах. Они почти всегда используются на электротранспорте и реже в производстве.
Преимущества ДПТ по сравнению с асинхронными моторами:
- Хорошо поддаются регулировке.
- Отличные пусковые свойства.
- Частоты вращения могут быть более 3000 об/мин.
Недостатки ДПТ:
- Низкая надежность.
- Сложность изготовления.
- Высокая стоимость.
- Большие затраты на обслуживание и ремонт.
Далее Я постараюсь кратко и доступно в одной статье изложить схемы, принципы работы, регулировки и реверса двигателей постоянного тока.
Принцип действия электродвигателя постоянного тока
Устройство двигателя аналогично синхронным двигателям переменного тока. Повторяться не буду, если не знаете, тогда смотрите в этой нашей статье.
Любой современный электромотор работает на основе закона магнитной индукции Фарадея и «Правила левой руки». Если к нижней части обмотки якоря подключить электрический ток в одном направлении, а к верхней- в обратном- он начнет вращаться. Согласно правилу левой руки, проводники, уложенные в пазах якоря, будут выталкиваться магнитным полем обмоток корпуса ДПТ или статора.
Нижняя часть будет выталкиваться вправо, а верхняя – влево, поэтому якорь начнет вращаться до момента пока части якоря не поменяются местами. Для создания непрерывного вращения необходимо постоянно менять местами полярность обмотки якоря. Чем и занимается коллектор, который при вращении коммутирует обмотки якоря. Напряжение от источника тока подается на коллектор при помощи пары прижимных графитовых щеток.
Принципиальные схемы электродвигателя постоянного тока
Если двигатели переменного тока довольно просто подключаются, то с ДПТ все сложнее. Вам необходимо знать марку мотора, и затем в интернете узнавайте про его схему включения.
Чаще всего у средних и мощных моторов постоянного тока есть в клеммной коробке отдельные выводы от якоря и от обмотки возбуждения (ОВ). Как правило, на якорь подаётся полное напряжение электропитания, а на обмотку возбуждения -регулируемый ток реостатом или переменным напряжением. От величины тока ОВ и будут зависеть обороты ДПТ. Чем он выше, тем быстрее скорость вращения.
В зависимости от того как подключен якорь и ОВ, электродвигатели бывают с независимым возбуждением от отдельного источника тока и с самовозбуждением, которое может быть параллельным, последовательным и смешанным.
На производстве применяются двигатели с независимым возбуждением ОВ, которая подключается к отдельному от якоря источнику питания. Между обмотками возбуждения и якоря нет электрической связи.
Схема подключения с параллельным возбуждением по своей сущности аналогична схеме с независимым возбуждением ОВ. С той лишь разницей, что отпадает необходимость в использовании отдельного источника питания. Двигатели при включении по обоим этим схема обладают одинаковыми жесткими характеристиками, поэтому применяются в станках, вентиляторах и т. п.
Моторы с последовательным возбуждением применяются, когда необходим большой пусковой ток, мягкая характеристика. Они применяются а трамваях, троллейбусах и электровозах. По этой схеме обмотки возбуждения и якоря подключаются между собой последовательно. При подаче напряжения токи в обоих обмотках будут одинаковы. Главный недостаток заключается в том, что при уменьшении нагрузки на вал меньше 25% от номинала, происходит резкое увеличение частоты вращения, достигающее опасных для ДПТ значений. Поэтому для безотказной работы необходима постоянная нагрузка на вал.
Иногда применяются ДПТ со смешанным возбуждением, при котором одна обмотка ОВ соединяется последовательно якорной цепи, а другая параллельно. В жизни редко встречается.
Реверсирование двигателей постоянного тока
Что бы изменить направление вращение ДПТ с последовательным возбуждением необходимо поменять направления тока в ОВ или обмотке якоря. Практически, это делается изменением полярности: меняем плюс с минусом местами. Если же поменять одновременно полярность в цепях возбуждения и якоря, тогда направление вращения не изменится. Аналогично делается реверс и для моторов, работающих на переменном токе.
Реверсирование ДПТ с параллельным или смешанным возбуждением лучше производить изменением направления электрического тока в обмотке якоря. При разрыве обмотки возбуждения, ЭДС достигает опасных величин и возможен пробой изоляции проводов.
Регулирование оборотов двигателей постоянного тока
ДПТ с последовательным возбуждением проще всего регулировать переменным сопротивлением в цепи якоря. Регулировать можно только на уменьшение числа оборотов в соотношении 2:1 или 3:1. При этом происходят большие потери в регулировочном реостате (R рег). Данный метод используется в кранах и электрических тележках, у которых бывают частые перерывы в работе. В других случаях используется регулировка оборотов вверх от номинала при помощи реостата в цепи обмотки возбуждения, как показано на правом рисунке.
ДПТ с параллельным возбуждением так же можно регулировать частоту оборотов вниз при помощи сопротивления в цепи якоря, но не более 50 процентов от номинала. Опять же будет нагрев сопротивления из-за потерь электрической энергии в нем.
Увеличить же обороты максимум в 4 раза позволяет реостат в цепи ОВ. Самый простой и распространенный метод регулировки частоты вращения.
На практике в современных электромоторах данные методы регулировки из-за своих недостатков и ограниченности диапазона регулирования редко применяются. Используются различные электронные схемы управления.
Принцип работы двигателя постоянного тока
Здравствуйте, друзья, мы делаем серию блогов о двигателях постоянного тока. В этом первом блоге мы говорим о принципе работы двигателя постоянного тока, как они работают? Также мы поговорим о конструкции двигателя постоянного тока.
Что такое двигатель постоянного тока?
Двигатель постоянного тока — это двигатель, который преобразует постоянный ток в механическую работу. Он работает по принципу закона Лоренца, который гласит, что «проводник с током, помещенный в магнитное и электрическое поле, испытывает силу».И эта сила — сила Лоренца.
