Устройство и принцип действия электродвигателя постоянного тока кратко – Принцип действия и устройство двигателя постоянного тока. Принцип работы машины постоянного тока.

Содержание

Принцип действия двигателя постоянного тока: конструкция и особенности

 

Главной конструктивной и характерной принадлежностью машины постоянного тока, служит использование для присоединения к электрической сети коммутатора, предназначенного для преобразования величин постоянного тока в переменный ток. Коммутатор является непременным элементом любой машины этого типа ввиду того, что ее якорная обмотка двигателя подразумевает наличие переменного тока.

Особенности двигателя постоянного тока

Двигательные устройства постоянного тока отличаются широкими возможностями регулирования скорости вращения и обладают способностью сохранять во всем диапазоне регулирования высокий КПД, а также имеют в наличии механические характеристики, благодаря которым двигатели могут использоваться по специальному назначению, в соответствии с необходимыми требованиями.

Принцип работы

Функционально двигатель принадлежит к классу синхронных машин обращенного типа, это объясняется тем, что статор и ротор поменяли выполнение задач. Статор выполняет функции по возбуждению магнитного поля, ротор принял задачи направленные на преобразование энергии.

Во время вращения якоря в магнитном поле, производимым статором в витках обмотки, наводится ЭДС. Направление ее движения находится по правилу правой руки.

После того, как якорь и коллектор повернутся на 180 градусов виток меняет свои стороны, на противоположное направление меняется движение ЭДС.

Так происходит процесс индуцирования переменной электродвижущей силы, выпрямляемой посредством коллектора.

Коллектор, через щеточный механизм, соединен с обеими сторонами витка, в результате этого происходит снятие щетками текущего в неизменном направлении пульсирующего напряжения, это способствует наличию во внешней цепи, идущего в постоянном направлении, пульсирующего тока. Для того, чтобы снизить пульсацию в пазах якоря, прибавляют добавочное количество витков.

Конструкция двигателя

Двигатель, как и любая другая машина этого типа, содержит в своей конструкции статор, являющегося неподвижным элементом, и ротор (якорь) – вращающийся элемент машины, между ними находится воздушный зазор. В якоре двигателя происходит индуцирование ЭДС. Создание основного магнитного поля происходит при помощи главных полюсов, состоящих из сердечников и катушек возбуждения.

Равномерное распределение полученной магнитной индукции в области воздушного зазора обеспечивается полюсными наконечниками.

Чередование полярности полюсов во время движения электрического тока достигается за счет соединения катушек главных полюсов в обмотку возбуждения. Для улучшения коммутации предусмотрены добавочные полюса.

Уменьшение вихревых токов, которые появляются в результате перемагничивания якоря в процессе его вращения в созданном магнитном поле, происходит за счет конструкции сердечника, исполненного из пластин электротехнической стали, для большего эффекта он покрывается специальным лаком.

Контакт внешней цепи машины с коллектором осуществляется за счет щеток, основным материалом для них является графит.

Область применения

Несмотря на то, что себестоимость этого типа двигателя намного дороже асинхронных машин, их особенности могут сыграть решающую роль в узкоцелевом специальном назначении.

С помощью таких двигателей приводятся в работу прокатные станы, они используются для привода гребного винта на кораблях, а также для транспортных средств, имеющих систему питания на постоянном токе.

Поэтому их область использования характерна для нужд там, где необходима электрическая тяга, это: тепловозы, электровозы, электропоезда, городской транспорт, то есть там, где необходимо применить мягкие механические характеристики и широкие пределы регулировки количества оборотов вращения.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

podvi.ru

Принцип работы двигателя постоянного тока

Приводы и двигатели постоянного тока

Принцип работы

Двигатели постоянного тока

На статоре находится индукторная обмотка (обмотка возбуждения), на которую подаётся постоянный ток — в результате создаётся постоянное магнитное поле (поле возбуждения). В двигателях с постоянными магнитами поле возбуждения создаётся постоянными магнитами.

В обмотку ротора (якорная обмотка) также подаётся постоянный ток, на который со стороны магнитного поля статора действует сила Ампера — создаётся вращающий момент, который поворачивает ротор на 90 электрических градусов, после чего щёточно-коллекторный узел коммутирует обмотки ротора – вращение продолжается.

По способу возбуждения двигатели постоянного тока делятся на четыре группы:

  • С независимым возбуждением — обмотка возбуждения питается от независимого источника
  • С параллельным возбуждением — обмотка возбуждения включается параллельно источнику питания обмотки якоря
  • С последовательным возбуждением — обмотка возбуждения включена последовательно с обмоткой якоря
  • Со смешанным возбуждением — у двигателя есть две обмотки: параллельная и последовательная.

Пуск двигателя постоянного тока

При прямом пуске ток якоря может на порядок превышать номинальный, поэтому при пуске в цепь якоря вводится пусковое сопротивление пусковой реостат. Для плавного пуска реостат делают ступенчатым — в первый момент включаются все ступени (максимальное сопротивление), по мере разгона двигателя растёт противо-ЭДС, ток якоря уменьшается — ступени выключаются одна за другой.

Регулирование скорости вращения двигателя постоянного тока

  • Скорость ниже номинальной регулируется напряжением на якоре (мощность при этом пропорциональна скорости, момент неизменен)
  • Скорость выше номинальной регулируется током обмотки возбуждения — чем слабее поле возбуждения, тем выше скорость (момент падает при постоянной мощности)

Регулирование питания якоря и обмотки возбуждения осуществляется с помощью тиристорных преобразователей (приводов постоянного тока).

Преимущества и недостатки двигателей постоянного тока

Преимущества:
  • Практически линейные характеристики двигателя:
    • механическая характеристика (зависимость частоты от момента)
    • регулировочная характеристика (зависимость частоты от напряжения якоря)
  • Просто регулировать частоту вращения в широких пределах
  • Большой пусковой момент
  • Компактный размер.
Недостатки:
  • Дополнительные расходы на профилактическое обслуживание коллекторно-щёточных узлов
  • Ограниченный срок службы из-за износа коллектора
  • Дороже асинхронных двигателей.

Как выбрать

Выбор двигателя постоянного тока

  • Высота оси
  • Номинальное напряжение якоря
  • Номинальное напряжение возбуждения
  • Номинальная частота вращения
  • Номинальная мощность
  • Номинальный момент
  • Номинальный ток якоря
  • Мощность возбуждения
  • Максимальная частота вращения при понижении поля (выше этой скорости падает мощность)
  • Предельно допустимая рабочая скорость (выше этой скорости начинается механическое разрушение)
  • КПД
  • Момент инерции
  • Степень защиты IP
  • Степень виброустойчивости (прессы и т.п.)
  • Класс изоляции (для работы от преобразователя не ниже F)
  • Температура окружающей среды (для работы при отрицательных температурах в условиях русской зимы требуется специальное исполнение: смазка, вал из специальной стали и т.п.)
  • Высота установки над уровнем моря (выше 1000 метров падают характеристики)
  • Конструктивное исполнение по способу монтажа электродвигателей
    • Маслоуплотнённый фланец для присоединения редуктора
  • Положение клеммной коробки (справа, сверху и т.д.)
  • Тип принудительного охлаждения:
    • Конвекционное: воздушный фильтр, контроль расхода воздуха, встроенный (направление обдува) или внешний (подключение труб) вентилятор
    • Через теплообменник
  • Классификация методов охлаждения электрических двигателей
  • Окраска
  • Подшипники
    • Качения (радиально-упорные)
    • Усиленные подшипники для повышенных радиальных нагрузок на валу
    • С пополнением смазки
    • Для подключения редуктора
  • Вал двигателя
    • Со шпоночным пазом
  • Датчик скорости
    • Тахогенератор
    • Энкодер
  • Тормоз
  • Контроль износа щёток
    • Окошко для визуального контроля
    • Микропереключатель ограничения остаточной длины щёток
  • Контроль нагрева двигателя
    • Термисторная защита – контроль граничных значений (предупреждение, отключение)
    • Непрерывный контроль температуры при помощи датчика KTY
  • Подогрев остановленного двигателя (против образования конденсата)
  • Уровень шума.

Выбор преобразователя постоянного тока

  • Режим работы:
    • Одноквадрантный (1Q) — нереверсивный
    • Четырёхквадрантный (4Q) — реверсивный.
  • Номинальное напряжение питания сети
  • Номинальный входной ток
  • Напряжение питания (отдельное)
    • Вентилятора
    • Блока управления (электроники)
    • Возбуждения
  • Температура окружающей среды
  • Высота установки над уровнем моря
  • Класс влагостойкости (покрытие плат компаундом)
  • Степень защиты IP
  • ЭМС-фильтр (фильтр радиопомех).
  • Номинальное постоянное напряжение (якоря двигателя)
  • Номинальный постоянный ток якоря
  • Перегрузочная способность по току
  • Номинальная мощность
  • Мощность потерь (рассеиваемая мощность) при номинальном токе
  • Номинальное постоянное напряжение обмотки возбуждения (напряжение поля)
  • Номинальный постоянный ток обмотки возбуждения (ток поля)
  • Панель оператора (съёмная, хранение параметров, поддержка русского языка)
  • Коммуникационный интерфейс для обмена данными с PLC, HMI (PROFIBUS и др.)
  • Точность регулирования
  • Встроенные ПИД-регуляторы
  • Встроенные функции логического контроллера
  • Сигнальные (дискретные и аналоговые) входы-выходы.

 

© Туманов А.В. 2016-2017

Принцип действия электродвигателя постоянного тока

Электрический двигатель – неоценимое изобретение человека. Благодаря этому устройству наша цивилизация за последние сотни лет ушла далеко вперёд. Это настолько важно, что принцип работы электродвигателя изучают ещё со школьной скамьи. Круговое вращение электроприводного вала легко трансформируется во все остальные виды движения. Поэтому любой станок, созданный для облегчения труда и сокращения времени на изготовление продукции, можно приспособить под выполнение множества задач. Каков же принцип действия электродвигателя, как он работает и каково его устройство – обо всём этом понятным языком рассказывается в представленной статье.

Как работает двигатель постоянного тока

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта). При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Принцип действия современных электродвигателей

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

Двигатель постоянного тока работа

Двигатели постоянного тока (ДПТ), используются для превращения энергии постоянного тока в механическую работу. ДПТ был первой из всех изобретенных вращающихся электромашин. Принцип его действия известен с середины прошлого столетия, и до настоящего времени ДПТ продолжают верно служить человеку, приводя в движение огромное количество машин и механизмов.

Двигатель постоянного тока — историческая справка

В 1821 году Фарадей, проводя эксперименты при взаимодействии проводников с током и магнитом, увидел, что электрический ток вызывает вращение проводника вокруг магнита. Таким образм, опыт Фарадея подготовил почву для создания электрического двигателя. Немногим позже, Томас Дэвенпортв 1833 году изготовил первый роторный электродвигатель постоянного тока, и реализовал его при движении модель поезда. Годом позже, Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором был использован принцип непосредственного вращения подвижной части двигателя. А уже 13 сентября 1838 г в Российской империи первая моторная лодка с 12 пассажирами поплыла по Неве против течения. Колеса с лопостями приводились во вращение электрическим двигателем, который получал ток от батареи из 320 элементов.

В 1886 году электродвигатель постоянного тока стал похож на современные варианты. В дальнейшем он всё более и более модернизировался.

Сегодня жизнь нашей техноргенной цивиализации совершенно невозможна без электродвигателя. Он используется практически везде: в поездах, троллейбусах, трамваях. На заводах и фабриках используются мощные электрические станки, приборы бытовой техники (Электромясорубки, кухонные комбайны, кофемолки, пылесосы) и т.п

Двигатель постоянного тока принцип работы

Подавляющее большинство электродвигателей работает в соответствии с физикой магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней электрический ток, то ее начнет выдавливать наружу.Т.к когда ток течет по проводнику. он формирует вокруг себя кмагнитное поле по всей длине проводника. Направление этого поля можно узнать по правилу буравчика.

При взаимодействии кругового магнитного поля проводника и однородного поля магнита, между полюсами поле с одной стороны уменьшается, а с другой увеличивается. То есть среда результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, в соответствии с правилом левой руки. а величина вычисляется по формуле

где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода

В электродвигателях постоянного тока малой мощности для создания постоянного магнитного поля используются типовые постоянные магниты. В случае средней и большой мощности однородное магнитное поле генерируют с помощью обмотки возбуждения.

Рассмотрим процесс получения механического движения с помощью электричества более подробно. В однородном магнитном поле вертикально разместим проволочную рамку и подключим ее к источнику тока. Рамка начнет проворачивается и достигает горизонтального положения. Которое считается нейтральным, т.к в нем воздействие поля на проводник с током равно нулю. Чтобы движение не останавливалось, нужно поместить ещё хотя бы одну рамку с током и обеспечить переключение направления движения тока в необходимый момент.

Типичный двигатель вместо одной рамки имеет якорь с множеством проводников, уложенных в специальные пазы, а вместо постоянного магнита — статор с обмоткой возбуждения с двумя и более полюсами. На рисунке чуть выше показан двухполюсный электромотор в разрезе. Если по проводам верхней части якоря пропустить ток движущийся «от нас», а в нижней части — «на нас», то в соответствии с правилом левой руки верхние проводники будут выдавливаться из магнитного поля статора влево, а нижней части якоря — выталкиваться вправо. Т.к медный провод размещен в специальных в пазах якоря, то, вся сила будет переходить и на него, и он будет крутиться. Поэтому, когда проводник с направлением тока «от нас» окажется внизу и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и начнется торможение. Чтобы этого избежать требуется поменять направление тока на обратное, в тот момент когда будет пройдена нейтральная линия. Это осуществляется с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с схемой.

Итак, обмотка якоря передает вращающий момент на вал движка постоянного тока, а тот приводит в движение рабочие механизмы. Конструктивно все двигатели состоят из индуктора и якоря, разделенных воздушным промежутком.

Статор электродвигателя служит для создания неподвижного магнитного поля и состоит из станины, главных и добавочных полюсов. Станина предназначена для крепления основных и добавочных полюсов и служит элементом магнитной цепи. На главных полюсах имеются обмотки возбуждения, используемые для создания магнитного поля, на добавочных полюсах расположена специальная обмотка, используемая для улучшения условий коммутации.

Якорь ЭД постоянного тока состоит из магнитной системы, сделанной из отдельных листов, рабочей обмотки, уложенной в специальные пазы, и коллектора для подвода к рабочей обмотке питания.

Коллектор похож на цилиндр, насаженный на вал ЭД и сделанный из изолированных друг от друга медных пластин. На коллекторе находятся специальные выступы-петушки, к которым припаяны концы секций обмотки. Съем тока с коллектора происходит с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки находятся в щеткодержателях, которые удерживают их в определенном положении и создают требуемое нажатие на поверхность коллектора. Щетки и щеткодержатели крепятся на траверсе и связанны с корпусом.

Коллектор сложный, дорогой и самый ненадежный узел ЭД. Он часто искрит, создает помехи, забивается пылью от щеток. А при большой нагрузке может все закоротить наглухо. Его главная задача переключать напряжение якоря туда сюда.

Чтобы лучше понять работу коллектора сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда рамка займет положение, А, в ее проводниках будет индуктироваться максимальный по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.

Индуктированный ток из проводника В, соединенного с пластиной 2, следует на щетку 4 и, проходя внешнюю цепь, через щетку 3 возвращается в проводник А. При этом правая щетка будет положительной, а левая отрицательной.

Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.

Поэтому, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, направление тока во внешней цепи не изменилось.

В следующий момент (Г), рамка вторично займет положение на нейтральной линии, в проводниках и, во внешней цепи тока опять не будет.

В последующие временные интервалы рассмотренный цикл движений будет повторяться в той же последовательности, т.о, направление тока во внешней цепи благодаря коллектору все время будет оставаться постоянным, а вместе с этим сохраняеться и полярность щеток.

Щеточный узел используется для подвода питания к катушкам на вращающемся роторе и переключения тока в обмотках. Щетка это неподвижный контакт. Они с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Для уменьшения искрения последних используют различные способы, основным из которых является использование добавочных полюсов.

С ростом разгона начинается следующий процесс, обмотка якоря двигаясь поперек магнитного поля статора и наводит в нем ЭДС. но направлена она встречно той, что вращает ЭД. И в результате, ток через якорь резко уменьшается и тем сильнее, чем больше скорость.

Схемы включения двигателя. При параллельном соединении обмоток, обмотка якоря изготавливается из большого количества витков тонкой проволоки. Тогда коммутируемый коллектором ток будет ниже и пластины не будут сильно искрить. Если выполнить последовательное соединение обмоток статора и якоря, то обмотка индуктора выполняется проводником большего диаметра с меньшим количеством витков. Поэтому, намагничивающая сила остаётся постоянной, а характеристики ЭД увеличиваются.

Недостатками ЭД постоянного тока можно считать быстрый износ щеточно-коллекторного узла. Достоинства – хорошие характеристики запуска, простая регулировка частоты и направления вращения.

Обмотка возбуждения двигателя постоянного тока

Наличие обмотки возбуждения у двигателя постоянного тока дает возможность реализовывать различные схемы подключения. В зависимости от того каким образом соединена обмотка возбуждения (ОВ), бывают двигатели постоянного тока с независимым возбуждением, и с самовозбуждением, которое, в свою очередь разделяется на последовательное, параллельное и смешанное.

Пуск двигателя постоянного тока

Пуск двигателей постоянного тока осложнен возникающими в момент старта огромными значениями моментов и пусковых токов. В ДПТ пусковые токи могут превышать номинальные в 10-40 раз. Такое сильное превышение может легко сжечь обмотки. Поэтому токи при пуске стараются ограничить до уровня (1,5-2) Iн

Асинхронный двигатель. Устройство и принцип работы

Работа асинхронного двигателя основана на принципах физического взаимодействия магнитного поля, появляющегося в статоре, с током, который это же поле генерирует в роторной обмотке.

Cинхронный двигатель. Принцип работы

Синхронный двигатель – это разновидность электродвигателей, только работающих от переменного напряжения, при этом частота вращения ротора совпадает с частотой вращения магнитного поля. Именно поэтому она остается постоянной вне зависимости от нагрузки, т.к ротор синхронного двигателя – это обычный электромагнит и его, количество пар полюсов совпадает с числом пар полюсов у вращающегося магнитного поля. Поэтому взаимодействие этих полюсов обеспечивает постоянство угловой скорости, с которой крутится ротор.

Схемы управление электродвигателями

Электродвигатели устройства для преобразования электрической энергии в механическую и наоборот, но это уже генераторы. Существует огромное разнобразие типов электромоторов, поэтому и схем управления электродвигателями существует великое множество. Рассмотрим некоторые из них

Источники: http://www.maxplant.ru/article/dc_drive.php, http://ukrlot.com/princip_deystviya_elektrodvigatelya.html, http://www.texnic.ru/books/electrotex/el026.htm

electricremont.ru

устройство и принцип действия, конструкция и управление, применение дпт

Устройство, которое преобразует электрическую энергию в механическую, может использоваться как двигатель или генератор, так как конструкция и принцип действия двигателя постоянного тока (ДПТ) аналогична конструкции генератора. Особенностью ДПТ является механический инвертор (коммутатор). Этот коммутатор имеет скользящие контакты в виде щёток, которые расположены так, что они изменяют полярность обмоток якоря (катушек) во время вращательного движения.

Особенности и устройство ДПТ

ДПТ представляет собой вращающуюся электрическую машину, работающую от постоянного тока. В зависимости от направления потока мощности проводится различие между двигателем (электродвигатель с электрической и механической мощностью) и генератором (электрический генератор, на который подаётся механическая мощность, а также электроэнергия). ДПТ могут запускаться под нагрузкой, их скорость легко изменить. В режиме генератора ДПТ преобразует напряжение переменного тока, подаваемое ротором, в пульсирующее постоянное напряжение.

История изобретения

Основываясь на развитии первых гальванических элементов в первой половине XIX века, первыми электромеханическими преобразователями энергии были машины постоянного тока. Первоначальная форма электродвигателя была разработана в 1829 году, а в 1832 году француз Ипполит Пиксии построил первый генератор. Антонио Пачинотти построил в 1860 году электродвигатель постоянного тока с многокомпонентным коммутатором. Фридрих фон Хефнер-Алтенек разработал барабанный якорь в 1872 году, который открыл возможность промышленного использования в области крупномасштабного машиностроения.

В последующие десятилетия такие машины из-за развития трехфазного переменного тока потеряли свою значимость в крупномасштабном машиностроении. Синхронные машины и системы с низким уровнем обслуживания асинхронного двигателя заменили их во многих устройствах.

Конструкция двигателя

Чтобы понять принцип действия ДПТ, нужно сначала изучить его конструктивные особенности, одной из которых является то, что в магнитном поле постоянного магнита установлен вращающийся проводящий контур.

Упрощая эту структуру, можно сказать, что двигатель состоит из двух основных компонентов:

  1. Основной магнит (постоянный магнит), который прикреплён к статору. Магнитное поле также может быть электрически сгенерировано. На статоре находятся так называемые возбуждающие обмотки (катушки).
  2. Проводящая петля (арматура) на сердечнике якоря, обычно состоящая из слоистых металлических листов.

Обе конструкции называются двигателями постоянного тока с внешним возбуждением. Электродинамический закон указывает, что токопроводящая петля проводника в магнитном поле представляет собой силу [F], зависящую от тока [I] и напряжённости магнитного поля [B]. Токопроводящий проводник окружен круговым магнитным полем. Если объединить магнитное поле магнитного поля с магнитным полем проводящей петли, можно обнаружить суперпозицию двух полей, а также результирующий силовой эффект.

Обмотка якоря состоит из двух половин катушки. Если применить напряжение постоянного тока к двум концам обмотки якоря, можно представить, что движущиеся носители заряда поступают в нижнюю половину катушки из верхней половины катушки.

Каждая токопроводящая катушка развивает собственное магнитное поле, и магнитное поле постоянного магнита накладывается на магнитное поле нижней половины катушки и поле верхней половины катушки. Линии поля постоянного магнитного поля всегда одного направления, они всегда показывают с севера на южный полюс. Напротив, поля двух половин катушки имеют противоположные направления.

В левой части поля половины катушки полевые линии поля возбудителя и поля катушки имеют одно и то же направление. Благодаря этому силовому эффекту в противоположном направлении на нижнем и верхнем концах арматуры создаётся крутящий момент, который вызывает вращательное движение якоря.

Якорь представляет собой так называемый двутавровый якорь. Эта конструкция получила название из-за своей формы, которая напоминает два составных «Т». Катушки якоря соединены с платами коммутатора (коллектора). Подача тока в обмотке якоря обычно осуществляется через угольные щётки, которые обеспечивают скользящий контакт с вращающимся коммутатором и подают катушкам электричество. Щётки изготавливаются из самосмазывающихся графитов, частично смешанных с медным порошком для небольших двигателей.

Принцип действия и использование

Это устройство представляет собой электромашину, которая преобразовывает электрическую энергию в механическую. Принцип работы двигателя постоянного тока заключается в том, что всякий раз, когда проводник, переносимый током, помещается в магнитное поле, он испытывает механическую силу.

Постоянный магнит преобразовывает электрическую энергию в механическую через взаимодействие двух магнитных полей. Одно поле создаётся сборкой постоянными магнитами, другое — электрическим током, протекающим в обмотках двигателя. Эти два поля приводят к крутящему моменту, который имеет тенденцию вращать ротор. Когда ротор вращается, ток в обмотках коммутируется, обеспечивая непрерывный выход крутящего момента.

Коммутатор состоит из проводящих сегментов (стержней) из меди, которые представляют собой завершение отдельных катушек проволоки, распределённых вокруг арматуры. Вторая половина механического выключателя комплектуется щётками. Эти щётки обычно остаются неподвижными с корпусом двигателя.

По мере прохождения электрической энергии через щётки и арматуру создаётся крутильная сила в виде реакции между полем двигателя и якорем, вызывающим поворот якоря двигателя. Когда арматура поворачивается, щётки переключаются на соседние полосы на коммутаторе. Это действие переносит электрическую энергию на соседнюю обмотку и якорь.

Движение магнитного поля достигается переключением тока между катушками внутри двигателя. Это действие называется коммутацией. Очень многие двигатели имеют встроенную коммутацию. Это означает, что при вращении двигателя механические щётки автоматически коммутируют катушки на роторе.

Настройка скорости

ДПТ можно легко регулировать. Скорость можно изменить с помощью следующих переменных:

  1. Напряжение якоря U_A (управление напряжением).
  2. Основной поток поля (полевое управление), сила магнитного поля.
  3. Анкерное сопротивление.

Простейшим методом управления скоростью вращения является управление приводным напряжением. Чем выше напряжение, тем выше скорость, которую двигатель пытается достичь. Во многих приложениях простое регулирование напряжения может привести к большим потерям мощности в цепи управления, поэтому широко используется метод широтно-импульсной модуляции.

В основном способе с широтно-импульсной модуляцией рабочая мощность включается и выключается для модуляции тока. Отношение времени включения к «выключенному» времени определяет скорость двигателя.

Электродвигатель с внешним возбуждением легко контролировать, поскольку токи через обмотки якоря и статора можно контролировать отдельно. Поэтому такие двигатели имели определённое значение, особенно в области высоко динамичных приводных систем, например, для привода станков с точной регулировкой скорости и крутящего момента.

Современное применение

ДПТ используются в различных областях.

Он является важным элементом в различных продуктах:

  1. игрушках;
  2. сервомеханических устройствах;
  3. приводах клапанов;
  4. роботах;
  5. автомобильной электронике.

Высококачественные предметы повседневного назначения (кухонные приборы) используют серводвигатель, известный как универсальный двигатель. Эти универсальные двигатели являются типичными ДПТ, в которых стационарные и вращающиеся катушки представляют собой последовательные провода.

220v.guru

Принцип действия двигателя постоянного тока и область применения

Постоянство электрического тока не позволяет изменяться параметрам, связанным с величиной и направлением. Принцип действия двигателя постоянного тока базируется именно на таких особенностях электрической цепи и конструктивных характеристиках.

Конструкция двигателя

Двигатели данного типа активно используются в превращении постоянной токовой энергии в механический тип работоспособности.

Такие электрические устройства получили меньшее распространение по сравнению с конструкциями переменного тока, что обусловлено высокой стоимостью оборудования, более сложным строением и возможными проблемами с запитыванием.

Основные конструктивные элементы ДПТ:

  • неподвижная часть, представленная статором;
  • вращающаяся часть, представленная ротором или якорем.

Устройство двигателей ПТ имеет несколько весьма существенных отличий от конструкций с переменными токовыми величинами:

  • стальная станина снабжается катушечной обмоткой возбуждения;
  • наличие дополнительных полюсов, улучшающих общие технические характеристики оборудования;
  • установка внутреннего якорного элемента, представленного сердечником и коллектором;
  • использование для фиксации подшипниковой системы;
  • расположение на статоре постоянных магнитов в микродвигателях или электромагнитов с обмоточным возбуждением в виде катушек.

