Трансформатор электрический – режимы, схема, назначение, из чего состоит

Содержание

Электрический трансформатор — Викизнание... Это Вам НЕ Википедия!

Трансформатор силовой ОСМ1

Электрический трансформатор (от лат. transformo — превращать) - это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты[1].

Трансформаторы широко применяются в линиях электропередач, распределительных и бытовых устройствах. Передача электроэнергии осуществляется с меньшими потерями при высоком напряжении и малой силе тока. Поэтому, обычно линии электропередач есть высоковольтными. В то же время бытовые и промышленные машины требуют большой силы тока и малой напряжения, поэтому перед употреблением электроэнергия превращается в низковольтную. Трансформаторы нашли применение также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Коэффициент полезного действия современных трансформаторов, особенно повышенной мощности, весьма высок и достигает значений 0,95...0996.

В 1831 году английским физиком Майклом Фарадеем при проведении им основополагающих исследований было открыто явление электромагнитной индукции, что лежит в основе принципа работы электрического трансформатора.

С изобретением трансформатора возник технический интерес к переменного тока. Русский электротехник М. О. Доливо-Добровольский в 1889 г. разработал для немецкой фирмы «Allgemeine Elektricitäts-Gesellschaft» первый трехфазный трансформатор. На электротехнической выставке в Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал исследовательскую высоковольтную линию трехфазного тока на расстояние 175 км. Трехфазный генератор имел мощность 230 кВт при напряжении 95 В.

В 1891 году Никола Тесла изобрел резонансный трансформатор для генерации высокого напряжения при высокой частоте/

Строение и принцип действия[править]

Схематическое устройство трансформатора. 1 — первичная обмотка, 2 — вторичная

Самый простой трансформатор состоит из обмоток на совместном сердцевине. Одна из обмоток подключена к источники переменного тока. Эта обмотка называется первичной. Другая обмотка, вторичная, служит источником тока для нагрузки. Создан током в первичной обмотке переменный магнитный поток вызывает появление э.д.с. во вторичной обмотке, поскольку обе обмотки имеют общее ядро. Соотношение э.д.с во вторичной обмотке и напряжения на первичной зависит от количества витков в обоих обмотках. В идеальном случае

,

где индексом P обозначены величины, касающиеся первичной обмотки, а индексу S - соответствующие величины для вторичной обмотки, U - напряжение, N - число витков, I - сила тока.

Таким образом, преобразования напряжения и силы тока в трансформаторов определяется количеством витков в первичной и вторичной обмотках. Напряжение пропорционально количеству витков, тогда как сила тока обратно пропорциональна ей.

Потери энергии[править]

В реальных трансформаторах энергия не передается от первичного круга до вторичного без потерь. Существует ряд физических причин, которые их обусловливают.

Одной из причин потерь является активное сопротивление обмоток. При протекании тока через трансформатор, он нагревается и отдает тепло окружающим. При высокой частоте сопротивление увеличивается благодаря скин-эффекта и эффекта близости, которые уменьшают площадь сечения проводника, через который протекает ток.

Еще одна причина потерь - перемагничивания сердечника благодаря гистерезиса. Эти потери для конкретного вещества сердечника пропорциональны частоте и зависят от пикового потока магнитного поля через сердечник.

Другая причина потерь - токи Фуко. Переменное магнитное поле в сердцевине порождает переменное вихревое электрическое поле, которое вызывает дополнительные вихревые токи, которые тоже приводят к нагреванию. Для уменьшения токов Фуко сердечника изготавливают из тонких пластинок, поскольку потери, связанные с токами Фуко, обратно квадратично зависят от толщины материала.

Часть энергии теряется на механические колебания. Ферромагнитный материал сердечника расширяется и сжимается в переменном магнитном поле благодаря явлению магнитострикции. Этим объясняется гудение трансформатора, что сопровождает его работу. Дополнительно, первичная и вторичная обмотка притягиваются и отталкиваются в переменном магнитном поле, заставляя также колебаться и корпус трансформатора.

Магнитный поток, что выходит за пределы сердечник, сам по себе не приводит к потере энергии, но он может приводить к появлению вихревых токов Фуко в металлических деталях корпуса и крепления, что тоже приводит небольшие потери энергии.

В общем, большие трансформаторы имеют коэффициент полезного действия, до 98%. Трансформаторы с сверхпроводящих материалов могут увеличить этот коэффициент до 99,85%.

Потери в трансформаторах зависят от нагрузки. Потери без нагрузки обусловлены в основном сопротивлением обмоток, тогда как причиной потерь при полной нагрузке обычно является гистерезис и вихревые токи. Потери при отсутствии нагрузки могут быть значительными, поэтому даже, если к вторичной обмотки ничего не подключено, трансформаторы должны удовлетворять условиям экономичной работы. Конструирование трансформаторов с малыми потерями требует большого сердечника, высококачественной электрической стали, толстых проводников, что увеличивает начальные затраты, но окупается при эксплуатации

Режимы работы трансформатора[править]

Режим холостого хода[править]

Трансформатор может работать в режиме холостого хода, когда вторичное круг разомкнутый (нагрузка отсутствует), то есть . С помощью исследования холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике.

В режиме холостого хода для трансформатора с сердечником из магнитомягкого материала ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивания отсутствуют, и ток холостого хода определяется сопротивлением индуктивности первичной обмотки, который пропорционален частоты переменного тока и величины индуктивности.

Режим короткого замыкания[править]

Режим короткого замыкания можно получить в результате замыкания вторичной обмотки на кратко. Это аварийный режим, что может привести к выходу из строя трансформатора. При этом ток во вторичной обмотке может быть в 20...30 раз больше номинального. Поэтому следует отличать режим короткого замыкания от опыта короткого замыкания. С помощью последнего можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.

При исследовании режима короткого замыкания, на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки закорачивает. Величину напряжения на входе устанавливают такой, чтобы ток короткого замыкания равен номинальному (расчетном) тока трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическое сопротивление. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания.

Данный режим широко используется в измерительных трансформаторах тока.