Типы двигателей постоянного токаСуществует 4 основных типа двигателей постоянного тока,
- Двигатель постоянного тока серии
- Двигатель постоянного тока с постоянными магнитами
- Шунтирующий/параллельный двигатель постоянного тока
- Составные двигатели постоянного тока
НЕОБХОДИМО ПРОЧИТАТЬ ДЛЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА:
Конструкция двигателя постоянного тока
Прежде чем понять работу двигателя постоянного тока, мы должны узнать об их конструкции.Есть две основные части двигателя постоянного тока.
Вращающаяся часть — это якорь, а статор — их неподвижная часть. Катушка якоря подключена к источнику постоянного тока.
Катушка якоря состоит из коллекторов и щеток. Коммутатор преобразует переменный ток в якоре в постоянный, а щетки передают ток от вращающейся части двигателя к стационарной внешней нагрузке. Якорь размещается между северным и южным полюсами постоянного или электромагнита.
Принцип работы двигателя постоянного токаДвигатель постоянного тока представляет собой электрическую машину, преобразующую электрическую энергию в механическую. Основной принцип работы двигателя постоянного тока заключается в том, что всякий раз, когда проводник с током помещается в магнитное поле, на него действует механическая сила.
Правило левой руки Флеминга и его величина определяют направление этой силы.
Правило левой руки Флеминга :Если мы растянем указательный, указательный и большой пальцы левой руки так, чтобы они были перпендикулярны друг другу, и первый палец представляет направление магнитного поля, второй палец представляет направление тока, тогда большой палец представляет направление силы, действующей на проводник с током.
F = BIL Ньютоны
Где,
B = плотность магнитного потока,
I = ток и
L = длина проводника в пределах магнитного поля.
При подключении обмотки якоря к источнику постоянного тока в обмотке возникает электрический ток. Постоянные магниты или обмотка возбуждения (электромагнетизм) обеспечивают магнитное поле. В этом случае на токонесущие проводники якоря действует сила магнитного поля по принципу, изложенному выше.
Коллектор сделан сегментированным для достижения однонаправленного крутящего момента. В противном случае направление силы менялось бы каждый раз, когда направление движения проводника меняется на противоположное в магнитном поле. Вот как работает двигатель постоянного тока!
Противо-ЭДС двигателя постоянного токаСогласно фундаментальному закону природы, никакое преобразование энергии невозможно, пока этому преобразованию не будет противодействовать. В случае генераторов это противодействие обеспечивается магнитным сопротивлением, а в случае двигателей постоянного тока возникает противо-ЭДС.Наличие противо-ЭДС делает двигатель постоянного тока «саморегулирующимся».
Когда якорь двигателя вращается, проводники также пересекают линии магнитного потока и, следовательно, в соответствии с законом электромагнитной индукции Фарадея в проводниках якоря наводится ЭДС.
Направление этой ЭДС индукции таково, что она противодействует току якоря (I a ). Принципиальная схема ниже иллюстрирует направление противо-ЭДС и тока якоря.
Значение противо-ЭДСВеличина противо-ЭДС прямо пропорциональна скорости двигателя.Предположим, что нагрузка на двигатель постоянного тока внезапно уменьшилась. В этом случае требуемый крутящий момент будет мал по сравнению с текущим крутящим моментом. Скорость двигателя начнет увеличиваться из-за избыточного крутящего момента. Следовательно, будучи пропорциональна скорости, величина обратной ЭДС также будет увеличиваться. С увеличением противоЭДС ток якоря начнет уменьшаться. Крутящий момент пропорционален току якоря, он также будет уменьшаться, пока не станет достаточным для нагрузки. Таким образом, скорость мотора будет регулироваться.
С другой стороны, если двигатель постоянного тока внезапно нагружается, нагрузка вызывает снижение скорости. Из-за уменьшения скорости обратная ЭДС также уменьшится, что приведет к большему току якоря. Из-за увеличения тока якоря крутящий момент будет увеличиваться, чтобы удовлетворить требования нагрузки.
Надеюсь, эта статья поможет вам понять принцип работы двигателя постоянного тока.
Мы в Robu.in надеемся, что вам было интересно, и вы вернетесь к нашим образовательным блогам.
Как работает двигатель постоянного тока?
Теоретически одну и ту же машину постоянного тока можно использовать в качестве двигателя или генератора. Поэтому конструкция двигателя постоянного тока такая же, как у генератора постоянного тока.
Принцип работы двигателя постоянного тока
Электродвигатель представляет собой электрическую машину, преобразующую электрическую энергию в механическую. Основной принцип работы двигателя постоянного тока : « всякий раз, когда проводник с током помещается в магнитное поле, на него действует механическая сила». Направление этой силы определяется правилом левой руки Флеминга, а ее величина определяется формулой F = BIL. Где B = плотность магнитного потока, I = ток и L = длина проводника в магнитном поле.
Правило левой руки Флеминга : Если мы растянем указательный, указательный и большой пальцы левой руки так, чтобы они были перпендикулярны друг другу, а направление магнитного поля представлено указательным пальцем, направление тока представлено второй палец, затем большой палец представляет направление силы, действующей на проводник с током.
Анимация: Работа двигателя постоянного тока (кредит: Lookang) |
Вышеприведенная анимация помогает понять принцип работы двигателя постоянного тока . Когда обмотки якоря подключены к источнику постоянного тока, в обмотке возникает электрический ток. Магнитное поле может создаваться обмоткой возбуждения (электромагнетизм) или постоянными магнитами. В этом случае на токонесущие проводники якоря действует сила магнитного поля по принципу, изложенному выше.
Коллекторвыполнен сегментным для достижения однонаправленного крутящего момента. В противном случае направление силы менялось бы каждый раз, когда направление движения проводника меняется на противоположное в магнитном поле. Вот как работает двигатель постоянного тока !
Обратная ЭДССогласно фундаментальным законам природы, никакое преобразование энергии невозможно, пока этому преобразованию не будет противодействовать. В случае генераторов это противодействие обеспечивается магнитным сопротивлением, а в случае двигателей постоянного тока имеется противоЭДС .
Когда якорь двигателя вращается, проводники также пересекают линии магнитного потока и, следовательно, в соответствии с законом электромагнитной индукции Фарадея в проводниках якоря наводится ЭДС. Направление этой ЭДС индукции таково, что она противодействует току якоря (I a ). Принципиальная схема ниже иллюстрирует направление противо-ЭДС и тока якоря . Величина обратной ЭДС может быть задана уравнением ЭДС генератора постоянного тока.
Значение противо-ЭДС:
Величина противо-ЭДС прямо пропорциональна скорости двигателя. Предположим, что нагрузка на двигатель постоянного тока внезапно уменьшилась. В этом случае требуемый крутящий момент будет мал по сравнению с текущим крутящим моментом. Скорость двигателя начнет увеличиваться из-за избыточного крутящего момента. Следовательно, будучи пропорциональна скорости, величина обратной ЭДС также будет увеличиваться. С увеличением противоЭДС ток якоря начнет уменьшаться. Крутящий момент пропорционален току якоря, он также будет уменьшаться, пока не станет достаточным для нагрузки.Таким образом, скорость мотора будет регулироваться.
С другой стороны, если двигатель постоянного тока внезапно нагружается, нагрузка вызывает снижение скорости. Из-за уменьшения скорости обратная ЭДС также уменьшится, что приведет к большему току якоря. Увеличенный ток якоря увеличит крутящий момент, чтобы удовлетворить требования нагрузки. Следовательно, наличие противо-ЭДС делает двигатель постоянного тока «саморегулирующимся» .
Типы двигателей постоянного тока
Двигатели постоянного тока обычно классифицируются на основе их конфигурации возбуждения следующим образом: —- Отдельное возбуждение (обмотка возбуждения питается от внешнего источника)
- Самовозбуждающийся —
- Последовательная обмотка (обмотка возбуждения соединена последовательно с якорем)
- Шунтовая обмотка (обмотка возбуждения подключена параллельно якорю)
- Составная рана —
Таблицу классификации машин постоянного тока см. здесь.
Принцип работы двигателя постоянного тока
Двигатель постоянного тока представляет собой электрическую машину, которая преобразует электрическую энергию в механическую .
Работа двигателя постоянного тока основана на том принципе, что когда проводник с током помещается в магнитное поле, на него действует механическая сила.
Направление механической силы определяется Правилом левой руки Флеминга , а ее величина определяется как F = BIL Ньютон.
Принципиальной разницы в конструкции генератора постоянного тока и двигателя постоянного тока нет.Фактически, одна и та же машина постоянного тока может использоваться как генератор или как двигатель.
Как и генераторы, существуют различные типы двигателей постоянного тока, которые также классифицируются как двигатели постоянного тока с параллельными, последовательными и составными обмотками .
Двигатели постоянного тока редко используются в обычных целях, поскольку все электроснабжающие компании поставляют двигатели переменного тока.
Однако для особых применений, таких как сталелитейные заводы , шахты и электропоезда , выгодно преобразовывать переменный ток в постоянный, чтобы использовать двигатели постоянного тока.Причина в том, что скорость/момент характеристики двигателей постоянного тока намного лучше, чем у двигателей переменного тока.
Поэтому неудивительно, что для промышленных приводов двигатели постоянного тока так же популярны, как и трехфазные асинхронные двигатели.
Принцип двигателя постоянного тока
Машина, которая преобразует электрическую энергию постоянного тока в механическую, известна как двигатель постоянного тока.
Работа двигателя постоянного тока основана на том принципе, что когда проводник с током помещается в магнитное поле, на проводник действует механическая сила.
Направление этой силы определяется правилом левой руки Флеминга , а величина определяется по формуле;
F = BIL Ньютоны
Согласно правилу левой руки Флеминга, когда электрический ток проходит через катушку в магнитном поле, магнитная сила создает крутящий момент, который вращает двигатель постоянного тока.
Направление этой силы перпендикулярно как проводу, так и магнитному полю.
Правило левой руки ФлемингаПо сути, нет никакой конструктивной разницы между двигателем постоянного тока и генератором постоянного тока.Одна и та же машина постоянного тока может работать как генератор или двигатель.
Поперечное сечение машины постоянного токаРабота двигателя постоянного тока
Рассмотрим часть многополярного двигателя постоянного тока , как показано на рисунке ниже. Когда клеммы двигателя подключены к внешнему источнику питания постоянного тока:
- магниты возбуждения возбуждаются, создавая чередующиеся северный и южный полюса
- проводники якоря пропускают ток.
Все проводники под северным полюсом пропускают ток в одном направлении, а все проводники под южным полюсом пропускают ток в противоположном направлении.
Проводники якоря под полюсом N пропускают токи в плоскость бумаги (обозначены ⊗ на рисунке). А по проводникам под S-полюсом текут токи из плоскости бумаги (обозначены ⨀ на рисунке).
Так как по каждому проводнику якоря течет ток и он находится в магнитном поле, на него действует механическая сила .
При применении правила левой руки Флеминга становится ясно, что сила, действующая на каждый проводник, стремится повернуть якорь против часовой стрелки.Все эти силы складываются вместе, чтобы создать крутящий момент , который заставляет якорь вращаться.
Когда проводник перемещается с одной стороны щетки на другую, ток в этом проводнике меняется на противоположный. В то же время он попадает под влияние следующего полюса, который имеет противоположную полярность. Следовательно, направление силы на проводнике остается тем же .
Следует отметить, что функция коммутатора в двигателе такая же, как и в генераторе.Путем изменения направления тока в каждом проводнике, когда он проходит от одного полюса к другому, это помогает развивать непрерывный и однонаправленный крутящий момент .
Анимация видео
Далее: Противо-ЭДС в двигателе постоянного тока
Принцип работы двигателя постоянного тока
Двигатель постоянного тока — это устройство, которое преобразует постоянный ток в механическую работу. Он работает по принципу закона Лоренца, который гласит, что « проводник с током, помещенный в магнитное и электрическое поле, испытывает силу ». Экспериментальная сила называется силой Лоренца. Правило левой руки Флемминга определяет направление силы.
Правило левой руки Флеминга
Если большой, средний и указательный пальцы левой руки смещены друг относительно друга на угол 90°, средний палец представляет направление магнитного поля. Указательный палец показывает направление тока, а большой палец показывает направление сил, действующих на проводник.
Формула расчета величины силы,
Прежде чем понять работу двигателя постоянного тока, сначала нам нужно узнать о его конструкции.Якорь и статор являются двумя основными частями двигателя постоянного тока. Якорь – это вращающаяся часть, а статор – их неподвижная часть. Катушка якоря подключена к источнику постоянного тока.
Катушка якоря состоит из коллекторов и щеток. Коммутаторы преобразуют переменный ток, наведенный в якоре, в постоянный, а щетки передают ток от вращающейся части двигателя к стационарной внешней нагрузке. Якорь помещают между северным и южным полюсами постоянного или электромагнита.
Для простоты предположим, что якорь имеет только одну катушку, расположенную между магнитным полем, показанным ниже на рисунке А. Когда на катушку якоря подается постоянный ток, через нее начинает течь ток. Этот ток создает собственное поле вокруг катушки.
На рис. B показано поле, индуцируемое вокруг катушки:
При взаимодействии полей (создаваемых катушкой и магнитом) в проводнике возникает результирующее поле.Результирующее поле стремится вернуться в исходное положение, то есть на оси основного поля. Поле действует на концы проводника, и катушка начинает вращаться.
Пусть поле, создаваемое основным полем, равно F м , и это поле вращается по часовой стрелке. Когда в катушке течет ток, они создают собственное магнитное поле, скажем, F r . Поле F r пытается пройти в направлении основного поля.Таким образом, крутящий момент действует на обмотку якоря.
Настоящий двигатель постоянного тока состоит из большого количества катушек якоря. Скорость двигателя прямо пропорциональна количеству катушек, используемых в двигателе. Эти катушки удерживаются под воздействием магнитного поля.
Один конец проводников держится под влиянием северного полюса, а другой конец держится под влиянием южного полюса. Ток входит в обмотку якоря через северный полюс и движется наружу через южный полюс.
При переходе катушки с одной щетки на другую одновременно меняется и полярность катушки. Таким образом, направление силы или момента, действующего на катушку, остается прежним.
Момент, создаваемый в катушке, становится равным нулю, когда катушка якоря перпендикулярна основному полю. Нулевой крутящий момент означает, что двигатель перестает вращаться. Для решения этой задачи в роторе используется количество катушек якоря. Так, если одна из их катушек перпендикулярна полю, то другие катушки индуцируют крутящий момент.И ротор движется непрерывно.
Кроме того, для получения постоянного крутящего момента расположение сохраняется таким образом, что всякий раз, когда катушки пересекают магнитную нейтральную ось магнита, направление тока в катушках меняется на противоположное. Это можно сделать с помощью коммутатора.
Понимание режимов работы двигателя постоянного тока и методов регулирования скорости
Как правило, эти двигатели используются в оборудовании, которое требует какой-либо формы управления вращением или движением.Двигатели постоянного тока являются важными компонентами во многих электротехнических проектах. Хорошее понимание работы двигателя постоянного тока и регулирования скорости двигателя позволяет инженерам разрабатывать приложения, обеспечивающие более эффективное управление движением.
В этой статье подробно рассматриваются типы доступных двигателей постоянного тока, их режим работы и способы достижения контроля скорости.
Что такое двигатели постоянного тока?
Как и двигатели переменного тока, двигатели постоянного тока также преобразуют электрическую энергию в механическую.Их работа обратна генератору постоянного тока, который вырабатывает электрический ток. В отличие от двигателей переменного тока, двигатели постоянного тока работают от постоянного тока — несинусоидальной, однонаправленной мощности.
Основная конструкция
Хотя двигатели постоянного тока имеют различную конструкцию, все они содержат следующие основные части:
- Ротор (часть машины, которая вращается; также известная как «якорь»)
- Статор (обмотки возбуждения или «стационарная» часть двигателя)
- Коллектор (может быть щеточным или бесщеточным, в зависимости от типа двигателя)
- Магниты возбуждения (создают магнитное поле, которое вращает ось, соединенную с ротором)
На практике двигатели постоянного тока работают на основе взаимодействия между магнитными полями, создаваемыми вращающимся якорем, и полем статора или неподвижного компонента.
Бессенсорный контроллер бесщеточного двигателя постоянного тока. Изображение предоставлено Кензи Мадж.
Принцип работы
Двигатели постоянного токаработают по принципу электромагнетизма Фарадея, который гласит, что проводник с током испытывает силу при помещении в магнитное поле. Согласно «правилу левой руки» Флеминга для электродвигателей, движение этого проводника всегда происходит в направлении, перпендикулярном току и магнитному полю.
Математически мы можем выразить эту силу как F = BIL (где F — сила, B — магнитное поле, I — ток, а L — длина проводника).
Типы двигателей постоянного тока
Двигатели постоянного токаделятся на разные категории в зависимости от их конструкции. Наиболее распространенные типы включают щеточные или бесщеточные, постоянные магниты, последовательные и параллельные.
Коллекторные и бесщеточные двигатели
В щеточном двигателе постоянного тока используется пара графитовых или угольных щеток, которые предназначены для проведения или подачи тока от якоря.Эти щетки обычно находятся в непосредственной близости от коллектора. Другие полезные функции щеток в двигателях постоянного тока включают обеспечение безыскровой работы, управление направлением тока во время вращения и поддержание чистоты коллектора.
Бесщеточные двигатели постоянного токане содержат угольных или графитовых щеток. Обычно они содержат один или несколько постоянных магнитов, которые вращаются вокруг неподвижного якоря. Вместо щеток в бесщеточных двигателях постоянного тока используются электронные схемы для управления направлением вращения и скоростью.
Двигатели с постоянными магнитами
Двигатели с постоянными магнитами состоят из ротора, окруженного двумя противоположными постоянными магнитами. Магниты создают поток магнитного поля при прохождении постоянного тока, который заставляет ротор вращаться по часовой стрелке или против часовой стрелки, в зависимости от полярности. Основным преимуществом этого типа двигателя является то, что он может работать на синхронной скорости с постоянной частотой, что позволяет оптимально регулировать скорость.
Двигатели постоянного тока с последовательным возбуждением
В двигателях серииобмотки статора (обычно из медных стержней) и обмотки возбуждения (медные катушки) соединены последовательно.Следовательно, ток якоря и токи возбуждения равны. Большой ток течет непосредственно от источника питания в обмотки возбуждения, которые толще и меньше, чем в шунтовых двигателях. Толщина обмоток возбуждения увеличивает грузоподъемность двигателя, а также создает мощные магнитные поля, которые придают серийным двигателям постоянного тока очень высокий крутящий момент.
Шунтирующие двигатели постоянного тока
Шунтирующий двигатель постоянного тока имеет обмотки якоря и возбуждения, соединенные параллельно. Благодаря параллельному соединению обе обмотки получают одинаковое напряжение питания, хотя и возбуждаются по отдельности.Шунтирующие двигатели обычно имеют больше витков на обмотках, чем последовательные двигатели, что создает мощные магнитные поля во время работы. Шунтирующие двигатели могут иметь отличную регулировку скорости даже при переменных нагрузках. Однако им обычно не хватает высокого пускового момента серийных двигателей.
Двигатель и схема управления скоростью, установленные в мини-дрель. Изображение предоставлено Дилшаном Р. Джаякоди
Регулятор скорости двигателя постоянного тока
Существует три основных способа достижения регулирования скорости в двигателях постоянного тока с последовательным подключением: управление потоком, управление напряжением и управление сопротивлением якоря.
1. Метод контроля потока
В методе управления потоком реостат (разновидность переменного резистора) подключается последовательно с обмотками возбуждения. Целью этого компонента является увеличение последовательного сопротивления в обмотках, что уменьшит магнитный поток и, следовательно, увеличит скорость двигателя.
2. Метод регулирования напряжения
Метод плавного регулирования обычно используется в параллельных двигателях постоянного тока.Опять же, есть два способа добиться контроля регулирования напряжения:
Подключение шунтирующего поля к фиксированному возбуждающему напряжению при подаче на якорь различных напряжений (т.н. управление несколькими напряжениями)
Изменение напряжения, подаваемого на якорь (метод Уорда-Леонарда)
3. Метод контроля сопротивления якоря
Управление сопротивлением якоря основано на том принципе, что скорость двигателя прямо пропорциональна противо-ЭДС.Таким образом, если напряжение питания и сопротивление якоря поддерживаются постоянными, скорость двигателя будет прямо пропорциональна току якоря.
Машина постоянного тока — конструкция, работа, типы, уравнение ЭДС и применение
Машины постоянного тока можно разделить на два типа, а именно двигатели постоянного тока , а также генераторы постоянного тока . Большинство машин постоянного тока эквивалентны машинам переменного тока, потому что они включают в себя переменные токи, а также переменные напряжения. Выход машины постоянного тока является выходом постоянного тока, потому что они преобразуют напряжение переменного тока в напряжение постоянного тока.Преобразование этого механизма известно как коммутатор, поэтому эти машины также называются коммутационными машинами. Машина постоянного тока чаще всего используется для двигателя. Основные преимущества этой машины включают регулирование крутящего момента, а также легкую скорость. Применение машины постоянного тока ограничено поездами, мельницами и шахтами. Например, в вагонах метрополитена, а также в троллейбусах могут использоваться двигатели постоянного тока. В прошлом автомобили конструировались с динамо-машинами постоянного тока для зарядки аккумуляторов.
Что такое машина постоянного тока?
Машина постоянного тока представляет собой электромеханическое устройство для преобразования энергии. Принцип работы машины постоянного тока заключается в том, что электрический ток протекает через катушку в магнитном поле, а затем магнитная сила создает крутящий момент, который вращает двигатель постоянного тока. Машины постоянного тока подразделяются на два типа, такие как генератор постоянного тока и двигатель постоянного тока.
Машина постоянного токаОсновной функцией генератора постоянного тока является преобразование механической энергии в электрическую энергию постоянного тока, тогда как двигатель постоянного тока преобразует энергию постоянного тока в механическую энергию.Двигатель переменного тока часто используется в промышленности для преобразования электрической энергии в механическую. Однако двигатель постоянного тока применим там, где требуется хорошее регулирование скорости и широкий диапазон скоростей, например, в системах с электрическими транзакциями.
Строительство машины постоянного тока
Конструкция машины постоянного тока может быть выполнена с использованием некоторых основных частей, таких как ярмо, полюсный сердечник и полюсные башмаки, полюсная катушка и катушка возбуждения, сердечник якоря, обмотка якоря или проводник, коммутатор, щетки и подшипники.Некоторые из частей машины постоянного тока обсуждаются ниже.
Конструкция машины постоянного токаХомут
Другое название коромысла — рама. Основная функция ярма в машине — обеспечивать механическую опору, предназначенную для полюсов, и защищать всю машину от влаги, пыли и т. д. Материалы, используемые в яме, разработаны из чугуна, литой стали или стального проката.
Стойка и стержень
Полюс машины постоянного тока представляет собой электромагнит, а обмотка возбуждения наматывается между полюсами.Всякий раз, когда обмотка возбуждения находится под напряжением, полюс создает магнитный поток. В качестве материалов для этого используются литая сталь, чугун или полюсный сердечник. Он может быть изготовлен из пластин из отожженной стали для уменьшения падения мощности из-за вихревых токов.
Башмак для столба
Башмак для полюса в машине постоянного тока является обширной деталью, а также для увеличения области полюса. Из-за этой области поток может распространяться в воздушном зазоре, а дополнительный поток может проходить через воздушное пространство к якорю.Материалы, используемые для изготовления опорных башмаков, представляют собой чугун или литой конь, а также используется ламинирование из отожженной стали для уменьшения потерь мощности из-за вихревых токов.
Обмотки возбуждения
При этом обмотки наматываются в области полюсного сердечника и называются катушкой возбуждения. Всякий раз, когда ток подается через обмотку возбуждения, он электромагнитизирует полюса, которые создают требуемый поток. В качестве материала для обмотки возбуждения используется медь.
Сердечник арматуры
Ядро арматурывключает в себя огромное количество слотов на своем краю.В этих пазах находится проводник якоря. Он обеспечивает путь с низким сопротивлением к потоку, создаваемому обмоткой возбуждения. Материалы, используемые в этом сердечнике, представляют собой материалы с низкой проницаемостью и низким магнитным сопротивлением, такие как железо, иначе отлитое. Ламинирование используется для уменьшения потерь из-за вихревых токов.
Обмотка якоря
Обмотка якоря может быть образована соединением проводника якоря. Всякий раз, когда обмотка якоря вращается с помощью первичного двигателя, в ней индуцируется напряжение, а также магнитный поток.Эта обмотка соединена с внешней цепью. Материалы, используемые для этой обмотки, являются проводящими материалами, такими как медь.
Коллектор
Основной функцией коммутатора в машине постоянного тока является сбор тока от проводника якоря, а также подача тока на нагрузку с помощью щеток. А также обеспечивает однонаправленный крутящий момент для двигателя постоянного тока. Коллектор может быть построен с большим количеством сегментов в форме ребра из твердотянутой меди. Сегменты коммутатора защищены тонким слоем слюды.
Щетки
Щетки в машине постоянного тока собирают ток от коммутатора и подают его на внешнюю нагрузку. Щетки изнашиваются со временем для частого осмотра. Материалы, используемые в щетках, представляют собой графит или углерод прямоугольной формы.
Типы машин постоянного тока
Возбуждение машины постоянного тока подразделяется на два типа, а именно раздельное возбуждение и самовозбуждение. В машине постоянного тока с отдельным типом возбуждения катушки возбуждения активируются с помощью отдельного источника постоянного тока.В машине постоянного тока с самовозбуждением поток тока через обмотку возбуждения обеспечивается машиной. Основные типы машин постоянного тока подразделяются на четыре типа, которые включают следующие.
- Машина постоянного тока с независимым возбуждением
- Шунтирующий/шунтирующий аппарат.
- Серия намотанная/серийная машина.
- Составная намотка/составная машина.
Отдельное возбуждение
В машине постоянного тока с независимым возбуждением для активации катушек возбуждения используется отдельный источник постоянного тока.
Шунтирующая рана
В машинах постоянного тока с шунтовой обмоткой катушки возбуждения соединены параллельно через якорь . Поскольку шунтирующее поле получает полное выходное напряжение генератора, в противном случае напряжение питания двигателя, оно обычно состоит из огромного количества витков тонкой проволоки с небольшим током возбуждения.
СерияРана
В машинах постоянного тока с последовательной обмоткой катушки возбуждения соединены последовательно через якорь. Так как последовательная обмотка возбуждения получает ток якоря, а ток якоря большой, то в связи с этим последовательная обмотка возбуждения включает в себя несколько витков провода большой площади поперечного сечения.
Сложная рана
Составная машина включает в себя как ряд, так и шунтирующие поля. Две обмотки выполняются с каждым полюсом машины. Последовательная обмотка машины включает несколько витков огромной площади поперечного сечения, так же как и шунтирующие обмотки, включают несколько тонких витков провода.
Подключение составной машины можно выполнить двумя способами. Если шунтирующее поле соединено параллельно только якорем, то машина может быть названа «составной машиной с коротким шунтом», а если шунтирующее поле соединено параллельно как якорем, так и последовательным полем, то машина называется «машина с длинным шунтом».
Уравнение ЭДС машины постоянного тока
ЭДС машины постоянного тока можно определить, как когда якорь в машине постоянного тока вращается, в катушках может генерироваться напряжение. В генераторе ЭДС вращения можно назвать генерируемой ЭДС, а Er=Eg. В двигателе ЭДС вращения может называться встречной или обратной ЭДС, и Er=Eb.
Пусть Φ — полезный поток для каждого полюса в вебере
P общее количество полюсов
z — общее количество проводников в якоре
n — скорость вращения якоря в оборотах за каждую секунду
А — нет.параллельной полосы по всему якорю среди щеток противоположной полярности.
№Z/A. проводника якоря внутри серии на каждую параллельную полосу
Поскольку поток для каждого полюса равен «Φ», каждый проводник сокращает поток «PΦ» за один оборот.
Напряжение, создаваемое для каждого проводника = косая черта потока для каждого оборота в WB / время, необходимое для одного оборота в секундах
Поскольку «n» оборотов совершается в течение одной секунды, а 1 оборот будет выполнен в течение 1/n секунды.Таким образом, время одного оборота якоря составляет 1/n сек.
Нормативное значение вырабатываемого напряжения для каждого проводника
p Φ/1/n = np Φ вольт
Производимое напряжение (E) можно определить по количеству проводников якоря в серии I любой отдельной линии среди щеток, таким образом, все генерируемое напряжение
E = стандартное напряжение для каждого проводника x шт. проводников в ряду на каждую полосу
E = n.P.Φ x Z/A
Приведенное выше уравнение является e.м.ф. уравнение машины постоянного тока.
Машина постоянного тока против машины переменного тока
Различие между двигателем переменного тока и двигателем постоянного тока заключается в следующем.
Двигатель постоянного тока Двигатели постоянного токаДвигатель переменного тока | Двигатель постоянного тока |
Двигатель переменного тока представляет собой электрическое устройство, приводимое в действие переменным током | — это один из видов вращательного двигателя, который используется для преобразования энергии постоянного тока в механическую. |
Они делятся на два типа, такие как синхронные и асинхронные двигатели. | Доступны два типа двигателей: щеточные и щеточные. |
Входное питание двигателя переменного тока — переменный ток | Входное питание двигателя постоянного тока — постоянный ток |
В этом моторе нет щеток и коллекторов. | В этом двигателе присутствуют угольные щетки и коллекторы. |
Входные фазы двигателей переменного тока одно- и трехфазные | Входные фазы двигателей постоянного тока однофазные |
Характеристики якоря двигателей переменного тока таковы, что якорь неактивен, в то время как магнитное поле вращается. | Характеристики якоря двигателей постоянного тока: якорь вращается, а магнитное поле остается неактивным. |
Он имеет три входных клеммы, как RYB. | Он имеет две входные клеммы, такие как положительный и отрицательный |
Управление скоростью двигателя переменного тока может осуществляться путем изменения частоты. | Регулирование скорости двигателя постоянного тока можно осуществить изменением тока обмотки якоря |
КПД двигателя переменного тока меньше из-за потери индукционного тока и скольжения двигателя. | КПД двигателя постоянного тока высок из-за отсутствия индукционного тока и скольжения |
Не требует обслуживания | Требуется обслуживание |
Двигатели переменного тока используются везде, где требуется высокая скорость, а также переменный крутящий момент. | используются везде, где требуется переменная скорость, а также высокий крутящий момент. |
На практике используются в крупных отраслях промышленности | На практике они используются в приборах |
Потери в машине постоянного тока
Мы знаем, что основной функцией машины постоянного тока является преобразование механической энергии в электрическую.В этом методе преобразования вся входная мощность не может быть преобразована в выходную мощность из-за потерь мощности в различных формах. Тип потери может меняться от одного аппарата к другому. Эти потери снизят КПД аппарата, а также повысят температуру. Потери энергии в машине постоянного тока можно разделить на электрические, иначе потери в меди, потери в сердечнике, иначе потери в железе, механические потери, потери на щетках и потери при паразитной нагрузке.
Преимущества машины постоянного тока
К преимуществам этой машины относятся следующие.
- Машины постоянного тока, такие как двигатели постоянного тока, имеют различные преимущества, такие как высокий пусковой крутящий момент, возможность реверсирования, быстрый пуск и остановка, изменение скорости посредством ввода напряжения
- Они очень легко контролируются, а также дешевле по сравнению с AC .
- Контроль скорости в порядке
- Крутящий момент высокий
- Операция без проблем
- Без гармоник
- Простота установки и обслуживания
Применение машины постоянного тока
В настоящее время генерация электрической энергии может производиться в больших количествах в виде переменного тока (переменного тока).Следовательно, использование машин постоянного тока, таких как двигатели и генераторы постоянного тока, чрезвычайно ограничено, поскольку они используются в основном для обеспечения возбуждения генераторов переменного тока малого и среднего диапазона. В промышленности машины постоянного тока используются для различных процессов, таких как сварка, электролиз и т. д.
Обычно генерируется переменный ток, который затем преобразуется в постоянный с помощью выпрямителей. Поэтому генератор постоянного тока подавляется источником переменного тока, который выпрямляется для использования в нескольких приложениях.Двигатели постоянного тока часто используются в качестве приводов с регулируемой скоростью и там, где происходят серьезные изменения крутящего момента.
Применение машины постоянного тока в качестве двигателя используется путем разделения на три типа, такие как серийный, шунтирующий и составной, тогда как применение машины постоянного тока в качестве генератора подразделяется на генераторы с независимым возбуждением, последовательные и шунтирующие генераторы.
Итак, речь идет о машинах постоянного тока. Из приведенной выше информации, наконец, мы можем сделать вывод, что машины постоянного тока представляют собой генератор постоянного тока и двигатель постоянного тока.Генератор постоянного тока в основном используется для подачи источников постоянного тока к машине постоянного тока на электростанциях. В то время как двигатель постоянного тока приводит в движение некоторые устройства, такие как токарные станки, вентиляторы, центробежные насосы, печатные станки, электровозы, подъемники, краны, конвейеры, прокатные станы, авторикши, льдогенераторы и т. д. Вот вам вопрос, что такое коммутация в машина постоянного тока?
Двигатель постоянного тока Принцип работы, конструкция и объяснение схемы
Очень важно знать принцип работы и конструкцию двигателя постоянного тока, чтобы освоить основы машин постоянного тока.Двигатель постоянного тока преобразует электрическую энергию в механическую. Входная электрическая энергия получается от аккумуляторных батарей, солнечных элементов и т. д. Вырабатываемая механическая энергия в дальнейшем используется для вращения насосов, вентиляторов, компрессоров, колес и т. д.
Как правило, двигатели переменного тока широко используются в промышленности. Но когда речь идет о высоком пусковом моменте или эффективном управлении скоростью, двигатели постоянного тока являются оптимальным выбором. Они используются в алюминиевых прокатных станах, электрических лифтах, железнодорожных локомотивах и крупногабаритном землеройном оборудовании.
ПРИНЦИП РАБОТЫ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА:
Принцип работы двигателя постоянного тока заключается в том, что на проводник с током действует механическая сила, когда он помещается в магнитное поле. Это известно как сила Лоренца. А направление этой силы задается ПРАВИЛОМ ЛЕВОЙ РУЧКИ ФЛЕМИНГА.
Принцип работы двигателя постоянного токааналогичен принципу работы генератора постоянного тока.
ПРАВИЛО ЛЕВОЙ РУКИ ФЛЕМИНГА
Если указательный, средний и большой пальцы левой руки растянуть взаимно перпендикулярно друг другу.Если указательный палец указывает направление магнитного поля, средний палец указывает направление тока в проводнике, то большой палец указывает направление силы, действующей на проводник.
Правило левой руки Флеминга** См. также: Принцип работы двигателя переменного тока
КОНСТРУКЦИЯ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА
Все машины постоянного тока в основном состоят из двух частей. Один — статор , а другой — ротор . Статор представляет собой стационарную часть, состоящую из ярма, полюса, полюсной обмотки и промежуточных полюсов.Статор создает магнитный поток.
Ротор машины постоянного тока состоит из коллектора, щеток, компенсационной обмотки и вала. Он вращается во внешнем магнитном потоке (создаваемом статором), когда в нем протекает ток.
Структура двигателя постоянного токаЧАСТИ СТАТОРА:-
КОЛЕСО:
Хомут или внешняя рама обеспечивают защиту двигателя постоянного тока. Он изготовлен из литой стали для больших двигателей постоянного тока. А из чугуна для небольших двигателей постоянного тока.Хомут используется в машинах постоянного тока, потому что:
A) Обеспечивает механическую поддержку столбов.
B) Действует как защитный кожух от механических повреждений.
C) И обеспечивает проход для магнитного потока, создаваемого полюсами машины.
Игосердечник и башмак опоры:
И сердечник полюса, и башмаки полюса изготовлены из литой стали. А вот полюсные башмаки ламинированы, так как находятся близко к арматуре.
При изменении нагрузки во время работы двигателя постоянного тока изменяется ток якоря.В результате изменяется и магнитный поток. Этот поток связывает полюсный башмак и вызывает протекание вихревых токов . А чтобы свести к минимуму эти вихревые токи, полюсные башмаки ламинируют.
Основная цель полюсного башмака — распределить магнитный поток и уменьшить магнитное сопротивление магнитного пути. Тогда как полюсный сердечник возбуждается обмоткой возбуждения и используется для их поддержки.
Сердечник опоры и башмак опорыПОЛЮСНАЯ ОБМОТКА ИЛИ КАТУШКИ ВОЗДЕЙСТВИЯ
Полюсная обмотка и катушки возбуждения состоят из медного провода, расположенного вокруг полюсного сердечника.Когда ток проходит через эти катушки, они электромагнитно намагничивают полюс, который создает магнитный поток. Этот поток проходит через ротор и создает вращающий момент, как только ток начинает течь в якоре ротора.
Обмотка возбуждения на полюсахЧАСТИ РОТОРА:-
СЕРДЕЧНИК АРМАТУРЫ
Сердечник якоря представляет собой вращающуюся часть машины постоянного/переменного тока. Он изготовлен из кремнистой стали . Цилиндрическая структура ламинирована для уменьшения потерь на вихревые токи.Его основная цель состоит в том, чтобы обеспечить путь магнитного потока с низким магнитным сопротивлением. И для размещения проводников арматуры.
Сердечник якоря в ротореОБМОТКА ЯКОРЯ
Обмотка якоря состоит из катушек, заделанных в пазы сердечника якоря. Эти катушки облицованы рядом друг с другом прочным изоляционным материалом. Изоляционный материал предотвращает короткое замыкание двух соседних катушек.
Принимая во внимание, что щелевая изоляция загибается на проводник якоря и надежно фиксируется деревянными или волокнистыми клиньями.Простыми словами, это расположение токонесущих проводников, создающих ЭДС в машине за счет относительного движения между обмотками и основным полем.
Обмотка якоряКОММУТАТОР
Коллектор содержит клиновидные нагартованные медные сегменты, образующие цилиндрическую конструкцию. Тонкий лист высококачественной слюды изолирует сегменты друг от друга.
Коммутатор периодически изменяет направление тока между ротором и внешней цепью.Следовательно, он действует как переключатель, вызывающий однонаправленный крутящий момент в двигателе постоянного тока.
Кольцо коммутатораЩЕТКИ
Щетки обычно изготавливаются из прямоугольных угольных блоков, помещенных в держатели щеток. Функция щеток в двигателях постоянного тока заключается в подаче тока на коммутатор от внешнего источника постоянного тока.
Принимая во внимание, что функция щеток в генераторе постоянного тока состоит в том, чтобы собирать ток от коммутатора и подавать его во внешнюю цепь нагрузки.
Пара угольных щетокРАБОТА ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА
Принцип работы двигателя постоянного тока требует наличия магнитного потока и проводника с током.Рассмотрим катушку, передающую постоянный ток через коммутатор и щетки. Эти сегменты коммутатора свободно вращаются вокруг своей оси.
Работа двигателя постоянного токаСегмент коммутатора, который соприкасается с левой щеткой, получает положительную полярность, а правый — отрицательную. Это приводит к протеканию тока в катушке.
Применяя правило левой руки Флеминга, на проводник с левой стороны всегда действует сила, направленная вверх, а на проводник с правой стороны действует направленная вниз сила.Следовательно, в двигателях постоянного тока достигается однонаправленный крутящий момент.
ОБРАТНАЯ ЭДС
Взаимодействие проводника с током с изменяющимся магнитным полем, создаваемым обмоткой возбуждения, индуцирует ЭДС в проводнике. Эта ЭДС действует в направлении, противоположном приложенному напряжению.