Устройство двигателя постоянного тока

Базовое отличие — наличие коллектора, подсоединяемого к щеткам, что способствует подаче или снятию напряжения с цепи якоря. Особенностью используемого в конструкции щеточно-коллекторного узла, является одновременное выполнение пары функций, включая специфику работы датчика углового роторного положения и переключение тока с контактами скользящего типа.

Электрические двигатели постоянных токовых величин эксплуатируются в форме тяговой конструкции некоторых видов транспорта и устройств исполнительного типа.

Преимущества эксплуатации и недостатки конструкции

Основные достоинства двигателей с постоянными токовыми величинами представлены:

  • конструкционной простотой устройства;
  • интуитивной доступностью управления;
  • почти линейного типа механической и регулировочной характеристиками движка;
  • легкостью регулирования показателей вращательной частоты;
  • достойными пусковыми характеристиками в виде большого пускового момента;
  • наибольшим пусковым моментом с характерным последовательным типом возбуждения;
  • относительной компактностью по сравнению с габаритами других видов конструкций;
  • возможностью применения в режимах двигателя и генератора.

Принцип устройства электродвигателя постоянного тока

К наиболее значимым недостаткам конструкций могут быть отнесены не всегда доступная цена комплектующих изделий, а также необходимость подсоединения выпрямительных устройств.

Современные модели двигателей ПТ практически полностью лишены некоторых основных конструкционных минусов, включая регулярную профилактику щеточно-коллекторных узлов и быстрый износ коллектора.

Принцип действия двигателя постоянного тока

Классификация оборудования основана на видовых особенностях магнитной статорной системы, поэтому может иметь в конструкции:

  • магниты постоянного типа;
  • электромагнитную систему;
  • независимого типа обмоточное подключение с независимым вариантом возбуждения;
  • последовательного типа обмоточное подключение с последовательным вариантом возбуждения;
  • параллельного типа обмоточное подключение с параллельным вариантом возбуждения;
  • смешанный вид обмоточного подключения со смешанным вариантом возбуждения и преобладанием обмотки последовательного или параллельного типа.

Принцип действия электродвигателя

Тип обмоточного подключения оказывает значительное влияние на характеристики тяги и базовые электрические свойства электродвигателя.

Конструкция с независимым или параллельным возбуждением

Обмоточный элемент на якорной части и возбуждении при независимом или параллельном типе, запитаны от различных источников, а функция обмотки возлагается, как правило, на постоянный магнит. Отличительная особенность такого движка представлена отсутствием полной зависимости токового возбуждения от якорного тока на оборудовании.

Скоростные параметры двигателя регулируются в таком случае посредством:

  • изменения показателей напряжения на якорной части;
  • изменения показателей сопротивления в якорной цепи;
  • изменения потокового возбуждения.

Принципиальные схемы включения двигателей постоянного тока независимого и параллельного возбуждения

Последний вариант регулировки нуждается в использовании сложного оборудования, но активно применяется в электрических приводах современного типа, что обусловлено плавностью и экономичностью балансирования уровня скорости в широком диапазоне, в условиях высоких параметров жесткости, свойств механического типа.

Популярная разновидность обмоточного возбуждения независимого типа базируется на применении постоянных магнитов.

Конструкция с последовательным возбуждением

Для потока возбуждения данного типа применяется якорный ток машины, а обмоточное возбуждение и якорная часть двигателя имеют последовательное подключение относительно питающего источника. Благодаря развитию значительного электромагнитного момента, который пропорционален квадратным показателям якорного тока, двигателям с параллельным типом возбуждения обеспечиваются оптимальные пусковые характеристики.

Двигатель последовательного возбуждения

Таким образом, конструкция отличается большим пусковым моментом на фоне сравнительно малого якорного тока. Конструкционные особенности позволяют двигателям ПТ с параллельным типом возбуждения активно эксплуатироваться в приводных механизмах грузоподъемного и тягового вида.

Важно учитывать, что работа электрического двигателя ПТ последовательного типа возбуждения «вхолостую» или в условиях минимальной нагрузки становится основной и очень частой причиной быстрого износа конструкции.

Регулировка вращательной скорости двигателя ПТ с параллельным возбуждением может выполняться изменениями показателей напряжения и сопротивления якорной цепи, а также в потоковом возбуждении.

Конструкция со смешанным возбуждением

Для электрического движка ПТ, обладающего смешанным типом возбуждения, или компаундного электродвигателя, присущи основные характеристики параллельного и последовательного возбуждения, что обусловлено наличием пары видов обмоток.

Обмоточные элементы подключаются двояко:

  • согласное подключение — в процессе включения в электрическую цепь, все сформированные амперные витки и магнитные потоки складываются;
  • встречное подключение — включение обмоток возбуждения сопровождается направлением амперных витков и магнитных потоков друг к другу.

Варианты двигателей

Второй способ обмоточного включения в двигателях ПТ со смешанным типом возбуждения используется в спецмашинах.

Наличие в движке двойной обмотки возбуждения расширяет возможности конструирования и изготовления электрических двигателей, значительно отличающихся по своим свойствам и основным техническим характеристикам.

Область применения

Благодаря конструктивным особенностям и принципу функционирования двигателей ПТ разного типа, такие устройства находят широкое применение и устанавливаются:
  • в крановом оборудовании на тяжелом производстве;
  • в приводных устройствах, нуждающихся в широком регулировании уровня скорости при наличии высокого пускового момента;
  • в тяговых электрических двигателях, эксплуатируемых в тепловозах и электровозах, теплоходах и тяжелых самосвалах;
  • в электрических стартерах автомобильной и уборочной автоматизированной техники.

Компактные низковольтные электрические двигатели ПТ активно используются в разнообразных устройствах и изделиях, включая игрушки, компьютерную и оргтехнику, а также аккумуляторный инструмент.

Электродвигатели постоянного тока разного вида характеризуются особыми естественными и искусственными механическими свойствами, что обусловлено электрической мощностью, идущей на преобразование и поступающей через якорную цепь. Именно такое устройство позволяет применять движки ПТ в регулируемых приводах разнообразных современных механизмов и достаточно сложных станков.

Видео на тему

proprovoda.ru

Работа и схемы электродвигателей постоянного тока

Моторы, работающие на постоянном токе редко встречаются в домашнем хозяйстве. Но они всегда стоят во всех детских игрушках, работающих от батареек, которые ходят, бегают, ездят, летают и т. п. Двигатели постоянного тока (ДПТ) устанавливаются в автомобилях: в вентиляторах и различных приводах. Они почти всегда используются на электротранспорте и реже в производстве.

Преимущества ДПТ по сравнению с асинхронными моторами:

  • Хорошо поддаются регулировке.
  • Отличные пусковые свойства.
  • Частоты вращения могут быть более 3000 об/мин.

Недостатки ДПТ:

  1. Низкая надежность.
  2. Сложность изготовления.
  3. Высокая стоимость.
  4. Большие затраты на обслуживание и ремонт.

Далее Я постараюсь кратко и доступно в одной статье изложить схемы, принципы работы, регулировки и реверса двигателей постоянного тока.

Принцип действия электродвигателя постоянного тока

Устройство двигателя аналогично синхронным двигателям переменного тока. Повторяться не буду, если не знаете, тогда смотрите в этой нашей статье.

Любой современный электромотор  работает на основе закона магнитной индукции Фарадея и «Правила левой руки».  Если к нижней части обмотки якоря подключить электрический ток в одном направлении, а к верхней- в обратном- он начнет вращаться. Согласно правилу левой руки, проводники, уложенные в пазах якоря, будут выталкиваться магнитным полем обмоток корпуса ДПТ или статора.

Нижняя часть будет выталкиваться вправо, а верхняя – влево, поэтому якорь начнет вращаться до момента пока части якоря не поменяются местами. Для создания непрерывного вращения необходимо постоянно менять местами полярность обмотки якоря. Чем и занимается коллектор, который при вращении коммутирует обмотки якоря.  Напряжение от источника тока подается на коллектор при помощи пары прижимных графитовых щеток.

Принципиальные схемы электродвигателя постоянного тока

Если двигатели переменного тока довольно просто подключаются, то с ДПТ все сложнее. Вам необходимо знать марку мотора, и затем в интернете узнавайте про его схему включения.

Чаще всего у средних и мощных моторов постоянного тока есть в клеммной коробке отдельные выводы от якоря и от обмотки возбуждения (ОВ). Как правило, на якорь подаётся полное напряжение электропитания, а на обмотку возбуждения -регулируемый ток реостатом или переменным напряжением. От величины тока ОВ и будут зависеть обороты ДПТ. Чем он выше, тем быстрее скорость вращения.

В зависимости от того как подключен якорь и ОВ, электродвигатели бывают с независимым возбуждением от отдельного источника тока и с самовозбуждением, которое может быть параллельным, последовательным и смешанным.

На производстве применяются двигатели с независимым возбуждением ОВ, которая подключается к отдельному от якоря источнику питания.  Между обмотками возбуждения и якоря нет электрической связи.

Схема подключения с параллельным возбуждением по своей сущности аналогична схеме с независимым возбуждением ОВ. С той лишь разницей, что отпадает необходимость в использовании отдельного источника питания.  Двигатели при включении по обоим этим схема обладают одинаковыми жесткими характеристиками, поэтому применяются в станках, вентиляторах и т. п.

Моторы с последовательным возбуждением применяются, когда необходим большой пусковой ток, мягкая характеристика. Они применяются а трамваях, троллейбусах и электровозах. По этой схеме обмотки возбуждения и якоря подключаются между собой последовательно.  При подаче напряжения токи в обоих обмотках будут одинаковы. Главный недостаток заключается в том, что при уменьшении нагрузки на вал меньше 25% от номинала, происходит резкое увеличение частоты вращения, достигающее опасных для ДПТ значений. Поэтому для безотказной работы необходима постоянная нагрузка на вал.

Иногда применяются ДПТ со смешанным возбуждением, при котором одна обмотка ОВ соединяется последовательно якорной цепи, а другая параллельно.  В жизни редко встречается.

Реверсирование двигателей постоянного тока

Что бы изменить направление вращение ДПТ с последовательным возбуждением необходимо поменять направления тока в ОВ или обмотке якоря. Практически, это делается изменением полярности: меняем плюс с минусом местами. Если же поменять одновременно полярность в цепях возбуждения и якоря, тогда направление вращения не изменится. Аналогично делается реверс и для моторов, работающих на переменном токе.

Реверсирование ДПТ с параллельным или смешанным возбуждением лучше производить изменением направления электрического тока в обмотке якоря. При разрыве обмотки возбуждения, ЭДС достигает опасных величин и возможен пробой изоляции проводов.

Регулирование оборотов двигателей постоянного тока

ДПТ с последовательным возбуждением проще всего регулировать переменным сопротивлением в цепи якоря. Регулировать можно только на уменьшение числа оборотов в соотношении 2:1 или 3:1. При этом происходят большие потери в регулировочном реостате (R рег). Данный метод используется в кранах и электрических тележках, у которых бывают частые перерывы в работе. В других случаях используется регулировка оборотов вверх от номинала при помощи реостата в цепи обмотки возбуждения, как показано на правом рисунке.

ДПТ с параллельным возбуждением так же можно регулировать частоту оборотов вниз при помощи сопротивления в цепи якоря, но не более 50 процентов от номинала. Опять же будет нагрев сопротивления из-за потерь электрической энергии в нем.

Увеличить же обороты максимум в 4 раза позволяет реостат в цепи ОВ. Самый простой и распространенный метод регулировки частоты вращения.

На практике в современных электромоторах данные методы регулировки из-за своих недостатков и ограниченности диапазона регулирования редко применяются. Используются различные электронные схемы управления.

jelektro.ru

Двигатель постоянного тока

Двигатели постоянного тока предназначены для превращения энергии постоянного тока в механическую работу.

Электродвигатели постоянного тока, намного меньше распространены, нежели двигатели переменного тока. Это связано в первую очередь со сравнительной дороговизной, более сложным устройством, сложностями в обеспечении питания. Но, несмотря на все эти недостатки, ДПТ имеют немало плюсов. Например, двигатели переменного тока, сложно регулировать, ДПТ же отлично регулируются массой способов. Кроме того ДПТ имеют более жесткие механические характеристики и позволяют обеспечить большой пусковой момент.

Электродвигатели постоянного тока применяются в качестве тяговых двигателей, в электротранспорте, в качестве различных исполнительных устройств.

Устройство двигателей постоянного тока

Конструкция двигателя постоянного тока аналогична двигателю переменного тока, но все же имеются существенные различия. На станине 7, которая изготавливается из стали, установлена обмотка возбуждения в виде катушек 6. Между основными полюсами, могут устанавливаться дополнительные полюса 5, для улучшения свойств ДПТ. Внутри устанавливается якорь 4, который состоит из сердечника и коллектора 2, и устанавливается с помощью подшипников 1 в корпус двигателя. Коллектор является существенным отличием от двигателей переменного тока. Он соединяется с щетками 3, что позволяет подавать или в генераторах, наоборот снимать напряжение с якорной цепи.

Принцип действия

Принцип действия ДПТ основан на взаимодействии магнитных полей обмотки возбуждения и якоря. Можно представить, что вместо якоря у нас рамка, через которую протекает ток, а вместо обмотки возбуждения постоянный магнит с полюсами N и S. При протекании постоянного тока через рамку, на нее начинает действовать магнитное поле постоянного магнита, то есть рамка начинает вращаться, причем, так как направление тока не меняется, то и направление вращения рамки остается прежним.

При подаче напряжения на зажимы двигателя начинает протекать ток в обмотке якоря, на него, как мы уже знаем, начинает действовать магнитное поле машины, при этом якорь начинает вращаться, а так как якорь вращается в магнитном поле, начинает образовываться ЭДС. Эта ЭДС направлена против тока, в связи с этим её называют противоЭДС. Её можно найти по формуле

Где Ф – магнитный поток возбуждения, n – частота вращения, а Cе это конструктивный момент машины, который остается для нее постоянным.

Напряжение на зажимах больше чем противоЭДС на величину падения напряжение в якорной цепи.

А если домножить это выражение на ток, то получим уравнение баланса мощностей.

Левая часть уравнения UIя представляет собой мощность подаваемая электродвигателю, в правой части первое слагаемое EIя представляет собой электромагнитную мощность, а второе IяRя мощность потерь в цепи якоря.

Рекомендуем прочесть статью — пуск двигателя постоянного тока.

  • Просмотров: 1211
  • electroandi.ru

    Электродвигатели постоянного тока. Устройство и работа. Виды

    Электрические двигатели, приводящиеся в движение путем воздействия постоянного тока, применяются значительно реже, по сравнению с двигателями, работающими от переменного тока. В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, с питанием от обычных батареек с постоянным током. На производстве электродвигатели постоянного тока приводят в действие различные агрегаты и оборудование. Питание для них подводится от мощных батарей аккумуляторов.

    Устройство и принцип работы

    Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

    Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

    Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

    Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

    Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

    Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

    Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

    Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

    Виды

    Электродвигатели постоянного тока разделяют по характеру возбуждения.

    Независимое возбуждение

    При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

    Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

    Параллельное возбуждение

    Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

    Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

    Последовательное возбуждение

    В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

    Смешанное возбуждение

    Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

    Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

    Особенности эксплуатации

    Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

    Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

    Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

    Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

    Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

    На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

    Преимущества электродвигателей постоянного тока
    • Небольшие габаритные размеры.
    • Легкое управление.
    • Простая конструкция.
    • Возможность применения в качестве генераторов тока.
    • Быстрый запуск, особенно характерный для моторов с последовательной схемой возбуждения.
    • Возможность плавной регулировки скорости вращения вала.
    Недостатки
    • Для подключения и эксплуатации необходимо приобретать специальный блок питания постоянного тока.
    • Высокая стоимость.
    • Наличие расходных элементов в виде медно-графитных быстроизнашивающихся щеток, изнашивающегося коллектора, что значительно снижает срок эксплуатации, и требует периодического технического обслуживания.
    Сфера использования

    Широко популярными двигатели постоянного тока стали в электрическом транспорте. Такие двигатели обычно входят в конструкции:

    • Электромобилей.
    • Электровозов.
    • Трамваев.
    • Электричек.
    • Троллейбусов.
    • Подъемно-транспортных механизмов.
    • Детских игрушек.
    • Промышленного оборудования с необходимостью управлением скорости вращения в большом диапазоне.
    Похожие темы:

     

    electrosam.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *