Тугоплавкий металл – Наиболее тугоплавкий металл — Большая Энциклопедия Нефти и Газа, статья, страница 1

Содержание

Тугоплавкие металлы — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 июня 2018; проверки требуют 16 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 июня 2018; проверки требуют 16 правок.
H He
LiBe BCNOFNe
NaMg AlSiPSClAr
KCaSc TiVCrMnFeCoNiCuZnGaGeAsSeBrKr
RbSrY ZrNbMoTcRuRhPdAgCdInSnSbTeIXe
CsBaLa*HfTaWReOsIrPtAuHgTlPbBiPoAtRn
FrRaAc**RfDbSgBhHsMtDsRg
 *CePrNdPmSmEuGdTbDyHoEr
Tm
YbLu
 **ThPaUNpPuAmCmBkCfEsFmMdNoLr
Тугоплавкие металлыРасширенная группа тугоплавких металлов[1]

Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному. Основными пред

ru.wikipedia.org

Тугоплавкие металлы — список, применение тугоплавких металлов

Определение «тугоплавкие металлы» не требует дополнительных пояснений в силу исчерпывающей информативности самого термина. Единственным нюансом остается пороговая температура плавления, после которой вещество можно считать тугоплавким.

Разногласия в критическом параметре

Одни источники устанавливают пороговую величину как 4000 F. В переводе на привычную шкалу это дает 2204 0С. Согласно этому критерию, к жаропрочным относятся только пять элементов: вольфрам, ниобий, рений, тантал и молибден. Например, температура плавления вольфрама составляет 3422 0С.

Видео — плавка вольфрама водородной горелкой

Другое утверждение позволяет расширить класс температуростойких материалов, поскольку принимает за точку отсчета температуру плавления железа – 1539 0С. Это позволяет увеличить список еще на девять элементов, включив в него титан, ванадий, хром, иридий, цирконий, гафний, родий, рутений и осмий.

Существует еще несколько пороговых величин температуры, однако они не получили широкого распространения.

Сравнительная таблица степени тугоплавкости чистых металлов

Следует отметить, что тугоплавкие материалы не ограничиваются исключительно металлами. К этой категории относится ряд соединений – сплавы и легированные металлы, разработанных, чтобы улучшить определенные характеристики исходного материала. Относительно чистых элементов, можно привести наглядную таблицу степени их температурной устойчивости. Возглавляет ее самый тугоплавкий металл, известный на сегодня, – вольфрам с температурой плавления 3422 0С. Такая осторожная формулировка связана с попытками выделить металлы, обладающие порогом расплава, превосходящим вольфрам. Поэтому вопрос, какой металл самый тугоплавкий, может в будущем получить совсем иное определение.

Пороговые величины остальных соединений приведены ниже:

Остается добавить еще один интересный факт, касающийся физических свойств жапропрочных элементов. Температура плавления некоторых из них чувствительная к чистоте материала. Ярким примером этому выступает хром, температура плавления которого может варьироваться от 1513 до 1920 0С, в зависимости от химического состава примесей. Поэтому, данные интернет пространства часто разнятся точными цифрами, однако качественная составляющая от этого не страдает.

Хром в чистом виде

Общие свойства жаропрочных материалов

Относительная схожесть физико-химических характеристик данных элементов, обусловлена общностью атомного строения и тем, что они оказываются переходными металлами. Напротив, различия в свойствах, связаны с их принадлежностью к широкому спектру групп Периодической таблицы: IV – VII.

Базовая общая характеристика тугоплавких материалов – прочные межатомные связи. Для их разрыва требуется высокая энергия, которая и обуславливает температуру плавления в тысячи градусов по Цельсию. Дополнительно, данное свойство сказывается на высоких значениях таких параметров тугоплавких металлов, как: твердость, механическая прочность, электрическое сопротивление.

Следующая характеристика, объединяющая данные элементы, – высокая химическая активность. Она связана с общей тенденцией тугоплавких металлов образовывать химические связи посредством свободной p- и частично заполненной d-орбитали, отдавая электроны с наружных уровней s и d. Это свойство затрудняет получение чистых тугоплавких металлов, разбивая технологическое производство на несколько этапов.

Строение жаропрочных элементов также идентично, все они характеризуются объемно-центрированной кубической кристаллической решеткой. Для этой структуры характерно «охрупчивание». Исключение составляет рений, обладающий гексагональной ячейкой. Переход в хрупкое состояние для каждого металла происходит при определенной температуре, регулирование которой достигается при помощи легирования.

Каждый тугоплавкий металл, по определению жаропрочный, однако не любой из них жаростойкий. Большинство тугоплавких металлов устойчивы к окислению и действию агрессивных сред: кислоты, щелочи; в обычных условиях. Однако, с повышением температуры до 400 0С их активность аномально возрастает. Это требует создания определенных условий эксплуатации. Поэтому, изделия из тугоплавких металлов, при повышенных температурах использования, часто помещают в атмосферу инертных газов или добиваются степени разреженности воздуха до условий вакуума.

Получение тугоплавких материалов

Как отмечалось ранее, основной препятствующий фактор производству жаропрочных металлов их высокая химическая активность, препятствующая выделению элементов в чистом виде.

Основной технологией получения остается порошковая металлургия. Данная методика позволяет получать порошки тугоплавких металлов различными способами:

  1. Восстановление триоксидом водорода. Процесс производится в несколько этапов, внутри многотрубных печей при 750 – 950 °С. Технология применима под порошки тугоплавких металлов: вольфрам и молибден.
  2. Восстановлением водородом перрената. Схема реализуется в производстве металлического рения. Рабочие температуры составляют около 500 °С. Заключительная стадия предусматривает отмывание порошка от щелочи. Для этого последовательно используется горячая вода и раствор соляной кислоты.
  3. Использование солей металлов. Технология развита для выделения молибдена. Основным сырьем выступает аммонийная соль металла и его металлический порошок, вводимый в смесь на уровне 5 — 15% от массы. Состав проходит термическую обработку 500 – 850 °С в проточном инертном газе. Восстановление металла проходит в атмосфере водорода при температурах 800 – 1000 °С.

Производство тугоплавких металлов — порошковая металлургия

Экскурсия на производство

Способы получения жаропрочных металлов продолжают совершенствоваться, как и химическая технология тугоплавких неметаллических и силикатных материалов, что связано с развитием ядерной энергетики, авиастроения, появлением новых моделей ракетных двигателей.

Одно из крупнейших предприятий по производству вольфрама на территории РФ – унечский завод тугоплавких металлов. Этот предприятие относительно молодое, строительство его началось в 2007 году на территории населенного пункта Унеча. Производственный акцент завода направлен на порошки тугоплавких металлов, точнее вольфрама и его карбидов.

В дальнейшем, для получения слитков рассыпчатую массу спекают или сдавливают прессом. Подобным образом порошки тугоплавких металлов обрабатываются для производства жаропрочных изделий.

Применение тугоплавких материалов

Применение чистых жаропрочных металлов имеет приоритеты по ряду направлений:

  • сверхзвуковая авиация;
  • производство космических кораблей;
  • изготовление управляемых снарядов, ракет;
  • электронная и вакуумная техника.

Космическая промышленность

Последний пункт затрагивает электроды электровакуумных радиоламп. Например, высокочистый ниобий используется для производства сеток, трубок электронных деталей. Также из него изготавливаются электроды – аноды электровакуумных приборов.

Электровакуумные радиолампы

Аналогичное применение свойственно молибдену, вольфраму. Эти металлы в чистом виде используются не только как нити накаливания, но и под электроды радиоламп, крючки, подвески электровакуумного оборудования. Монокристаллы вольфрама, напротив, эксплуатируются как подогреватели электродов, в частности катодов, а также при изготовлении электрических контактов, предохранителей.

Чистые ванадий и ниобий используются в ядерной энергетике, где их них изготовлены трубы атомных реакторов, оболочки тепловыделяющих элементов. Область применения высокочистого тантала – химия (посуда и аппаратура), поскольку металл обладает высокой стойкостью к коррозии.

Отдельно следует рассматривать тугоплавкий припой, поскольку он не включает металлов, имеющих высокие температуры плавления. Например, тугоплавкое олово не содержит порошки тугоплавких металлов. В качестве добавок тут используются медь, серебро, никель или магний.

Тугоплавкие металлы и сплавы востребованы как прокат, так и в других сферах. В частности, применение сплавов обусловлено способностью, модифицировать определенные свойства металла: понизить температуру охрупчивания, улучшить жаропорочные характеристики.

Прокат из тугоплавких металлов достаточно широк по ассортименту и включает:

  • полосы обычные и для глубокой вытяжки;
  • проволоку и прутки.

Термоэлектродная проволока вольфрам-рениевая

Наиболее крупным отечественным производителем данного типа продукции выступает опытный завод тугоплавких металлов и твердых сплавов.

Видео — тугоплавкие металлы

xlom.ru

тугоплавкие металлы — это… Что такое тугоплавкие металлы?

имеют температуру плавления выше температуры плавления железа (1535°C): Ti, Zr, Hf, V, Nb, Та, Cr, Mo, W, Re. Тугоплавки также платиновые металлы, но они по технической классификации относятся к благородным металлам.

ТУГОПЛА́ВКИЕ МЕТА́ЛЛЫ, металлы (см. МЕТАЛЛЫ), имеющие температуру плавления Тпл выше температуры плавления железа (1539 °С). К ним относятся титан (см. ТИТАН (химический элемент)) Ti (Тпл 1670оС), цирконий (см. ЦИРКОНИЙ) Zr (Тпл 1852оС), гафний (см. ГАФНИЙ) Hf (Тпл 2222оС), ванадий (см. ВАНАДИЙ) V (Тпл 1900оС), ниобий (см. НИОБИЙ) Nb (Тпл 2470оС), тантал (см. ТАНТАЛ (химический элемент)) Ta (Т
пл
2970оС), хром (см. ХРОМ) Cr (Тпл 1903оС), молибден (см. МОЛИБДЕН) Mo (Тпл 2620оС), вольфрам (см. ВОЛЬФРАМ) W (Тпл 3380оС), рений (см. РЕНИЙ) Re (Тпл 3180оС) и другие.
Химические свойства тугоплавких металлов схожи. Некоторая общность атомного строения определяет их физические, химические и физико-химические свойства, а, следовательно, и некоторые общие черты поведения в природе и технологии получения. Они имеют близкое электронное строение атомов и являются переходными элементами. Общность атомного строения состоит в способности атомов тугоплавких металлов отдавать электроны наружных s- и d-уровней, а также участвовать в образовании химических связей за счет частично заполненных d- и свободных р-орбиталей. В связи с этим атомы тугоплавких металлов обладают высокой активностью, которая определяет трудность сохранения ряда их соединений в стабильном состоянии. Так как межатомные связи в них очень прочные, эти металлы имеют высокую температуру плавления, повышенную механическую прочность, твердость, электрическое сопротивление. Как правило, эти металлы химически устойчивы к действию воздуха и многих агрессивных сред при низких температурах и небольшом нагревании, но становятся активными при повышенных. Поэтому при высоких температурах их эксплуатация осуществляется, как правило, в вакууме или в атмосфере инертных газов.
Эти металлы, кроме высокой температуры кипения, плавления и, соответственно, высокой температуры рекристаллизации (см. РЕКРИСТАЛЛИЗАЦИЯ), имеют одинаковую кристаллическую решетку — объемно-центрированную кубическую решетку (См. Структурные типы кристаллов (см. СТРУКТУРНЫЕ ТИПЫ КРИСТАЛЛОВ), структура вольфрама), (кроме Re и Hf), не имеют полиморфных переходов (кроме Hf), обладают высокой плотностью выше плотности железа (кроме V и Cr) и малым коэффициентом теплового расширения (кроме V). Для металлов, имеющих ОЦК-структуру, характерно охрупчивание при определенных температурах (исключение – Ta). Температура этого перехода зависит от природы металла, его чистоты, от размера зерна и других факторов. Так как эти металлы имеют высокую температуру перехода в хрупкое состояние, то их пластическое деформирование должно проводиться в нагретом состоянии.
Из-за высокой активности тугоплавких металлов выделение их в чистом виде технологически затруднено. Производство тугоплавких металлов характеризуется многостадийностью и сложностью технологических переделов. При получении тугоплавких металлов чаще всего используются методы порошковой металлургии (см. ПОРОШКОВАЯ МЕТАЛЛУРГИЯ), используется плавка электронным или лазерным лучом, зонная плавка, плазменная обработка и другие методы.
Механические свойства полученных металлов в значительной мере אАҐؑQϑ от их чистоты, степени деформации и условий термообработки. Металлы высокой чистоты могут быть получены химическими способами (ионная хроматография, йодидное рафинирование, дистилляция и ректификация галогенидов и других соединений металлов), электрометаллургическими (дуговая, электронно-лучевая, плазменная и лазерная плавки, зонная перекристаллизация с вытягиванием монокристаллов и др.) и электрохимическими в расплавленных средах ( электролитическое рафинирование, электрохимическое восстановление галогенидов, окислов и других соединений). Механическая обработка этих металлов трудна и часто требует их подогрева.
Изделия из тугоплавких металлов, как правило, получают методами порошковой металлургии (прессованием и спекание порошков) или методами электровакуумных технологий (плавлением электронным или лазерным лучом, плазменной обработкой и др.).
Самую высокую Тпл имеет вольфрам. В связи с высокой Тпл получение вольфрама в виде компактного слитка затруднено. Характерной особенностью вольфрама, отличающего его от других металлов, является высокая внутрикристаллическая прочность при очень слабом сцеплении между отдельными зернами, Поэтому спеченные изделия, обладающие мелкозернистым строением, хрупки и легко ломаются. В результате механической обработки ковкой и волочением вольфрам приобретает волокнистую структуру и излом его весьма затруднен. Этим объясняется гибкость тонких вольфрамовых нитей. При нагревании тянутого вольфрама до высоких температур начинается процесс рекристаллизации, т. е. укрупнение зерен. Для улучшения механических свойств вольфрама различные присадки. Вольфрам обладает наименьшим температурным коэффициентом линейного расширения среди всех чистых металлов. Поэтому из него изготавливают спаи с тугоплавкими стеклами, которые тоже имеют низкий температурный коэффициент линейного расширения.
Молибден — металл, по технологии обработки близкий к вольфраму. Микроструктура спеченного, кованого и тянутого молибдена сходна со структурой аналогично обработанного вольфрама; нерекристаллизованный молибден по механическим свойствам близок к вольфраму, но в рекристаллизованном состоянии отожженный мелкозернистый молибден характеризуется высокой пластичностью. Улучшение структуры и повышение механической прочности происходит при введении специальных присадок (окиси кремния или тория и др.). Среди всех тугоплавких металлов молибден обладает наименьшим удельным сопротивлением. Высокая прочность молибдена в сочетании с хорошей пластичностью делают его одним из лучших проводниковых материалов для изготовления деталей сложной конфигурации, работающих при высоких температурах. Его используют в качестве нагревательных элементов электрических печей, Такие элементы в защитной атмосфере могут устойчиво работать при температурах 1700оС, при которых еще слабо выражены процессы рекристаллизации.
Тантал, так же как вольфрам и молибден, получают методом порошковой металлургии, процесс спекания прессованных штабиков осуществляется в вауумных печах, так как тантал поглощает газы и становится хрупким. Механические операции ковки и протяжки в отличие от вольфрама и молибдена, производят при комнатной температуре, и в отличие от вольфрама и молибдена тантал не становится хрупким при нагревании в вакууме до высоких температур. Тантал используется в вакуумной технологии в качестве испарителей при осаждении тонких пленок различных веществ, его используют при производстве конденсаторов и тонкопленочных резисторов.
Ниобий обладает высокой газопоглощающей способностью в интервале температур 400—900оС, Поэтому в электровакуумных приборах конструктивные детали из ниобия одновременно выполняли функцию нераспыляемого геттера (см. ГЕТТЕР). Среди тугоплавких металлов ниобий имеет наименьшую работу выхода электронов. Поэтому его применяют в качестве накаливаемых катодов в мощных генераторных лампах. Среди всех элементарных веществ ниобий имеет самую высокую критическую температуру перехода в состояние сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) (9,2К). Поэтому его и соединения на его основе применяют для изготовления сверхпроводящих магнитов, СВЧ волноводов и т. д. В электровакуумной технике ниобий применяют для производства анодов, экранов и других деталей, а также для получения пленочных резисторов в микросхемах.
Платиновые металлы тоже относятся к группе тугоплавких, но по технической классификации их относят к благородным металлам.
Тугоплавкие металлы и сплавы на их основе, несмотря на дефицитность и высокую стоимость, являются основными проводниковыми материалами в электровакуумной промышленности. Они находят широкое применения в различных областях, их используют и самостоятельно, и в виде добавок в стали, работающие при высоких температурах, а также в различных сплавах, в частности, в качестве жаропрочных материалов (в самолётостроении, ракетной и космической технике, атомной энергетике, высокотемпературной технике). Применяются сплавы тугоплавких металлов, такие, как сплавы вольфрама с молибденом, молибдена с рением, вольфрама с рением, тантала с вольфрамом и др. Изменением содержания компонентов удается получать необходимые механические свойства и пластичность при заданных электрических и термических свойствах. Тугоплавкие металлы и их сплавы используются в качестве конструкционных материалов также в машиностроении, морском судостроении, электронной, электротехнической, химической, атомной промышленности и в др. отраслях техники.

dic.academic.ru

Тугоплавкие металлы — Мегаэнциклопедия Кирилла и Мефодия — статья

Химические свойства тугоплавких металлов схожи. Некоторая общность атомного строения определяет их физические, химические и физико-химические свойства, а, следовательно, и некоторые общие черты поведения в природе и технологии получения. Они имеют близкое электронное строение атомов и являются переходными элементами. Общность атомного строения состоит в способности атомов тугоплавких металлов отдавать электроны наружных s- и d-уровней, а также участвовать в образовании химических связей за счет частично заполненных d- и свободных р-орбиталей. В связи с этим атомы тугоплавких металлов обладают высокой активностью, которая определяет трудность сохранения ряда их соединений в стабильном состоянии. Так как межатомные связи в них очень прочные, эти металлы имеют высокую температуру плавления, повышенную механическую прочность, твердость, электрическое сопротивление. Как правило, эти металлы химически устойчивы к действию воздуха и многих агрессивных сред при низких температурах и небольшом нагревании, но становятся активными при повышенных. Поэтому при высоких температурах их эксплуатация осуществляется, как правило, в вакууме или в атмосфере инертных газов.

Эти металлы, кроме высокой температуры кипения, плавления и, соответственно, высокой температуры рекристаллизации, имеют одинаковую кристаллическую решетку — объемно-центрированную кубическую решетку (См. Структурные типы кристаллов, структура вольфрама), (кроме Re и Hf), не имеют полиморфных переходов (кроме Hf), обладают высокой плотностью выше плотности железа (кроме V и Cr) и малым коэффициентом теплового расширения (кроме V). Для металлов, имеющих ОЦК-структуру, характерно охрупчивание при определенных температурах (исключение – Ta). Температура этого перехода зависит от природы металла, его чистоты, от размера зерна и других факторов. Так как эти металлы имеют высокую температуру перехода в хрупкое состояние, то их пластическое деформирование должно проводиться в нагретом состоянии.Из-за высокой активности тугоплавких металлов выделение их в чистом виде технологически затруднено. Производство тугоплавких металлов характеризуется многостадийностью и сложностью технологических переделов. При получении тугоплавких металлов чаще всего используются методы порошковой металлургии, используется плавка электронным или лазерным лучом, зонная плавка, плазменная обработка и другие методы.

Механические свойства полученных металлов в значительной мере зависят от их чистоты, степени деформации и условий термообработки. Металлы высокой чистоты могут быть получены химическими способами (ионная хроматография, йодидное рафинирование, дистилляция и ректификация галогенидов и других соединений металлов), электрометаллургическими (дуговая, электронно-лучевая, плазменная и лазерная плавки, зонная перекристаллизация с вытягиванием монокристаллов и др.) и электрохимическими в расплавленных средах (электролитическое рафинирование, электрохимическое восстановление галогенидов, окислов и других соединений). Механическая обработка этих металлов трудна и часто требует их подогрева.

Изделия из тугоплавких металлов, как правило, получают методами порошковой металлургии (прессованием и спекание порошков) или методами электровакуумных технологий (плавлением электронным или лазерным лучом, плазменной обработкой и др.).

Самую высокую Тпл имеет вольфрам. В связи с высокой Тпл получение вольфрама в виде компактного слитка затруднено. Характерной особенностью вольфрама, отличающего его от других металлов, является высокая внутрикристаллическая прочность при очень слабом сцеплении между отдельными зернами, Поэтому спеченные изделия, обладающие мелкозернистым строением, хрупки и легко ломаются. В результате механической обработки ковкой и волочением вольфрам приобретает волокнистую структуру и излом его весьма затруднен. Этим объясняется гибкость тонких вольфрамовых нитей. При нагревании тянутого вольфрама до высоких температур начинается процесс рекристаллизации, т. е. укрупнение зерен. Для улучшения механических свойств вольфрама различные присадки. Вольфрам обладает наименьшим температурным коэффициентом линейного расширения среди всех чистых металлов. Поэтому из него изготавливают спаи с тугоплавкими стеклами, которые тоже имеют низкий температурный коэффициент линейного расширения.

Молибден — металл, по технологии обработки близкий к вольфраму. Микроструктура спеченного, кованого и тянутого молибдена сходна со структурой аналогично обработанного вольфрама; нерекристаллизованный молибден по механическим свойствам близок к вольфраму, но в рекристаллизованном состоянии отожженный мелкозернистый молибден характеризуется высокой пластичностью. Улучшение структуры и повышение механической прочности происходит при введении специальных присадок (окиси кремния или тория и др.). Среди всех тугоплавких металлов молибден обладает наименьшим удельным сопротивлением. Высокая прочность молибдена в сочетании с хорошей пластичностью делают его одним из лучших проводниковых материалов для изготовления деталей сложной конфигурации, работающих при высоких температурах. Его используют в качестве нагревательных элементов электрических печей, Такие элементы в защитной атмосфере могут устойчиво работать при температурах 1700оС, при которых еще слабо выражены процессы рекристаллизации.

Тантал, так же как вольфрам и молибден, получают методом порошковой металлургии, процесс спекания прессованных штабиков осуществляется в вауумных печах, так как тантал поглощает газы и становится хрупким. Механические операции ковки и протяжки в отличие от вольфрама и молибдена, производят при комнатной температуре, и в отличие от вольфрама и молибдена тантал не становится хрупким при нагревании в вакууме до высоких температур. Тантал используется в вакуумной технологии в качестве испарителей при осаждении тонких пленок различных веществ, его используют при производстве конденсаторов и тонкопленочных резисторов.

Ниобий обладает высокой газопоглощающей способностью в интервале температур 400-900оС, Поэтому в электровакуумных приборах конструктивные детали из ниобия одновременно выполняли функцию нераспыляемого геттера. Среди тугоплавких металлов ниобий имеет наименьшую работу выхода электронов. Поэтому его применяют в качестве накаливаемых катодов в мощных генераторных лампах. Среди всех элементарных веществ ниобий имеет самую высокую критическую температуру перехода в состояние сверхпроводимости (9, 2К). Поэтому его и соединения на его основе применяют для изготовления сверхпроводящих магнитов, СВЧ волноводов и т. д. В электровакуумной технике ниобий применяют для производства анодов, экранов и других деталей, а также для получения пленочных резисторов в микросхемах.

Платиновые металлы тоже относятся к группе тугоплавких, но по технической классификации их относят к благородным металлам.

Тугоплавкие металлы и сплавы на их основе, несмотря на дефицитность и высокую стоимость, являются основными проводниковыми материалами в электровакуумной промышленности. Они находят широкое применения в различных областях, их используют и самостоятельно, и в виде добавок в стали, работающие при высоких температурах, а также в различных сплавах, в частности, в качестве жаропрочных материалов (в самолётостроении, ракетной и космической технике, атомной энергетике, высокотемпературной технике). Применяются сплавы тугоплавких металлов, такие, как сплавы вольфрама с молибденом, молибдена с рением, вольфрама с рением, тантала с вольфрамом и др. Изменением содержания компонентов удается получать необходимые механические свойства и пластичность при заданных электрических и термических свойствах. Тугоплавкие металлы и их сплавы используются в качестве конструкционных материалов также в машиностроении, морском судостроении, электронной, электротехнической, химической, атомной промышленности и в др. отраслях техники.

megabook.ru

Тугоплавкие металлы: вольфрам, молибден, ниобий, тантал

Тугоплавкие металлы были выделены в отдельный класс благодаря объединяющему их свойству — высокой температуре плавления. Она выше, чем у железа, которая равна 1539 °C. Поэтому металлы данной группы и получили такое название. Они принадлежат к числу так называемых редкоземельных элементов. Так, например, по распространённости в земной коре ниобий и тантал составляют 3%, а цирконий только 2%.

Тугоплавкие металлы

По температурному показателю плавления кроме перечисленных, к ним относятся металлы, так называемой платиновой группы. Ещё их называют благородными или драгоценными.

Определённая схожесть строения атома обусловила схожесть их свойств. На основании этого можно обобщить некоторые черты проявления таких металлов в земной коре и определиться с технологией их добычи, производства и переработки.

Свойства тугоплавких металлов

За счёт того, что они расположены в соседних группах периодической таблицы, физические свойства у тугоплавких металлов достаточно близкие:

  • Плотность металла колеблется в интервале от 6100 до 10000 кг/м3. По этому показателю выделяется только вольфрам. У него он равен 19000 кг/м3.
  • Температура плавления. Она превышает температуру плавления железа и колеблется от 1950 °С у ванадия до 3395 °С у вольфрама.
  • Удельная теплоёмкость у них незначительно отличается друг от друга и находится в пределах от 200 до 400 Дж/(кг-град).
  • Коэффициент теплопроводности сильно меняется от элемента к элементу. Если у ванадия он равен 31 Вт/(м-град), то у вольфрама он достигает величины в 188 Вт/(м-град).

Физические свойства тугоплавких металлов

Химические свойства также достаточно схожие:

  • Очень похожее строение атома.
  • Обладают высокой химической активностью. Это свойство определяет основные трудности при сохранении стабильности их соединений.
  • Прочность межатомных связей определяет высокую температуру плавления. Это обстоятельство объясняет высокую механическую прочность, твёрдость и электрические характеристики (в частности сопротивление).
  • Проявляют хорошую устойчивость при воздействии различных кислот.

К основным недостаткам тугоплавких металлов относятся:

  • Низкая коррозийная стойкость. Процесс окисления происходит достаточно быстро. Его разделяют на две последовательные стадии. Непосредственное взаимодействие металла с кислородом окружающего воздуха, что приводит к образованию оксидной плёнки. На второй стадии происходит процесс диффузии (проникновения) атомов кислорода через образовавшуюся оксидную плёнку.
  • Трудности со свариваемостью тугоплавких металлов. Это вызвано высокой химической активностью к окружающему воздуху при высоких температурах, хрупкостью при насыщении различными примесями. Кроме того, трудно определить точку перегрева и практически невозможно контролировать повышение предела текучести.
  • Трудности их получения использования в чистом виде без примесей.
  • Необходимость применения специальных покрытий от быстрого окисления. Для сплавов, основу которых составляет вольфрам и молибден, разработаны силицидные покрытия.
  • Трудности, связанные с механической обработкой. Для качественной обработки их сначала необходимо нагреть.

Производство тугоплавких металлов

Все способы производства тугоплавких металлов основаны на методиках так называемой порошковой металлургии. Сам процесс происходит в несколько этапов:

  1. На начальном этапе получают порошок металла.
  2. Затем методами химического восстановления (обычно аммонийных солей или оксидов) выделяют требуемый металл. Такое выделение получается в результате воздействия на порошок водорода.
  3. На завершающем этапе получают химическое соединение, называемое гексафторидом соответствующего металла, и уже из него сам металл.

Применение тугоплавких металлов

Начиная со второй половины двадцатого века тугоплавкие металлы стали применяться во многих отраслях промышленного производства. Порошки тугоплавких металлов используются для производства первичной продукции. Тугоплавкие металлы вырабатывают в виде проволоки, слитков, арматуры, прокатного металла и фольги.

Отдельное место такие металлы занимают в технологии выращивания лейкосапфиров. Они относятся к классу монокристаллов и называются искусственными рубинами.

Изделия из тугоплавких металлов входят в состав бытовых и промышленных электрических приборов, огнеупорных конструкций, деталей для двигателей авиационной и космической техники. Особое место занимают тугоплавкие металлы при производстве деталей сложной конфигурации.

Вольфрам

Этот металл открыли в далёком 1781 г. Его температура плавления равна 3380 °С. Поэтому он на сегодняшний день является самым тугоплавким металлом. Получают вольфрам из специального порошка, подвергая его химической обработке. Этот процесс основан на прессовании с последующим спеканием при высоких температурах. Далее его подвергают ковке и волочению на станках. Это связано с его наибольшей тугоплавкостью. Так получают волокнистую структуру (проволоку). Она достаточно прочная и практически не ломается. На конечном этапе его раскатывают в виде тонких нитей или гибкой ленты. Для проведения механической обработки необходимо создать защитную среду из инертного газа. В этой среде температура должна превышать 400 °С. При температуре окружающей среды он приобретает свойства парамагнетика. Ему присущи следующие недостатки:

  • сложность в создании условий для механической обработки;
  • быстрое образование на поверхности оксидных плёнок. Если в контакте имеются серосодержащие вещества, образуются сульфидные плёнки;
  • создание хорошего электрического контакта между несколькими деталями возможно только при создании большого давление.

Вольфрам

Для улучшения свойств вольфрама (тугоплавкости, устойчивости к коррозии, износостойкости) в него добавляют легирующие металлы. Например, рений и торий.

Металл используется для производства нитей накаливания для  осветительных и сушильных ламп. Его добавляют в сварочные электроды, элементы электронных ламп и рентгеновских трубок. Также применяется при производстве элементов ракет, в реактивных двигателях, артиллерийских снарядах.

Молибден

По внешнему виду и характеристикам очень похож на вольфрам. Главным отличием является то, что его удельный вес почти в два раза меньше. Его получают аналогичным образом. Он широко применяется в радиоэлектронной промышленности, для изготовления различных испарителей в вакуумной технике, разрывных электрических контактов. Как и вольфрам, он является парамагнетиком. Для изготовления электродов стекловаренных (стеклоплавильных) печей он просто незаменим.

Ниобий

Температура плавления ниобия составляет 2741 °С. По своим химическим, физическим и механическим свойствам очень напоминает тантал. Он достаточно пластичен. Обладает хорошей свариваемостью и высокой теплопроводностью даже без дополнительного нагрева. Как и все остальные металлы его получают из порошка. Конечные заготовки из ниобия – проволока, лента, труба.

Ниобий

Сам металл и его сплавы демонстрируют эффект сверхпроводимости. Его широко применяют для изготовления анодов, экранных и антидинатронных сеток в электровакуумных приборах. Благодаря хорошей пористости, его успешно применяют в качестве газопоглотителей. В микроэлектронике он идёт на изготовление резисторов в микросхемах.

Ниобий хорошо себя проявил в качестве легирующей добавки. Используется при создании различных жаростойких конструкций, агрегатов работающих в агрессивных и радиоактивных средах. Из сплава стали и ниобия изготавливают некоторые элементы реактивных двигателей. Благодаря его свойству не взаимодействовать с радиоактивными веществами при высоких температурах, например, с ураном, применяется при изготовлении оболочек для урановых элементов, отводящих тепло в реакторах.

Тантал

Внешне имеет светло-серый цвет с небольшим голубоватым оттенком. Температура плавления близка к 3000 °С. Хорошо поддается основным видам обработки. Его можно ковать, прокатывать, производить волочение для изготовления проволоки. Эти операции не требуют значительного нагрева. Для удобства дальнейшего использования тантал изготавливают в форме фольги и тонких листов. Повышение температуры вызывает активное взаимодействие со всеми газами, кроме инертных – с ними никаких реакций не наблюдается.

Тантал

Из тантала производят внутренние элементы генераторных ламп (магнетронов и клистронов). Он активно используется при производстве пластин в электролитических конденсаторах. Очень удобен для изготовления пленочных резисторов. Активно применяется для изготовления так называемых лодочек в испарителях, в которых осуществляется термическое напыление различных материалов на тонкие пленки.

Ввиду ряда своих уникальных качеств, считается незаменимым в ядерной, аэрокосмической и радиоэлектронной промышленности.

Рений

Был открыт позже всех из перечисленных ранее металлов. Он полностью оправдывает свое название «редкоземельный металл», потому что находится в небольших количествах в составе руды других металлов, таких как платина или медь. В основном его используют как легирующую добавку. Полученные сплавы приобретают хорошие характеристики прочности и ковкости. Это один из самых дорогих металлов, поэтому его применение приводит к резкому увеличению цены всего оборудования. Те не менее, его применяют в качестве катализатора.

Хром

Хром — уникальный металл. Широко применяется в промышленности благодаря своим замечательным свойствам: прочности, устойчивости к внешним воздействиям (нагреву и коррозии), пластичности. Достаточно твердый, но хрупкий металл. Имеет серо-стальной цвет. Весь необходимый хром извлекают из руды двух видов хромита железа или окиси хрома.

Основными его свойствами являются:

  • Даже при нормальной температуре обладает почти идеальным антиферромагнитным упорядочением. Это придаёт ему отличные магнитные свойства.
  • По-разному реагирует на воздействие водорода и азота. В первом случае сохраняет свою прочность. Во втором, становится хрупким и полностью теряет все свои пластические свойства.
  • Обладает высокой устойчивостью против коррозии. Это происходит благодаря тому, что при взаимодействии с кислородом на поверхности образуется тонкая защитная плёнка. Она служит для защиты от дальнейшей коррозии.

Кристаллы хрома

Он используется в металлургической, химической, строительной индустриях. Хром, как легирующая добавка, обязательно используется для производства различных марок нержавеющей стали. Особое место занимает при изготовлении такого материала как нихром. Этот материал способен выдерживать очень высокие температуры. Поэтому его используют в различных нагревательных элементах. Хромом активно покрывают поверхности различных деталей (металла, дерева, кожи). Это процесс осуществляется с помощью гальваники.

Токсичность некоторых солей хрома используют для сохранения древесины от повреждения, вредного воздействия грибков и плесени. Они также хорошо отпугивают муравьёв, термитов, насекомых разрушителей деревянных конструкций. Солями хрома обрабатывают кожу. Хром применяется при изготовлении различных красителей.

Благодаря высокой теплостойкости его используют как огнеупорный материал для доменных печей. Каталитические свойства соединений хрома успешно используют при переработке углеводородов. Его добавляют при производстве магнитных лент наивысшего качества. Именно он обеспечивает низкий коэффициент шума и широкую полосу пропускания.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

 

stankiexpert.ru

Тугоплавкие металлы — Большая советская энциклопедия

Титан (лат. Titanium), Ti, химический элемент IV группы периодической системы Менделеева; атомный номер 22, атомная масса 47,90; имеет серебристо-белый цвет, относится к лёгким металлам. Природный Т…

Цирконий (лат. Zirconium), Zr, химический элемент IV группы периодической системы Менделеева; атомный номер 40, атомная масса 91,22; серебристо-белый металл с характерным блеском. Известно пять…

Гафний (лат. Hafnium), Hf, химический элемент IV группы периодической системы Менделеева; порядковый номер 72, атомная масса 178, 49; серебристо-белый металл. В состав природного Г. входят 6…

Ванадий (Vanadium), V, химический элемент V группы периодической системы Менделеева; атомный номер 23, атомная масса 50,942; металл серо-стального цвета. Природный В. состоит из двух изотопов: 51V (99…

Ниобий (лат. Niobium), Nb, химический элемент V группы периодической системы Менделеева; атомный номер 41, атомная масса 92,9064; металл серо-стального цвета. Элемент имеет один природный изотоп 93Nb…

Тантал (латинское Tantalum), Та, химический элемент V группы периодической системы Менделеева; атомный номер 73, атомная масса 180,948; металл серого цвета со слегка свинцовым оттенком. В природе…

Хром (лат. Cromium), Cr, химический элемент VI группы периодической системы Менделеева, атомный номер 24, атомная масса 51,996; металл голубовато-стального цвета. Природные стабильные изотопы: 50Cr(4…

Молибден (лат. Molybdaenum), Mo, химический элемент VI группы периодической системы Менделеева; атомный номер 42, атомная масса 95,94; светло-серый тугоплавкий металл. В природе элемент представлен…

Вольфрам (лат. Wolframium), W, химический элемент VI группы периодической системы Менделеева, порядковый номер 74, атомная масса 183,85; тугоплавкий тяжёлый металл светло-серого цвета. Природный В…

Рений (Rhenium), Re, химический элемент VII группы периодической системы Менделеева, атомный номер 75, атомная масса 186,207. Светло-серый металл. В природном Р. два изотопа: стабильный 185Re (37,07%)…

Редкие металлы, условное название группы металлов (свыше 50), перечень которых дан в таблице. Это металлы, относительно новые в технике или ещё мало используемые и освоенные. Масштабы производства и…

Переходные элементы, переходные металлы, химические элементы Iб — VIIIб подгрупп периодической системы элементов Д. И. Менделеева. Особенность строения атомов П. э. заключается в незавершённости их…

Экстракция (от позднелат. extractio — извлечение), экстрагирование, процесс разделения смеси жидких или твёрдых веществ с помощью избирательных (селективных) растворителей (экстрагентов). Процесс Э…

Сорбция (от лат. sorbeo — поглощаю), поглощение твёрдым телом или жидкостью вещества из окружающей среды. Поглощающее тело называется сорбентом, поглощаемое им вещество — сорбатом (или сорбтивом)…

Ректификация (от позднелатинского rectificatio — выпрямление, исправление), один из способов разделения жидких смесей, основанный на различном распределении компонентов смеси между жидкой и паровой…

Ферросплавы, полупродукты металлургического производства — сплавы железа с кремнием, марганцем, хромом и др. элементами, используемые при выплавке стали (для раскисления и легирования жидкого металла…

Легирование (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю), введение в состав металлических сплавов легирующих элементов для придания сплавам определённых физических, химических или…

Порошковая металлургия, область техники, охватывающая совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них (или их смесей с…


Тугоплавкие металлы, по технической классификации — металлы, плавящиеся при температуре выше 1650—1700 °С; в число Т. м. (таблица) входят титан Ti, цирконий Zr, гафний Hf (IV группа периодической системы), ванадий V, ниобий Nb, тантал Ta (V группа), хром Cr, молибден Mo, вольфрам W (VI группа), рений Re (VII группа). Все эти элементы (кроме Cr) относятся к редким металлам, a Re — к рассеянным редким металлам. (Высокой температурой плавления характеризуются также металлы платиновой группы и торий, но они по технической классификации не относятся к Т. м.) Тугоплавкие металлы

Название

Хим.

знак

Атом-

ный

номер

Внешняя электрон-

ная обо- лочка

Темпе- ратура плавле-

ния

Титан

Ванадий

Хром

Цирконий

Ниобий

Молибден

Гафний

Тантал

Вольфрам

Рений

Ti

V

Cr

Zr

Nb

Mo

Gf

Ta

W

Re

22

23

24

40

41

42

72

73

74

75

3d2 4s2

3d3 4s2

3d5 4s1

4d2 5s1

4d4 5s1

4d5 5s1

5d2 6s2

5d3 6s2

5d4 6s2

5d5 6s2

1688

1900

1903

1852

2500

2620

2222

2996

3410

3180

Т. м. имеют близкое электронное строение атомов и являются переходными элементами с достраивающимися d-oболочками (см. табл.). В межатомных связях Т. м. участвуют не только наружные s-электроны, но и d-электроны, что определяет большую прочность межатомных связей и, как следствие, высокую температуру плавления, повышенные механические прочность, твёрдость, электрическое сопротивление. Т. м. имеют близкие химические свойства. Переменная валентность Т. м. обусловливает многообразие их химических соединений; они образуют металлоподобные тугоплавкие твёрдые соединения.

В природе Т. м. в свободном виде не встречаются, в минералах часто изоморфно замещают друг друга: Hf изоморфно ассоциирован с Zr, Ta с Nb, W с Mo; разделение этих пар — одна из весьма трудных задач химической технологии, решаемая обычно методами экстракции или сорбции из растворов либо ректификации хлоридов.

Физические и химические свойства. Кристаллические решётки Т. м. IV группы и Re гексагональные, остальных, а также Ti выше 882 °C, Zr выше 862 °C и Hf выше 1310°C — объёмно-центрированные кубические. Ti, V и Zr — относительно лёгкие металлы, а самые тугоплавкие из всех металлов — Re и W — по плотности уступают лишь Os, lr и Pt. Чистые отожжённые Т. м. — пластичные металлы, поддаются как горячей, так и холодной обработке давлением, особенно хорошо — Т. м. IV и V групп. Для применения Т. м. важно, что благоприятные механические свойства их и сплавов на их основе сохраняются до весьма высоких температур; это позволяет рассматривать их, в частности, как жаропрочные конструкционные материалы. Однако механические свойства Т. м. в значительной мере зависят от их чистоты, степени деформации и условий термообработки. Так, Cr и его сплавы даже при малом содержании некоторых примесей становятся непластичными, a Re, имеющий высокий модуль упругости, подвержен сильному наклёпу, вследствие чего даже при небольшой степени деформации его необходимо отжигать. Особенно сильно на свойства Т. м. влияют примеси углерода (исключая Re), водорода (для металлов IV и V групп), азота, кислорода, присутствие которых делает Т. м. хрупкими. Характерные свойства всех Т. м.— устойчивость к действию воздуха и многих агрессивных сред при комнатной температуре и небольшом нагревании и высокая реакционная способность при больших температурах, при которых их следует нагревать в вакууме или в атмосфере инертных к ним газов. Особенно активны при нагревании Т. м. IV и V групп, на которые действует также водород, причём при 400—900 °C он поглощается с получением хрупких гидридов, а при нагревании в вакууме при 700—1000 °C вновь выделяется; этим пользуются для превращения компактных металлов в порошки путём гидрирования (и охрупчивания) металлов, измельчения и дегидрирования. Т. м. VI группы и Re химически менее активны (их активность падает от Cr к W), они не взаимодействуют с водородом, a Re — и с азотом; взаимодействие Mo с азотом начинается лишь выше 1500 °C, а W — выше 2000 °C. Т. м. способны образовывать сплавы со многими металлами.

Получение. Примерно 80—85% V, Nb, Mo (США, 1973) и значительные количества других Т. м., кроме Hf, Ta и Re, получают из рудных концентратов или технических окислов алюмино- или силикотермическими способами в виде ферросплавов для введения в стали с целью легирования; молибденовые концентраты при этом предварительно обжигают. Чистые Т. м. получают из рудных концентратов по сложной технологии в 3 стадии: вскрытие концентрата, выделение и очистка химических соединений, восстановление и рафинирование металла. Основой производства компактных Nb, Ta, Mo и W и их сплавов является порошковая металлургия, которая частично используется в производстве и др. Т. м. В металлургии всех Т. м. всё шире применяют дуговую, электроннолучевую и плазменную плавки. Т. м. и сплавы особо высокой чистоты производят в виде монокристаллов бестигельной электроннолучевой или плазменной зонной плавкой. Полуфабрикаты из Т. м. — листы, фольгу, проволоку, трубы и т.д. изготовляют обычными методами обработки металлов давлением с промежуточной термообработкой.

Применение. Огромное значение Т. м., сплавов и соединений связано с их исключительно благоприятными свойствами и сочетаниями свойств, характерными для отдельных Т. м. Важнейшая область применения большинства Т. м. — использование их в виде сплавов в качестве жаропрочных материалов, прежде всего в самолётостроении, ракетной и космической технике, атомной энергетике, высокотемпературной технике. Детали из сплавов Т. м. при этом обычно предохраняют жаростойкими покрытиями.

Т. м. и их сплавы используются в качестве конструкционных материалов также в машиностроении, морском судостроении, электронной, электротехнической, химической, атомной промышленности и в др. отраслях техники. Широкое применение находят окислы и многие др. химические соединения Т. м. Более подробно о свойствах, способах получения и практического использовании Т. м. см. в статьях об отдельных элементах и их сплавах.

Лит.: Тугоплавкие материалы в машиностроении. Справочник, М., 1967; Основы металлургии, т. 4, М., 1967; Савицкий Е. М., Бурханов Г. С., Металловедение сплавов тугоплавких и редких металлов, 2 изд., М., 1971; Крупин А. В., Соловьев В. Я., Пластическая деформация тугоплавких металлов, М., 1971; 3еликман А. Н., Меерсон Г. А., Металлургия редких металлов, М., 1973; Савицкий Е. М., Клячко В. С., Металлы космической эры, М., 1972; Химия и технология редких и рассеянных элементов, т. 1—2, М., 1965—69; «Engineering and Mining Journal», 1974, v. 175, March.

О. П. Колчин.


allencyclopedia.ru

Свойства тугоплавких металлов и сплавов

Металлы, которые плохо поддаются расплавке, называются тугоплавкими. Технически в эту группу входят пять основных и 9 дополнительных элементов периодической системы. Основными тугоплавкими металлами признаются те, что имеют температуру расплава больше 2-х тысяч градусов по Цельсию. Это ниобий, рений, тантал, молибден и вольфрам. К дополнительным тугоплавким металлоэлементам принято относить те из них, чья температура плавления составляет порядка 1700-1850 градусов по Цельсию. Это три элемента четвертого периода (титан, ванадий, хром), три элемента пятого периода (цирконий, рутений, родий) и три элемента шестого периода (гафний, осмий, иридий).


Столь высокая тугоплавкость металлов достигается благодаря строению их атомов. В них находятся электроны двух видов: обычные s-электроны и особые d-электроны. Последние, благодаря своему близкому расположению, делают связи между атомами очень прочными. Прочными настолько, что металл требуется нагреть на пару тысяч градусов, чтобы разорвать эти связи.

 

 

С химической точки зрения такие металлы похожи. Они легко образуют естественные хим. соединения, потому найти их в чистом виде не возможно. На открытом воздухе вступают в реакцию с кислородом, однако при нормальных температурах реакция идет вяло, а на поверхности металла образует защитная пленка. Зато если неплавкий металл нагреть, реакция ускорится во много раз, а материал будет подвержен коррозии, станет хрупким и потеряет часть своих природный свойств. Похожим образом на некоторые неплавкие металлы действуют углерод, водород и азот. Именно поэтому тугоплавкие материалы предпочитают использовать в вакууме, оградив от влияния «опасных» веществ.


Такие похожие химически, физические свойства тугоплавких металлов весьма различны, что обусловлено разностью форм их кристаллических решеток. У одних она гексагональная, а у других — кубическая, объемно центрированная. Отсюда и отличия в плотности, твердости и сопротивляемости сжатию.

 

Тугоплавкие металлы и сплавы

 

Однако исследования не стоят на месте, а потому сейчас большинство свойств тугоплавких элементов можно скорректировать путем их легирования, то есть получения сплавов. Сплавы на основе неплавких металлов сохраняют свою непревзойденную устойчивость к воздействия высоких температур и сопротивление к деформированию. При этом они еще и приобретают такие полезные свойства, как большая или меньшая пластичность, коррозионостойкость, жаропрочность, упругость и пр.


Две трети всех неплавких металлов получают из руды, а точнее их так называемых рудных концентратов. Это значит, что помимо основного элемента в руде находится множество вспомогательных. Прежде чем получится хоть грамм тугоплавкого элемента необходимо концентрат «распилить», химически очистить от всего ненужного, а затем восстановить или, как еще говорят, рафинировать. В зависимости от того, насколько чистый металл нужен, используют дугообразную, электронно-лучевую или плазменную плавку. В последней получаются металлы самого лучшего вида. Готовые тугоплавкие металлоэлементы представляют собой порошок или гранулы, правда иногда их сразу подвергают обработке и получают тугоплавкие заготовки — листы, пленку, трубы, нити и пр. Получением как заготовок, так и чистых металлов занимаются заводы тугоплавких металлов и сплавов. Один из старейших в России — ОАО «Опытный завод тугоплавких металлов и твёрдых сплавов» — работает в данной сфере с 48-го года XX века. Еще один советский, а ныне Узбекский завод — ОАО «УзКТЖМ», существует с 1956 года.


Применение тугоплавких металлов основано на максимально эффективном использовании их природных свойств. Среди отраслей народного хозяйства, прибегающих к помощи тугоплавких металлоэлементов, можно выделить строительство машин, судов, космических аппаратов и их деталей, атомную энергетику, ядерную промышленность и химическую промышленность, электроснабжение и металлургию. При этом практически нигде тугоплавкие металлоэлементы не используются «в живую», обычно для этих целей берут их различные сплавы.

 

Свойства самых тугоплавких металлов

 

 

 

Так самый тугоплавкий металл в мире (вольфрам) обычно легируется рением, торием, никелем при участии меди и/или железа. Первый делает сплав более коррозионстойким, второй — более надежным, а третий — придает небывалую плотность. Следует обратить внимание, что во всех сплавах вольфрама содержится не более 4/5. Из-за того, что вольфрам одновременно и твердый, и тугоплавкий его обычно применяют в электроснабжении, строении приборов, изготовлении оружия, снарядов, боеголовок и ракет. Более плотные сплавы (на базе никеля) применяют для производства клюшек для игры в гольф. Вольфрам образует и так называемые псевдосплавы. Дело в том, что в них металл не легируется, а наполняется жидким серебром или медью. За счет разницы в температурах расплава получаются лучшие тепло и электропроводные свойства.

 

 

Молибден в отличие от вольфрама можно легировать лишь не некоторые сотые долей и получать при этом отличные свойства. Основными легирующими элементами молибдена являются: титан+цирконий и вольфрам. С последним сплав получается чрезвычайно инертным, с большим сопротивлением. Это дает возможность использовать его для изготовления форм для литья цинковых деталей. Особое направления использования молибдена — в качестве легирующего элемента в стальных сплавах. Сплавы сталь+молибден обладают хорошей износостойкостью и невысокими показателями трения. Сталь+молибден применяют в для изготовления труб, трубных конструкций, автомобиле и машиностроении.

 

 

Ниобий и тантал как братья, всегда находятся рядом. И тот и другой применяют в изготовлении электролитических конденсаторов .Ниобий иногда также легируют  гафнием и титаном, чтобы он не вступал в реакцию с кислородов во время нагрева. Отжиг ниобия позволяет получать металл с разными коэффициентами упругости и твердости. Ниобий можно встретить в электроснабжении, ракето- и судостроении, ядерной промышленности и пр. Тантал же благодаря своей инертности к кислотам используется в медицине и производстве высокоточной электроники.

 

 

Самый редкий и самый дорогой металл из представленных — рений. Его сложно добывать, поэтому в сплавах он выступает не в качестве основного элемента, а в качестве легирующего. Нередким является его применение с медью и платиной. Рений упрочняет такие образования и улучшает их способность к ковке. Используется в ядерной, химической (катализатор) и электронной промышленностях.


Использование полезных свойств тугоплавких металлов и сплавов рассматривается учеными всего мира, как весьма перспективное направление научных изысканий.

promplace.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *