Трансформаторы — устройство, принцип работы и область применения, основные типы и характеристики
электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)
Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.
Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.
Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.
Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.
Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.
После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.
Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.
Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:
- W1, W2 — количество витков первичной и вторичной обмоток соответственно;
- U1,U2 — входное и выходное напряжения соответственно.
Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.
ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ
Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:
- Автотрансформаторы.
- Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
- Импульсные трансформаторы.
- Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
- Разделительный трансформатор.
- Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
- Пик—трансформатор.
- Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.
Стоит выделить способ классификации трансформаторов по способу их охлаждения.
Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.
Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.
Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.
ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ
К основным техническим характеристиками трансформаторов можно отнести:
- уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
- способ преобразования: повышающий, понижающий;
- количество фаз: одно- или трехфазный;
- число обмоток: двух- и многообмоточный;
- форму магнитопровода: стержневой, тороидальный, броневой.
Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.
Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.
Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).
ОБЛАСТЬ ПРИМЕНЕНИЯ
Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.
Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.
В зависимости от назначения трансформаторы делят на:
Силовые.
Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.
Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.
Тока.
Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.
В зависимости от выполняемых функций различают следующие виды:
- измерительные — подающее ток на приборы измерения и контроля;
- защитные — подключаемые к защитным цепям;
- промежуточные — используется для повторного преобразования.
Напряжения.
Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.
© 2012-2023 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Электрический трансформатор. Основное оборудование электрических станций и подстанций.
Основное оборудование электрических станций и подстанций
Трансформатор
Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.
Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.
Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.
Базовые принципы действия трансформатора
Работа трансформатора основана на двух базовых принципах:
- Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
- Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.
В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.
Форма напряжения во вторичной обмотке связана с формой напряжения в первичной обмотке довольно сложным образом. Благодаря этой сложности удалось создать целый ряд специальных трансформаторов, которые могут выполнять роль усилителей тока, умножителей частоты, генераторов сигналов и т.д.
Исключение — силовой трансформатор. В случае классического трансформатора переменного тока, предложенного П.Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.
В случае силового трансформатора, работающего в схеме Преобразователя Мотовилова, он преобразует постоянный силовой ток первичной обмотки в постоянный силовой ток вторичной обмотки при прямоугольном переменном напряжении на обеих обмотках. Последнее выпрямляется в постоянное напряжение так, что на входе и выходе схемы Мотовилова действуют постоянные токи при постоянном напряжении.
Основные части конструкции трансформатора
Основными частями конструкции трансформатора являются:
- магнитопровод
- обмотки
- каркас для обмоток
- изоляция
- система охлаждения
- прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т.п.)
В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:
- Стержневой
- Броневой
- Тороидальный
Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надежность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.
В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.
Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.
Режимы работы трансформатора
Режим холостого хода
Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. По первичной обмотке протекает ток холостого хода, главной составляющей которого является реактивный ток намагничивания. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике (т. н. «потери в стали»).
Режим нагрузки
Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. В вторичной обмотке протекает ток нагрузки, а в первичной — ток, который можно представить как сумму тока нагрузки (пересчитанного из соотношения числа витков обмоток и вторичного тока) и ток холостого хода. Данный режим является основным рабочим для трансформатора.
Режим короткого замыкания
Этот режим получается в результате замыкания вторичной цепи накоротко. Это разновидность режима нагрузки, при котором сопротивление вторичной обмотки является единственной нагрузкой. С помощью опыта короткого замыкания можно определить потери на нагрев обмоток в цепи трансформатора («потери в меди»). Это явление учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.
Режим холостого хода
При равенстве вторичного тока нулю (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, равен переменному току намагничивания, нагрузочные токи отсутствуют. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала, трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.
Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.
Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.
Режим короткого замыкания
В режиме короткого замыкания, на первичную обмотку трансформатора подаётся переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчётному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания.
Данный режим широко используется в измерительных трансформаторах тока.
Режим нагрузки
При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток нагрузки, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.
Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.
Виды трансформаторов
Силовой трансформатор
Силовой трансформатор переменного тока — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (35-750 кВ), городских электросетей (как правило 6,10 кВ), напряжения, подаваемого конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт).
Силовой трансформатор постоянного тока используется для непосредственного преобразования напряжения в цепях постоянного тока. Термин «силовой» показывает отличие таких трансформаторов от измерительных устройств класса «Трансформатор постоянного тока».
Автотрансформатор
Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно.
Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4. Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.
Трансформатор тока
Трансформатор тока — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку (отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению.
Трансформатор напряжения
Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
Импульсный трансформатор
Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.
Разделительный трансформатор
Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.
Согласующий трансформатор
Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем.
Пик-трансформатор
Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.
Сдвоенный дроссель
Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.
Трансфлюксор
Трансфлюксор — разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.
История создания трансформаторов
Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.
Столетов Александр Григорьевич (профессор Московского университета) сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).
Братья Гопкинсоны разработали теорию электромагнитных цепей.
В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.
Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.
В 1848 году французский механик Г.Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.
30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.
Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. В 1885г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов.
Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.
С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.
1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).
В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.
Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50%, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.
Трансформатор | Определение, типы и факты
- Ключевые люди:
- Никола Тесла
- Похожие темы:
- согласующий трансформатор импеданса разделительный трансформатор трансформатор с железным сердечником трансформатор с воздушным сердечником коэффициент поворота
Просмотреть весь связанный контент →
Популярные вопросы
Что такое трансформатор?
Трансформатор — это устройство, которое передает электрическую энергию от одной цепи переменного тока к одной или нескольким другим цепям, повышая (повышая) или уменьшая (понижая) напряжение.
Где используются трансформаторы?
Трансформаторы используются для самых разных целей. Например, трансформатор часто используется для снижения напряжения в обычных силовых цепях для работы низковольтных устройств и для повышения напряжения от электрогенераторов, чтобы можно было передавать электроэнергию на большие расстояния.
Почему железный сердечник трансформатора многослойный?
Железный сердечник трансформатора ламинирован для уменьшения вихревых токов. Вихревые токи — это небольшие токи, возникающие в результате изменения магнитного поля, создаваемого переменным током в первой катушке. Их необходимо свести к минимуму, чтобы они не мешали потоку электричества от первичной катушки к вторичной.
трансформатор , устройство, которое передает электрическую энергию от одной цепи переменного тока к одной или нескольким другим цепям, увеличивая (повышая) или уменьшая (понижая) напряжение. Трансформаторы используются для самых разных целей; например, для снижения напряжения обычных силовых цепей для работы низковольтных устройств, таких как дверные звонки и игрушечные электропоезда, и для повышения напряжения от электрогенераторов, чтобы можно было передавать электроэнергию на большие расстояния.
Трансформаторы изменяют напряжение посредством электромагнитной индукции; т. е. по мере того, как магнитные силовые линии (линии потока) нарастают и разрушаются при изменении тока, проходящего через первичную катушку, ток индуцируется в другой катушке, называемой вторичной. Вторичное напряжение рассчитывается путем умножения первичного напряжения на отношение числа витков вторичной обмотки к числу витков первичной обмотки, т. е. количество витков.
Викторина «Британника»
Энергия и ископаемое топливо
Трансформаторы с воздушным сердечником предназначены для передачи радиочастотных токов, т. е. токов, используемых для радиопередачи; они состоят из двух или более катушек, намотанных на твердый изолирующий материал или на форму изолирующей катушки. Трансформаторы с железным сердечником выполняют аналогичные функции в звуковом диапазоне частот.
Трансформаторы для согласования импеданса используются для согласования импеданса источника и его нагрузки для наиболее эффективной передачи энергии. Разделительные трансформаторы обычно используются из соображений безопасности, чтобы изолировать часть оборудования от источника питания.
Редакторы Британской энциклопедии Эта статья была недавно пересмотрена и обновлена Адамом Августином.
Основы электрических трансформаторов
Что такое электрические трансформаторы?
Электрические трансформаторы представляют собой машины, которые передают электричество из одной цепи в другую с изменением уровня напряжения, но без изменения частоты. Сегодня они предназначены для питания переменным током, а это означает, что на колебания напряжения питания влияют колебания тока. Таким образом, увеличение тока приведет к увеличению напряжения и наоборот.
Трансформаторы помогают повысить безопасность и эффективность энергосистем, повышая и понижая уровни напряжения по мере необходимости. Они используются в широком спектре бытовых и промышленных приложений, в первую очередь и, возможно, наиболее важно для распределения и регулирования мощности на большие расстояния.
Конструкция электрического трансформатора
Тремя важными компонентами электрического трансформатора являются магнитный сердечник, первичная обмотка и вторичная обмотка. Первичная обмотка — это часть, подключенная к источнику электроэнергии, из которой изначально создается магнитный поток. Эти катушки изолированы друг от друга, и основной поток индуцируется в первичной обмотке, откуда он передается на магнитопровод и соединяется со вторичной обмоткой трансформатора через путь с низким сопротивлением.
Сердечник передает поток на вторичную обмотку, создавая магнитную цепь, замыкающую поток, а внутри сердечника размещается путь с низким сопротивлением, чтобы максимизировать потокосцепление. Вторичная обмотка помогает завершить движение потока, который начинается на первичной стороне и с помощью сердечника достигает вторичной обмотки. Вторичная обмотка способна набирать импульс, потому что обе обмотки намотаны на один и тот же сердечник, и, следовательно, их магнитные поля помогают создавать движение. Во всех типах трансформаторов магнитопровод собирается путем укладки ламинированных стальных листов, оставляя между ними минимально необходимый воздушный зазор для обеспечения непрерывности магнитного пути.
Как работают трансформаторы?
Электрический трансформатор использует для работы закон электромагнитной индукции Фарадея: «Скорость изменения потокосцепления во времени прямо пропорциональна ЭДС индукции в проводнике или катушке».
Физическая основа трансформатора заключается во взаимной индукции между двумя цепями, связанными общим магнитным потоком. Обычно он снабжен 2-мя обмотками: первичной и вторичной. Эти обмотки имеют многослойный магнитный сердечник, а взаимная индукция между этими цепями помогает передавать электричество из одной точки в другую.
В зависимости от величины потока, связанного между первичной и вторичной обмотками, будут разные скорости изменения потока. Чтобы обеспечить максимальное потокосцепление, т. е. максимальный поток, проходящий через вторичную обмотку и связанный с первичной, путь с низким сопротивлением размещается общим для обеих обмоток. Это приводит к большей эффективности рабочих характеристик и формирует сердечник трансформатора.
Приложение переменного напряжения к обмоткам первичной обмотки создает переменный поток в сердечнике. Это связывает обе обмотки, чтобы индуцировать ЭДС как на первичной, так и на вторичной стороне. ЭДС во вторичной обмотке вызывает ток, известный как ток нагрузки, если к вторичной секции подключена нагрузка.
Так электрические трансформаторы передают мощность переменного тока из одной цепи (первичной) в другую (вторичную) посредством преобразования электрической энергии из одного значения в другое, изменяя уровень напряжения, но не частоту.
youtube.com/embed/UchitHGF4n8″ frameborder=»0″ allowfullscreen=»allowfullscreen»>Видео кредит: Инженерное мышление
Как работает трансформатор – принцип работы электротехника
Электрический трансформатор – эффективность и потери
отсутствует трение и, следовательно, потери на ветер. Однако электрические трансформаторы имеют незначительные потери в меди и железе. Потери в меди происходят из-за потерь тепла при циркуляции токов по медным обмоткам, что приводит к потере электрической мощности. Это самые большие потери при работе электрического трансформатора. Потери в железе вызваны отставанием магнитных молекул, находящихся внутри сердечника. Это отставание происходит в ответ на изменение магнитного потока, что приводит к трению, и это трение производит тепло, что приводит к потере мощности в сердечнике. Эти потери можно значительно уменьшить, если сердечник изготовлен из специальных стальных сплавов.
Интенсивность потерь мощности определяет КПД электрического трансформатора и выражается в виде потерь мощности между первичной и вторичной обмотками. Результирующий КПД затем рассчитывается как отношение выходной мощности вторичной обмотки к мощности, подводимой к первичной обмотке. В идеале КПД электрического трансформатора составляет от 94% до 96%.
Типы трансформаторов
Электрические трансформаторы можно разделить на различные категории в зависимости от их конечного использования, конструкции, поставки и назначения.
Конструктивно- Трансформатор с сердечником Этот трансформатор имеет две горизонтальные секции с двумя вертикальными ветвями и прямоугольный сердечник с магнитной цепью. Цилиндрические катушки (ВН и НН) размещены на центральном стержне трансформатора стержневого типа.
- Кожуховой тип Трансформатор Кожуховой трансформатор имеет двойную магнитную цепь и центральную ветвь с двумя внешними ветвями.
- Однофазный Трансформатор Однофазный трансформатор имеет только один набор обмоток. Отдельные однофазные блоки могут давать те же результаты, что и трехфазные переходы, когда они соединены между собой извне.
- Трехфазный Трансформатор Трехфазный (или трехфазный) трансформатор имеет три набора первичных и вторичных обмоток, образующих группу из трех однофазных трансформаторов. Трехфазный трансформатор в основном используется для производства, передачи и распределения электроэнергии в промышленности.
- Повышающий трансформатор
Этот тип определяется количеством витков провода. Так, если вторичный комплект имеет большее число витков, чем первичный, значит, напряжение будет соответствовать тому, которое составляет основу повышающего трансформатора. - Понижающий трансформатор
Этот тип обычно используется для понижения уровня напряжения в сети передачи и распределения электроэнергии, поэтому его механизм полностью противоположен повышающему трансформатору.
- Силовой трансформатор
Обычно используется для передачи электроэнергии и имеет высокие характеристики. - Распределение Трансформатор Этот электрический трансформатор имеет сравнительно более низкую мощность и используется для распределения электроэнергии.
- Инструмент Трансформатор Этот электрический трансформатор подразделяется на трансформаторы тока и напряжения
- Трансформатор тока
- Трансформатор напряжения
Эти трансформаторы используются для релейной защиты и одновременной защиты приборов.
На основе охлаждения- Масляные трансформаторы с самоохлаждением Этот тип обычно используется в небольших трансформаторах мощностью до 3 МВА и предназначен для охлаждения за счет окружающего воздушного потока.
- Маслонаполненные трансформаторы с водяным охлаждением В электрическом трансформаторе этого типа используется теплообменник для облегчения передачи тепла от масла к охлаждающей воде.
- С воздушным охлаждением (Air Blast) Трансформаторы В этом типе трансформатора выделяемое тепло охлаждается с помощью воздуходувок и вентиляторов, которые обеспечивают циркуляцию воздуха на обмотках и сердечнике.
Основные характеристики трансформатора
Все трансформаторы независимо от их типа имеют некоторые общие характеристики:
- Частота входной и выходной мощности одинакова
- Все трансформаторы используют законы электромагнитной индукции
- Первичная и вторичная обмотки не имеют электрического соединения (кроме автотрансформаторов). Передача энергии осуществляется через магнитный поток.
- Для передачи энергии не требуются движущиеся части, поэтому отсутствуют потери на трение или сопротивление воздуха, как в других электрических устройствах.
- Потери в трансформаторах меньше, чем в других электрических устройствах, и включают:
- Потери в меди (потери электроэнергии на тепло, создаваемое циркуляцией токов вокруг медных обмоток, считающиеся самыми большими потерями в трансформаторах)
- Потери в сердечнике (вихревые токи и гистерезисные потери, вызванные отставанием магнитных молекул в ответ на переменный магнитный поток внутри сердечника)
Большинство трансформаторов очень эффективны, обеспечивая от 94% до 96% энергии при полной нагрузке. Трансформаторы очень высокой мощности могут обеспечивать до 98%, особенно если они работают с постоянным напряжением и частотой.
Использование электрического трансформатора
Основные области применения электрического трансформатора включают:
- Повышение или понижение уровня напряжения в цепи переменного тока.
- Увеличение или уменьшение номинала катушки индуктивности или конденсатора в цепи переменного тока.
- Предотвращение перехода постоянного тока из одной цепи в другую.
- Изоляция двух электрических цепей.
- Повышение уровня напряжения на объекте производства электроэнергии перед передачей и распределением.
Общие области применения электрического трансформатора включают насосные станции, железные дороги, промышленность, коммерческие предприятия, ветряные мельницы и электростанции.
Советы по поиску и устранению неисправностей электрического трансформатора
Использование мультиметра — лучший способ проверки и устранения неполадок в электрической цепи.
- Начните с проверки напряжения цепи, которую необходимо проверить. Этот шаг поможет вам определить тип лампочки, необходимой для сборки тестера цепей.
- Вырежьте 2 полоски из провода AWG 16-го калибра , убедившись, что длина каждой из них составляет не менее 12 дюймов.
- Используйте стриппер для удаления одной четверти внешнего пластика с каждого конца обеих полосок проводов и 1 дюйм внешнего пластика с двух других концов. Как только это будет сделано, скрутите оголенный провод, чтобы скрепить нити.
- Присоедините два конца, с которых вы удалили 1/4 th дюйма пластика, к контактам держателя лампы.
- Вставьте лампочку в патрон и присоедините оставшиеся два конца провода к клеммам, которые вы хотите проверить.
D&F Liquidators
D&F Liquidators уже более 30 лет обслуживает потребности в электротехнических строительных материалах. Это международный информационный центр с помещением площадью 180 000 квадратных метров, расположенным в Хейворде, Калифорния. Он хранит обширный перечень электрических разъемов, фитингов для кабелепроводов, автоматических выключателей, распределительных коробок, проводов, защитных выключателей и т. д. Он закупает электроматериалы у первоклассных компаний по всему миру. Компания также имеет обширный ассортимент электротехнической взрывозащищенной продукции и современных электросветотехнических решений. Покупая материалы оптом, D&F имеет уникальную возможность предложить конкурентоспособную ценовую структуру.