Режим нагрузки[править]

Режим работы трансформатора при котором вторичная обмотка замкнута на сопротивление называется режимом работы трансформатора под нагрузкой. При таком режиме работы во вторичной обмотке будет протекать ток IS, который создаст свой магнитный поток ΦS, который по правилу Ленца должно уменьшить изменения магнитного потока в сердцевине. Это приводит к автоматическому увеличению силы тока в цепи первичной обмотки. Увеличение силы тока в цепи первичной обмотки происходит согласно закону сохранения энергии:

или или .

Это означает, что повышая при помощи трансформатора напряжение в несколько раз, мы в столько же раз уменьшаем силу тока (и наоборот). Итак, трансформатор преобразует переменный ток таким образом, что произведение силы тока на напряжение примерно одинаковый в первичной и вторичной обмотках.

Силовой трансформатор[править]

Силовой трансформатор - стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему переменного напряжения и тока, как правило, различных значений при той же частоте с целью передачи электроэнергии без изменения ее мощности при передаче[2].

Силовой трансформатор используется для преобразования параметров электрической энергии в электрических сетях и оборудовании, применяемых для приема и потребления электрической энергии.

Термин «силовой» указывает на работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена разной величиной рабочих напряжений линий электропередач (35...750 кВ), городских электросетей (как правило 6...10 кВ), напряжения поставляемой конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, необходимого для работы электромашин и электроприборов (в довольно широком диапазоне от единиц вольт до нескольких сотен киловольт).

Силовые трансформаторы делятся на сухие чаще всего используются в электросетях и в источниках питания различных приборов и масляные, что работают при напряжениях от 6 кв и выше. Масляные трансформаторы отличаются от сухих тем, что как изоляционное и охлаждающее среда применяется специальная масляная смесь. Силовые масляные трансформаторы преимущественно предназначены для понижения напряжения электросетей.

Автотрансформатор[править]

Автотрансформатор - трансформатор, две или более обмоток которого имеют общую часть. Это вариант выполнения силового трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счет этого не только электромагнитную связь, но и электрический. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), при подключении к которым, можно получать различные напряжения.

Преимуществом автотрансформатора есть высший КПД, поскольку лишь часть мощности подвергается преобразованию - это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичным и вторичным кругом. В промышленных сетях, где наличие заземление нулевого провода обязательна, этот фактор роли не играет, зато существенной меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в результате - меньшая стоимость.

Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для сообщения эффективно заземленных сетей напряжением 110 кВ и выше при коэффициентах трансформации не более 3...4.

Измерительный трансформатор[править]

Измерительный трансформатор - трансформатор, предназначенный для передачи информационного сигнала измерительным приборам, счетчикам, устройствам защиты и (или) управления. Измерительные трансформаторы делятся на трансформаторы тока и трансформаторы напряжения.

Трансформатор тока - измерительный трансформатор, в котором при нормальных условиях работы вторичный ток практически пропорционален первичном и сдвиг фаз между ними близок к нулю.

Измерительный трансформатор тока - трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с переменным током, что измеряется. А во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорциональный току, протекающему в его первичной обмотке.

Трансформаторы тока широко используются для измерения электрического тока в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, которая часто составляет сотни киловольт.

Обычно, трансформатор тока изготавливается с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, точнее - для подключения средств учета и измерения (например, счётчик электрической энергии).

Трансформатор напряжения - измерительный трансформатор, в котором при нормальных условиях использования вторичное напряжение пропорционально первичной напряжении и при условии правильного включения сдвинута по отношению к ней по фазе на угол, близкий к нулю.

Трансформатор напряжения используется для преобразования высокого напряжения в низкое в цепях релейной защиты и контрольно-измерительных приборов и автоматики. Применение трансформатора позволяет изолировать логические цепи защиты и круга измерения от цепей высокого напряжения.

Импульсный трансформатор[править]

Импульсный трансформатор - трансформатор с ферромагнитным сердечником, для преобразования импульсов электрического тока или напряжения с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Импульсные трансформаторы в радиолокации, импульсном радиосвязи, автоматике и вычислительной технике служат для согласования источника импульсов с нагрузкой, изменения полярности импульсов, разделение электрических цепей по постоянному и переменному току добавление сигналов, зажигания импульсных ламп и т.д.

Работа импульсного трансформатора существенно отличается во время формирования фронта и вершины импульса. Для лучшей передачи фронта и спада импульса необходимо, чтобы межвитковое емкость обмоток, паразитные емкости монтажа и индуктивность рассеяния импульсного трансформатора были минимальными. Уменьшение межвитковых емкостей достигается использованием сердечников малых размеров, соответствующим намоткой и взаимным расположением обмоток, а также уменьшением числа витков (при этом снижается коэффициент трансформации). В импульсных трансформаторах применяют сердечники из пермалоя, кремнистой трансформаторной стали, ферримагнетиков и других материалов с высокой магнитной проницаемостью.

Резонансный трансформатор[править]

Резонансный трансформатор - трансформатор, что работает на резонансной частоте колебательного контура образованного одной или несколькими из его обмоток подключением к электрического конденсатора. В резонансного трансформатора обычно вторичная обмотка выполняет роль индуктивности в колебательном контуре, образованном вместе с конденсатором. Когда на первичную обмотку подать периодический ток в виде прямоугольных или пилообразных импульсов на резонансной частоте, каждый импульс тока дает толчок колебаниям индуцированного тока во вторичной катушке. В связи с резонансом могут достигаться большие значения напряжения, пока она не будет ограничена каким-то процессом, таким как электрический пробой. Такие устройства используются для создания высокого переменного напряжения, что не может быть достигнута на таких электростатических машинах, как электростатический генератор Ван де Граафа или електрофорна машина.

  1. Сивухин Д.В. (1977). Общий курс физики. т III. Электричество. Москва: Наука.
  2. Электрические машины, Л. М. Пиотровский, Л., «Энергия», 1972.

www.wikiznanie.ru

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

sesaga.ru

Электрический трансформатор

Трансформатор – это устройство, главным назначением которого является преобразование электрического тока. Он изменяет напряжение тока посредством электромагнитной индукции.

Работа трансформатора основана на двух базовых принципах:

 

  • Изменяющийся во времени электрический ток создает изменяющееся во времени магнитное поле.
  • Изменение магнитного потока, проходящего через обмотку, электромагнитную индукцию в этой обмотке. В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать. Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток.

 


В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии.

 

 

 

Режимы работы трансформатора


1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт.

2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.

3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.

4. Режим холостого хода. Когда вторичные обмотки ни к чему не подключены, ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, невелик. Для трансформатора с сердечником из магнито-мягкого материала ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода.

5. Режим короткого замыкания. В режиме короткого замыкания на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора.

6. Режим с нагрузкой. При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

 

 

 

 

Виды электрических трансформаторов

 


Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов, подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Трансформатор тока — трансформатор, питающийся от источника тока.

Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации.

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического. Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками.

Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем. Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью. Сдвоенный дроссель — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания.

Трансфлюксор — разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов. Наиболее часто трансформаторы применяются в электросетях и в источниках питания различных приборов.

 

 

 

 

Применение трансформаторов в электросетях

 


Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Трансформаторы понижающие электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью.

 

 

 

 

Применение трансформаторов в источниках электропитания

 


Для питания разных узлов электроприборов требуются самые разнообразные напряжения. Блоки электропитания в устройствах, которым необходимо несколько напряжений различной величины содержат трансформаторы с несколькими вторичными обмотками или содержат в схеме дополнительные трансформаторы. В схемах питания современных радиотехнических и электронных устройств широко применяются высокочастотные импульсные трансформаторы. В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы.

Система управления с помощью широтно-импульсной модуляции позволяет стабилизировать напряжение. После чего импульсы высокой частоты подаются на импульсный трансформатор, на выходе с которого, после выпрямления и фильтрации получают стабильное постоянное напряжение. Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают использовать в схемах питания, в тех случаях, когда надо обеспечить минимальный уровень высокочастотных помех, например при высококачественном звуковоспроизведении.

 

 

 

 

Эксплуатация электрических трансформаторов

 


Срок службы трансформатора может быть разделен на две категории: Экономический срок службы — экономический срок службы заканчивается, когда капитализированная стоимость непрерывной работы существующего электрического трансформатора превысит капитализированную стоимость доходов от эксплуатации этого трансформатора. Или экономический срок жизни трансформатора (как актива) заканчивается тогда, когда удельные затраты на трансформацию энергии с его помощью становятся выше удельной стоимости аналогичных услуг на рынке трансформации энергии.

 

 

 

 

promplace.ru

Трансформатор в электрических цепях

Содержание:
  1. Что такое трансформатор
  2. Из чего состоит трансформатор
  3. Виды трансформаторов
  4. Маркировка
  5. Применение

Стандартный трансформатор является статическим электромагнитным устройством с двумя и более обмотками, индуктивно связанными между собой посредством магнитопровода. Его основная функция заключается в преобразовании одного значения напряжения в другое, с сохранением одной и той же частоты. Трансформатор в электрических цепях применяется в самых различных областях. Он используется для передачи электроэнергии, а также в электронных и радиотехнических схемах.

Что такое трансформатор

По своей сути, трансформатор является преобразователем электрического тока. Для изменения напряжения используется электромагнитная индукция.

Основные принципы работы данных устройств заключаются в следующем:

  • Электрический ток изменяется во времени и создает магнитное поле, подверженное аналогичным изменениям.
  • Измененный магнитный поток, проходящий через обмотку трансформатора, вызывает появление в ней электромагнитной индукции. Некоторые устройства с высокими или сверхвысокими частотами могут не иметь магнитопровода. В идеальном варианте не должно быть потерь электроэнергии, расходуемой на потоки рассеивания и нагрев обмоток.

Трансформаторы могут работать в различных режимах:

  • Холостой ход. В данном случае вторичная цепь устройства разомкнута и ток по ней не проходит. Компенсация напряжения источника питания происходит за счет компенсации электродвижущей силы индукции в первичной обмотке.
  • Режим нагрузки. Вторичная цепь находится в замкнутом состоянии. В ней появляется ток, под действием которого в магнитопроводе возникает магнитный поток. Он действует в противоположном направлении относительно магнитного потока, возникающего в первичной обмотке. Равновесие ЭДС индукции с источником питания оказывается нарушенным. В результате, ток в первичной обмотке будет увеличиваться, пока значение магнитного потока не выйдет на прежний уровень. Это основной рабочий режим для любого трансформатора.
  • В режиме короткого замыкания вторичная цепь замыкается накоротко. Данное состояние позволяет определить, насколько теряется полезная мощность трансформатора при нагреве проводов. Подача небольшого переменного напряжения осуществляется на первичную обмотку. Его величина должна быть одинаковой с номинальным током устройства.

Из чего состоит трансформатор

Основой каждого трансформатора является замкнутый сердечник, выполняющий функцию магнитопровода. Для его изготовления применяется электротехническая сталь в виде листов, толщиной 0,35 – 0,5 мм. На магнитопровод наматываются изолированные медные провода.

Участки сердечника с обмотками носят название стержней, а те, которые без обмоток, называются ярмами. Обмотка, на которую поступает электроэнергия, именуется первичной. Другая обмотка, из которой выходит преобразованный ток, называется вторичной. Они обе разделены между собой путем электрической изоляции, кроме автоматических трансформаторов.

Величины каждой обмотки определенным образом соотносятся между собой. Например, отношение напряжения между концами первичной и вторичной обмотки такое же, как и соотношение количества витков в этих обмотках.

В процессе работы трансформатора электрическая энергия, поступающая из сети в первичную обмотку, преобразуется в магнитное поле. Далее, попадая во вторичную обмотку, энергия магнитного поля вновь превращается в электроэнергию с такой же частотой, но с другим значением. На практике таких показателей достичь невозможно, поскольку КПД устройства всегда меньше единицы, поскольку имеют место потери энергии при нагреве обмоток и стержней. Если трансформатору обеспечен нормальный режим работы, то в этом случае КПД может составить даже 0,98 – 0,99.

Виды трансформаторов

Современные трансформаторные устройства имеют множество разновидностей и применяются в самых различных областях.

Силовые трансформаторы

Передача электроэнергии на расстояние осуществляется с помощью силовых трансформаторов. Эти низкочастотные приборы выполняют ее прием и преобразование. Название силовых они получили из-за работы с напряжением, которое может достигать более 1000 киловольт.

В городах такие трансформаторы понижают напряжение до 0,4 кВ, превращая в 380 или 220 вольт, необходимых для нормального потребления. Эти устройства оборудуются двумя, тремя и более обмоток, что позволяет одновременно преобразовывать напряжение сразу с нескольких генераторов. Нормальный температурный баланс поддерживается с помощью трансформаторного масла, а в особо мощных приборах дополнительно установлена система активного охлаждения.

Сетевые трансформаторы

До недавнего времени практически во всех электрических приборах устанавливались сетевые однофазные трансформаторы. С помощью этих устройств, обычное напряжение сети в 220 вольт снижалось до необходимого уровня в 5, 12, 24 и 48 В.

В сетевых трансформаторах практиковалась установка сразу нескольких вторичных обмоток. Такая конструкция обеспечивала питание разных частей схемы сразу от нескольких источников питания. Например, трансформатор накаливания обязательно присутствовал в схемах с радиолампами.

В современных приборах этого типа используются Ш-образные, тороидальные или стержневые сердечники. Их основой являются пластины, выполненные из электротехнической, стали. При тороидальной форме магнитопровода трансформаторы получаются более компактными, обмотка проходит по всей поверхности, не оставляя пустых участков ярма.

Автотрансформаторы

Автотрансформаторы также относятся к низкочастотным устройствам, в которых первичная и вторичная обмотка дополняет друг друга. Между ними существует не только магнитная, но и электрическая связь. Единственная обмотка оборудована сразу несколькими выводами, что позволяет получать разные значения напряжения. Данные устройства отличаются более низкой стоимостью, поскольку провода для обмоток нужно меньше, как и стали для сердечника. В итоге общая масса прибора также снижается.

Лабораторные трансформаторы

Для выполнения специфических задач используются лабораторные трансформаторы. С его помощью выполняется плавная регулировка напряжения. Конструкция выполнена в виде тороидального трансформатора. В единственной обмотке имеется неизолированная дорожка, позволяющая подключаться к любому витку. Для контакта с дорожкой используется скользящая угольная щетка, для управления которой предусмотрена специальная поворотная ручка. Данные устройства чаще всего применяются в лабораторных условиях, чтобы выполнить наладку оборудования.

Трансформаторы тока

Многие измерительные работы проводятся с применением трансформаторов тока. Специфика работы этих устройств заключается в подключении первичной обмотки к источнику тока, а вторичной – к измерительным или защитным приборам с незначительным внутренним сопротивлением.

В состав первичной обмотки входит всего один виток в виде единственного провода. Для проведения измерений выполняется его последовательное включение в цепь переменного тока. В результате, возникает пропорция между токами первичной и вторичной обмотки, используемой только под нагрузкой. В противном случае, слишком высокое напряжения во вторичной обмотке может привести к пробою изоляции. Кроме того, ее размыкание приведет к выгоранию магнитопровода под действием наведенного некомпенсированного тока.

Конструкция прибора состоит из сердечника, материалом для которого служит кремнистая шихтованная холоднокатаная электротехническая сталь. На него наматываются изолированные обмотки в количестве одной или нескольких, выполняющие функции вторичных. В качестве первичной обмотки чаще всего используется обычная шина или провод с измеряемым током, пропущенный через отверстие в магнитопроводе. Основным параметром трансформатора тока является коэффициент трансформации.

Импульсные трансформаторы

Многие устройства, например, сварочные аппараты, сетевые блоки питания, инверторы и другие аналогичные устройства не могут обойтись без импульсных трансформаторов. Основным конструктивным элементом стандартного прибора служит ферритовый сердечник, представленный большим количеством разнообразных форм. Их главным преимуществом является способность работы на частоте 500 кГц и выше.

Поскольку данное устройство относится к высокочастотным трансформаторам, его габаритные размеры существенно снижаются с увеличением частоты. Обмотки требуют меньшего количества проводов, а высокочастотный ток в первичной цепи вырабатывается за счет применения полевых или биполярных транзисторов.

Маркировка трансформаторов

Очень многие пользователи не всегда обращают внимания на маркировку трансформаторов, а некоторые просто не умеют правильно ее расшифровывать. Основные конструкции маркируются как ТМ, ТМЗ, ТСЗ, ТСЗС, ТРДНС, ТМН, ТДН, ТДНС и так далее.

Буквенные обозначения соответствуют следующим характеристикам:

  • Т – трехфазное устройство.
  • Р – разделение обмотки низкого напряжения на две части.
  • С – сухой трансформатор.
  • М – наличие масляного охлаждения с естественной циркуляцией.
  • Ц – принудительная циркуляция воды и масла. Вода циркулирует по трубам, а масло течет между ними в виде ненаправленного потока.
  • МЦ – циркуляция воздуха – естественная, а масло циркулирует принудительно, ненаправленным потоком.
  • Д – движение масла принудительное, а воздуха – естественное.
  • ДЦ – принудительное движение воздуха и масла.
  • Н – регулировка напряжения осуществляется под нагрузкой.
  • С – если проставлена в конце маркировки, значит трансформатор используется для собственных нужд электростанции.
  • З – трансформатор без расширителя, герметичный, с азотной подушкой.

Трансформаторы с тремя обмотками маркируются как ТМТН, ТДТН, ТДЦТН, где на три обмотки указывает вторая буква Т. Наличие буквы А указывает на автотрансформатор, О – однофазное устройство, Г – грозоупорная конструкция.

Кроме того, в маркировке указывается класс напряжения, применяемый в работе, режим и условия функционирования, а также точная конструкция устройства. Номинальная мощность и класс напряжения проставляется после буквенной маркировки через дефис. Обозначение имеет вид дроби, где числитель является номинальной мощностью в киловольт-амперах, а знаменатель соответствует классу напряжения в киловольтах.

Применение трансформатора

Недостаточно только выработать электрическую энергию. Не меньшую сложность представляет ее передача на значительные расстояния и дальнейшее распределение среди потребителей. И здесь не обойтись без специальных аппаратов – трансформаторов, выполняющих повышение или понижение напряжения.

Каждый трансформатор в электрических цепях может применяться на открытом воздухе или внутри помещений. Эти устройства дали возможность передачи электроэнергии с минимальными потерями в проводах, за счет уменьшенной площади сечения.

Высокое напряжение, поступающее со станции, не может напрямую поставляться потребителям. Поэтому на входе производится установка понижающих трансформаторов. Они доводят ток до нужного значения, при котором нормально функционирует оборудование и бытовая техника.

electric-220.ru

ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ | Энциклопедия Кругосвет

Содержание статьи

ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ, не имеющее подвижных частей электромагнитное устройство, служащее для передачи посредством магнитного поля электрической энергии из одной цепи переменного тока в другую без изменения частоты. Трансформатор может повышать его напряжение (повышающий трансформатор), понижать (например, измерительный трансформатор) или передавать энергию при том же напряжении, при каком он ее получил (разделительный трансформатор). Трансформаторы обладают высоким КПД: от 97% при небольших мощностях до свыше 99% при больших. Они имеют достаточно прочную конструкцию и относительно низкую стоимость на единицу передаваемой мощности.

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из кремнистой стали (рис. 1). На магнитопроводе располагаются две обмотки – первичная P и вторичная S. Для простоты обмотки показаны на разных стержнях магнитопровода. На самом деле при таком расположении обмоток переменный магнитный поток, создаваемый первичной обмоткой в магнитопроводе, недостаточно эффективно используется для наведения ЭДС во вторичной обмотке. Кроме того, такой трансформатор плохо поддавался бы регулированию. На практике первичные и вторичные обмотки располагают близко друг к другу (рис. 2).

На рис. 1 генератор переменного тока A подает ток I0 напряжения E1 на первичную обмотку P. В рассматриваемый момент ток в верхнем проводнике имеет положительное направление и возрастает, так что первичная обмотка создает в магнитопроводе магнитный поток F по часовой стрелке. Этот поток, пронизывающий обе обмотки, называется потоком взаимоиндукции; его изменение индуцирует электродвижущую силу (ЭДС) как в первичной, так и во вторичной обмотке. ЭДС, индуцированная в первичной обмотке, направлена против тока питания в ней и соответствует противо-ЭДС электродвигателя. ЭДС, индуцированная во вторичной обмотке, соответствует ЭДС электрогенератора и может быть подана на нагрузку.

Величина индуцированной в обмотке трансформатора ЭДС дается формулой E = 4,44 Fm fN 10-8 В, где Fm – максимальное мгновенное значение магнитного потока F в максвеллах, f – частота в герцах и N – число витков. Поскольку поток Fm является общим для обеих обмоток, индуцированная в каждой из них ЭДС пропорциональна числу витков в соответствующей обмотке:

E2 /E1 = N2 /N1.

В обычном трансформаторе напряжения на зажимах отличаются от индуцированных ЭДС лишь на несколько процентов, так что для большинства практических целей указанные напряжения фактически пропорциональны соответствующим числам витков, V2 /V1 = N2 /N1.

Ток I0 в отсутствие нагрузки (ток холостого хода) создает магнитный поток F и вместе с приложенным напряжением является источником потерь в магнитопроводе на гистерезис и вихревые токи. В режиме холостого хода потери I02R в меди первичной обмотки ничтожны. Ток холостого хода I0 составляет обычно от 1 до 2% номинального тока трансформатора, хотя в низкочастотных (25 Гц) трансформаторах он может достигать величины 5 или 6%.

Если на рис. 1 переключатель X вторичной цепи замкнут, в ней течет ток. Согласно правилу Ленца, направление тока во вторичной обмотке таково, что он противодействует потоку F. Когда этот поток уменьшается, противо-ЭДС E1 первичной обмотки тоже уменьшается и ток в ней становится больше, обеспечивая передачу мощности, которая снимается затем со вторичной обмотки. Противо-ЭДС E1 отличается от приложенного напряжения V1 всего на 1–2%. Напряжение V1 постоянно. Если E1 постоянна, то поток взаимоиндукции F также постоянен, и, следовательно, постоянна магнитодвижущая сила (число ампер-витков), действующая на магнитопровод. Таким образом, увеличение МДС вторичной обмотки при приложении нагрузки должно уравновешиваться противоположной величиной МДС первичной обмотки. Ток холостого хода мал по сравнению с токами нагрузки и обычно значительно отличается от них по фазе. Пренебрегая им, имеем

N2 I2 = N1 I1 и I2 /I1 = N1 /N2.

Таким образом, в трансформаторе токи практически обратно пропорциональны количеству витков в соответствующих обмотках.

Зависимость напряжения от нагрузки.

На рис. 2 показан поперечный разрез одного плеча трансформатора со связанными первичной и вторичной обмотками P и S, причем первичная охватывает вторичную. Практически всегда имеется некоторая часть потока F, создаваемого первичным током, которая замыкается на одной лишь первичной обмотке P; это первичный поток рассеяния. Аналогично существует вторичный поток рассеяния. Оба эти потока создают реактивное сопротивление рассеяния в соответствующих цепях, что в сочетании с активным сопротивлением уменьшает напряжение на зажимах вторичной обмотки с включенной нагрузкой. На рис. 3 величина V1 представляет напряжение на зажимах первичной обмотки, а I1 – ток в ней, запаздывающий по отношению к V1 на q градусов. Напряжение I1R01 (находящееся в фазе с I1) и напряжение I1X01 (сдвинутое по отношению к I1 на 90° и опережающее его) суммируются векторно с V1, давая E1. В результате имеем

Опережающий ток берется со знаком минус. Если коэффициент мощности равен 1, то cosq = 1 и sinq = 0. При этом относительное изменение напряжения на первичной обмотке трансформатора при изменении нагрузки от оптимальной до режима холостого хода определяется отношением

Для вторичной обмотки имеем R02 = R01(N2 /N1)2 и X02 = X01(N2 /N1)2. Записывая аналогично предыдущему уравнение для Е2, получим такое же соотношение. Потери на активном и реактивном сопротивлениях трансформатора составляют от одного до трех процентов от напряжения на зажимах (на рис. 3 они показаны в увеличенном масштабе).

КПД преобразования трансформаторов настолько близок к единице, что при прямых измерениях на входе и выходе точность оказывается недостаточной. Более точный метод определения КПД состоит в измерении потерь Pc в магнитопроводе путем измерения мощности одной из обмоток без нагрузки, когда эта обмотка работает при номинальном напряжении. Тогда КПД (h) можно получить из формулы

Автотрансформаторы.

Автотрансформатором называют трансформатор, в котором часть обмотки является общей как для первичной, так и для вторичной цепи. При низком коэффициенте трансформации автотрансформатор обеспечивает значительную экономию в стоимости и увеличение КПД по сравнению с обычным двухобмоточным трансформатором.

На рис. 4,а показан автотрансформатор с коэффициентом трансформации 2. Предполагается, что коэффициент мощности равен 1, а потери и ток холостого хода незначительны. Непрерывная обмотка ac на магнитопроводе трансформатора может быть распределена между несколькими катушками на противоположных плечах магнитопровода. Чтобы получить коэффициент трансформации 2, делается отвод b от средней точки обмотки ac, а нагрузка вторичной обмотки подсоединяется между точками b и c. Для преобразования мощности обмотка ab является первичной, а bc – вторичной. Допустим, что ток нагрузки I составляет 20 А при 50 В. Ток 10 А течет от a к b и отсюда к нагрузке dd ў. Мощность, создаваемая током 10 А при падении напряжения 50 В на участке ав, составляет 500 Вт; эта мощность наводит магнитное поле в магнитопроводе, которое проявляется в индуцированном токе I2 = 10 А при напряжении 50 В между c и b. Таким образом, из суммарной мощности 1000 Вт на нагрузке 500 Вт передаются от a к b по проводам без трансформации, а 500 Вт – в результате трансформации. В обычном двухобмоточном трансформаторе потребовалась бы не только обмотка ac, рассчитанная на 100 В и 10 А, но также вторичная обмотка, рассчитанная на 50 В и 20 А и содержащая то же количество меди. Более того, при одной обмотке нужно меньше железа для магнитопровода (сердечника). Следовательно, в автотрансформаторе с коэффициентом трансформации 2 или 1/2 требуется вдвое меньше, чем в двухобмоточном трансформаторе, материала, да и потери сокращаются примерно наполовину.

На рис. 4,б показан автотрансформатор с первичной обмоткой на 100 В и коэффициентом трансформации 4/3. Нагрузка вторичной обмотки составляет 20 А при 75 В, что соответствует мощности на выходе 1500 Вт. Следовательно, первичный ток должен иметь величину 15 А. Отвод b сделан в точке, соответствующей трем четвертям числа витков от c к a. Ток 15 А течет от a к b и отсюда к нагрузке dd ў. Этот ток при падении напряжения 25 В на ab дает 15ґ25 = 375 Вт магнитному полю, которое индуцирует ток между c и b 5 А при 75 В, так что подвергаются трансформации только 375 Вт, а остальные 1125 Вт мощности передаются от 100 В- к 75 В-цепи по проводам. Таким образом, чтобы осуществлять трансформацию всей заданной мощности, для указанного трансформатора достаточно всего одной четвертой от того значения мощности, которое должен иметь соответствующий двухобмоточный трансформатор.

Автотрансформаторы обычно используются для регулирования вторичного напряжения и трансформации с небольшими коэффициентами, такими, как 2 или 1/2. Они используются также для пускателей двигателей, уравнительных катушек и для многих других целей, требующих небольших коэффициентов трансформации.

Измерительные трансформаторы.

При высоких напряжениях трудно проводить измерения, поскольку высоковольтные приборы дороги и обычно громоздки; их точность подвержена воздействию статического электричества, к тому же они небезопасны. Когда ток превышает 60 А, нелегко обеспечить высокую точность амперметров из-за больших проводов и значительных ошибок, обусловленных паразитным полем концевых выводов. Кроме того, амперметры и катушки тока в высоковольтных цепях опасны для оператора. В измерительных трансформаторах тока и напряжения используются катушки напряжения на 100 В и катушки тока на 5 А. Вторичные обмотки должны быть заземлены. Если шкалы приборов не откалиброваны в коэффициентах трансформации, то показания надо умножать на соответствующий коэффициент трансформации.

www.krugosvet.ru

принцип работы и типы приборов

Трансформатор — незаменимое устройство в электротехнике.

Без него энергосистема в ее нынешнем виде не могла бы существовать.

Присутствуют эти элементы и во многих электроприборах.

Желающим познакомиться с ними поближе предлагается данная статья, тема которой — трансформатор: принцип работы и виды приборов, а также их назначение.

 

Что такое трансформатор

Так называют устройство, изменяющее величину переменного электрического напряжения. Существуют разновидности, способные менять и его частоту.

Таким аппаратами оснащают многие приборы, также они применяются в самостоятельном виде.

Например, установки, повышающие напряжение для передачи тока по электромагистралям.

Генерируемое электростанцией напряжение они поднимают до 35 – 750 кВ, что дает двойную выгоду:

  • уменьшаются потери в проводах;
  • требуются провода меньшего сечения.
В городских электросетях напряжение снова уменьшается до величины в 6,1 кВ, опять же с использованием трансформатора. В распределительных сетях, раздающих электричество потребителям, напряжение понижают до 0,4 кВ (это привычные нам 380/220 В).

Принцип работы

Работа трансформаторного устройства основана на явлении электромагнитной индукции, состоящей в следующем: при изменении параметров магнитного поля, пересекающего проводник, в последнем возникает ЭДС (электродвижущая сила). Проводник в трансформаторе присутствует в форме катушки или обмотки, и общая ЭДС равна сумме ЭДС каждого витка.

Для нормальной работы требуется исключить электрический контакт между витками, потому используют провод в изолирующей оболочке. Эту катушку называют вторичной.

Магнитное поле, необходимое для генерации во вторичной катушке ЭДС, создается другой катушкой. Она подключается к источнику тока и называется первичной. Работа первичной катушки основана на том факте, что при протекании через проводник тока, вокруг него формируется электромагнитное поле, а если он смотан в катушку, оно усиливается.

Как работает трансформатор

При протекании через катушку постоянного тока параметры электромагнитного поля не меняются и оно неспособно вызвать ЭДС во вторичной катушке. Поэтому трансформаторы работают только с переменным напряжением.

На характер преобразования напряжения влияет соотношение количества витков в обмотках – первичной и вторичной. Его обозначают «Кт» – коэффициент трансформации. Действует закон:

Кт = W1 / W2 = U1 / U2,

где,

  • W1 и W2 — количество витков в первичной и вторичной обмотках;
  • U1 и U2 — напряжение на их выводах.

Следовательно, если в первичной катушке витков больше, то напряжение на выводах вторичной ниже. Такой аппарат называют понижающим, Кт у него больше единицы. Если витков больше во вторичной катушке — трансформатор напряжение повышает и называется повышающим. Его Кт меньше единицы.

Большой силовой трансформатор

Если пренебречь потерями (идеальный трансформатор), то из закона сохранения энергии следует:

P1 = P2,

где Р1 и Р2 — мощность тока в обмотках.

Поскольку P = U * I, получим:

  • U1 * I1 = U2 * I2;
  • I1 = I2 * (U2 / U1) = I2 / Кт.

Это означает:

  • в первичной катушке понижающего устройства (Кт > 1) протекает ток меньшей силы, чем в цепи вторичной;
  • с повышающими трансформаторами (Кт < 1) все наоборот: сила тока в первичной катушке выше, чем в цепи вторичной.

Данное обстоятельство учитывают при подборе сечения проводов для обмоток аппаратов.

Конструкция

Трансформаторные обмотки надевают на магнитопровод — деталь из ферромагнитной, трансформаторной или иной магнитомягкой стали. Он служит проводником электромагнитного поля от первичной катушки ко вторичной.

Под действием переменного магнитного поля в магнитопроводе также генерируются токи — они называются вихревыми. Эти токи приводят к потерям энергии и нагреву магнитопровода. Последний, с целью свести данное явление к минимуму, набирают из множества изолированных друг от друга пластин.

На магнитопроводе катушки располагают двояко:

  • рядом;
  • наматывают одну поверх другой.

Обмотки для микротрансформаторов изготавливают из фольги толщиной 20 – 30 мкм. Ее поверхность в результате окисления становится диэлектриком и играет роль изоляции.

Конструкция трансформатора

На практике добиться соотношения Р1 = Р2 невозможно из-за потерь трех видов:

  1. рассеивание магнитного поля;
  2. нагрев проводов и магнитопровода;
  3. гистерезис.

Потери на гистерезис — это затраты энергии на перемагничивание магнитопровода. Направление силовых линий электромагнитного поля постоянно меняется. Каждый раз приходится преодолевать сопротивление диполей в структуре магнитопровода, выстроившихся определенным образом в предыдущей фазе.

Потери на гистерезис стремятся уменьшить, применяя разные конструкции магнитопроводов.

Итак, в реальности величины Р1 и Р2 отличаются и соотношение Р2 / Р1 называют КПД устройства. Для его измерения используются следующие режимы работы трансформатора:

  • холостого хода;
  • короткозамкнутый;
  • с нагрузкой.

В некоторых разновидностях трансформаторов, работающих с напряжением высокой частоты, магнитопровод отсутствует.

Режим холостого хода

Первичная обмотка подключена к источнику тока, а цепь вторичной разомкнута. При таком подключении в катушке течет ток холостого хода, в основном представляющий реактивный ток намагничивания.

Такой режим позволяет определить:

  • КПД устройства;
  • коэффициент трансформации;
  • потери в магнитопроводе (на языке профессионалов — потери в стали).

Схема трансформатора в режиме холостого хода

Короткозамкнутый режим

Выводы вторичной обмотки замыкают без нагрузки (накоротко), так что ток в цепи ограничивается лишь ее сопротивлением. На контакты первичной подают такое напряжение, чтобы ток в цепи вторичной обмотки не превышал номинального.

Такое подключение позволяет определить потери на нагрев обмоток (потери в меди). Это необходимо при реализации схем с применением вместо реального трансформатора активного сопротивления.

Режим с нагрузкой

В этом состоянии к выводам вторичной обмотки подключен потребитель.

Охлаждение

В процессе работы трансформатор греется.

Применяют три способа охлаждения:

  1. естественное: для маломощных моделей;
  2. принудительное воздушное (обдув вентилятором): модели средней мощности;
  3. мощные трансформаторы охлаждаются при помощи жидкости (в основном используют масло).

Прибор с масляным охлаждением

Виды трансформаторов

Аппараты классифицируются по назначению, типу магнитопровода и мощности.

Силовые трансформаторы

Наиболее многочисленная группа. К ней относятся все трансформаторы, работающие в энергосети.

Автотрансформатор

У этой разновидности между первичной и вторичной обмотками имеется электрический контакт. При намотке провода делают несколько выводов — при переключении между ними задействуется разное число витков, отчего меняется коэффициент трансформации.

Достоинства автотрансформатора:

  • Повышенный КПД. Объясняется тем, что преобразованию подвергается только часть мощности. Это особенно важно при незначительной разнице между напряжением на входе и выходе.
  • Низкая стоимость. Это обусловлено меньшим расходом стали и меди (автотрансформатор имеет компактные размеры).

Эти устройства выгодно применять в сетях напряжением 110 кВ и более с эффективным заземлением при Кт не выше 3-4.

Трансформатор тока

Используется для снижения силы тока в подключенной к источнику питания первичной обмотке. Устройство находит применение в защитных, измерительных, сигнальных и управляющих системах. Преимущество в сравнении с шунтовыми схемами измерения, состоит в наличии гальванической развязки (отсутствие электроконтакта между обмотками).

Первичная катушка включается в цепь переменного тока – исследуемую или контролируемую –  с нагрузкой последовательно. К выводам вторичной обмотки подключают исполнительное индикаторное устройство, к примеру, реле, или прибор измерения.

Трансформатор тока

Допустимое сопротивление в цепи вторичной катушки ограничено мизерными значениями — почти короткое замыкание. У большинства токовых трансформаторов величина номинального тока в этой катушке составляет 1 или 5 А. При размыкании цепи в ней формируется высокое напряжение, способное пробить изоляцию и повредить подключенные приборы.

Импульсный трансформатор

Работает с короткими импульсами, продолжительность которых измеряется десятками микросекунд. Форма импульса практически не искажается. В основном используются в видеосистемах.

Сварочный трансформатор

Данное устройство:

  • понижает напряжение;
  • рассчитано на номинальный ток в цепи вторичной обмотки до тысяч ампер.

Регулировать сварочный ток можно изменением числа витков обмоток, задействованных в процессе (они имеют по нескольку выводов). При этом изменяется величина индуктивного сопротивления или вторичное напряжение холостого хода. Посредством дополнительных выводов обмотки разбиты на секции, потому регулировка сварочного тока осуществляется ступенчато.

Габариты трансформатора во многом зависят от частоты переменного тока. Чем она выше, тем более компактным получится устройство.

Сварочный трансформатор ТДМ 70-460

На этом принципе основано устройство современных инверторных сварочных аппаратов. В них переменный ток перед подачей на трансформатор подвергается обработке:

  • выпрямляется посредством диодного моста;
  • в инверторе — управляемом микропроцессором электронном узле с быстро переключающимися ключевыми транзисторами — снова становится переменным, но уже с частотой 60 – 80 кГц.

Потому эти сварочные аппараты такие легкие и небольшие.

Также устроены блоки питания импульсного типа, например, в ПК.

Разделительный трансформатор

В этом устройстве обязательно присутствует гальваническая развязка (нет электрического контакта между первичной и вторичной обмотками), а Кт равен единице. То есть разделительный трансформатор напряжение оставляет неизменным. Он необходим для повышения безопасности подключения.

Прикосновение к токоведущим элементам оборудования, подключенного к сети через такой трансформатор, к сильному удару током не приведет.

В быту такой способ подключения электроприборов уместен во влажных помещениях— в ванных и пр.

Кроме силовых трансформаторов, существуют сигнальные разделительные. Они устанавливаются в электроцепи для гальванической развязки.

Магнитопроводы

Бывают трех видов:

  1. Стержневые. Выполнены в виде стержня ступенчатого сечения. Характеристики оставляют желать лучшего, но зато просты в исполнении.
  2. Броневые. Лучше стержневых проводят магнитное поле и вдобавок защищают обмотки от механических воздействий. Недостаток: высокая стоимость (требуется много стали).
  3. Тороидальные. Наиболее эффективная разновидность: создают однородное сконцентрированное магнитное поле, чем способствуют уменьшению потерь. Трансформаторы с тороидальным магнитопроводом имеют наибольший КПД, но они дороги из-за сложности изготовления.

Мощность

Мощность трансформатора принято обозначать в вольт-амперах (ВА). По данному признаку устройства классифицируются так:
  • маломощные: менее 100 ВА;
  • средней мощности: несколько сотен ВА;

Существуют установки большой мощности, измеряемой в тысячах ВА.

Трансформаторы отличаются назначением и характеристиками, но принцип действия у них одинаков: переменное магнитное поле, генерируемое одной обмоткой, возбуждает во второй ЭДС, величина которого зависит от числа витков.

Необходимость в преобразовании напряжения возникает очень часто, потому трансформаторы получили самое широкое распространение. Данное устройство можно изготовить самостоятельно.

proprovoda.ru

Электрический трансформатор с уникальным сердечником

Электрический трансформатор с уникальным сердечником.

 

 

В процессе работы трансформатора возникают потери. Для снижения потерь в магнитопроводе (сердечнике) электрического трансформатора используется уникальный инновационный материал, обладающий лучшими магнитными свойствами, чем традиционная электротехническая сталь. Электрический трансформатор, сделанный с использованием инновационного материала, способен втрое снизить потери при преобразовании напряжения, в отличие от классического стального.

 

Описание

Преимущества

 

Описание:

Электрический трансформатор – это устройство для преобразования электрического тока переменного напряжения с двумя или более неподвижными обмотками, которые превращают (изменяют) параметры переменного тока: напряжение, ток, частоту, количество фаз.

Принцип действия электрического трансформатора основан на явлении электромагнитной индукции.

Электрический трансформатор состоит из одной первичной обмотки, одной или нескольких вторичных обмоток и ферромагнитного сердечника (магнитопровода), обычно замкнутой формы.

Традиционно ферромагнитный сердечник изготавливается из тонколистовой электротехнической стали.

В процессе работы  трансформатора возникают потери: магнитные и электрические. Магнитные потери возникают в магнитопроводе. Электрические – в обмотках.

Для снижения потерь в магнитопроводе (сердечнике) электрического трансформатора используется уникальный инновационный материал, обладающий лучшими магнитными свойствами, чем традиционная электротехническая сталь.

Электрический трансформатор, в конструкции которого используется сердечник из данного инновационного материала, способен втрое снизить потери при преобразовании напряжения, в отличие от классического стального. К примеру, трансформатор мощностью в 1000 кВА с подобным сердечником сможет сэкономить  более 16000 кВТ*ч ежегодно.

Главной особенностью инновационного сердечника является использование в его конструкции металлического стекла, не имеющего кристаллической решетки. Данный материал позволяет снизить потери электроэнергии при преобразовании за счет более благоприятных магнитных свойств, чем у классических электротехнических сталей.

Трансформаторы с подобными инновационными сердечниками несколько сложнее и дороже в изготовлении, чем обычные, однако благодаря значительной экономии, стоимость новых устройств удастся окупить буквально за пару лет.

 

Преимущества:

– снижение потерь при преобразовании напряжения в 3 и более раза.

 

карта сайта

получение и передача переменного электрического тока энергии трансформатор на расстояние
потери преобразование электрической энергии в трансформаторе
фазировка электрической линии или трансформатора с сетью
монтаж электрических машин и электрическая изоляция мощность прочность испытания трансформаторов
принципиальная электрическая схема замещения понижающего сварочного силового трансформатора напряжения тока
электрические машины и элементы трансформаторы книга контрольная работа 1 380 напряжения реферат расчет параметры поле приборы обозначение трансформатора на электрической схеме
виды схемы расчет ремонт электрических соединений машин и электрические характеристики трансформаторов
купить электрический ток трансформатор для галогенных ламп цена в электрической цепи для люстры

 

Коэффициент востребованности 209

comments powered by HyperComments

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *