Тип катушки индуктивности – » :

Что такое катушки индуктивности их классификация?

Катушки — это намотаные или печатные элементы с индуктивным характером сопротивления. Катушки предназначены для преобразования энергии переменного электрического поля в энергию переменного магнитного поля и наоборот, создание реактивного индуктивного сопротивления переменному току.

Классификация. Катушки классифицируют по нескольким признакам. По конструктивным признакам катушки делят на цилиндрические, тороидальные, плоские, однослойные и многослойные, с сердечником и без сердечника, экранированные и неэкранированные. За использованием катушки разделяют на: контурные связи и дроссели. Первые используют в колебательных контурах, вторые — для
связи электрических цепей, третьи — для разделения постоянного и переменного токов. По характеру изменения индуктивности катушки бывают постоянной индуктивности, подстроечные, с переменной индуктивностью (вариометры), которые отличаются от подстроечных более широким диапазоном изменения номинала.

Условные изображения и обозначения. Условные изображения катушек на схемах приведены на рис. 1.

Рис. 1. Условные изображения катушек на схемах: а, б — катушки при отсутствии и наличии магнитодиэлектрического сердечника; в, г — подстроечные катушки; д — вариометр

Единственные условные обозначения имеют только стандартизированные элементы, это катушки с броневыми и тороидальными сердечниками. Они объединяют название ЭРЭ, тип сердечника, номер унифицированного ряда, индуктивность, допуск. К примеру, КИСБ-9а-5-30±5% означает катушка индуктивности, сердечник броневой 9 а, номер унифицированного ряда 5, индуктивность 30 мкГн, допуск ±5%.

Строение. Для изготовления катушек необходимы следующие конструктивные элементы: каркас, намотка, подстроитель, экран, элементы крепления, элементы защиты от внешних условий. Каркас является конструкционной основой катушки. Изготавливают его преимущественно из пластмассы или керамики в форме полой трубки с гладкой или нарезанной наружной поверхностью (рис. 2). Резки внешней поверхности необходимые для намотки с шагом. Внутренняя поверхность каркаса также может быть гладкой или нарезанной. Нарезка внутренней поверхности предназначается для подстроителя. Каркас может иметь одну или несколько секций, элементы крепления к плате. Для мощных катушек используют ребристые каркасы, которые облегчают рассеивания тепла. В пластмассовые каркасы запрессовывают внешние выводы, а в керамических каркасах для них оставляют специальные пазы. Иногда вместо каркаса может использоваться магнитодиэлектрический сердечник, как, например, в тороидальных катушках, или катушки могут изготавливаться бескаркасными. В последнем случае для обеспечения необходимой жесткости конструкции для намотки выбирают толстый провод диаметром

более 1 мм, с малым количеством витков (4 … 6). Намотка предназначена для создания индуктивного эффекта. В однослойных объемных катушках она может быть сплошной или с шагом (рис. 3, а, б). В
плоских конструкциях она имеет форму спирали Архимеда (рис. 2, в). В многослойных катушках намотка всегда сплошная. Она может быть секционированной или несекционированной, рядовой, пирамидальной или выполненной «в навал «(рис. 3, г, д, е, ж).

Рис. 2. Конструктивные виды каркасов катушек

Рис. 3. Основные виды намоток катушек: а — однослойная сплошная; б — однослойная с шагом; в — однослойная плоская; г — многослойная рядовая; д — многослойная «в навал»;
е — многослойная пирамидальная; ж — многослойная секционированная

Кроме отмеченных выше, широко применяют в многослойных катушках универсальные намотки (рис. 4), в которых витки не размещены параллельно друг к другу, а поочередно от одного края катушки к другому, пересекаясь под некоторым углом.

Рис. 4. Универсальная намотка:

П — начало; К — конец витка; — угол отклонения провода; — угол пересечения провода; р — количество переходов

Для намотки чаще всего используют медный или посеребренный медный провод. При однослойной намотке с шагом провод может быть без изоляции, а при сплошной однослойной и многослойной намотках используют провода с эмалевой изоляцией. Если необходимо обеспечить малую собственную емкость катушек, применяют эмалированные провода, дополнительно покрыты волокнистой (шелковой) изоляцией или лицендрат — многожильный переплетенный провод. В высокостабильных и мощных катушках намотку производят в виде медных посеребренных шин, впаленых в керамический каркас.
Внешние выводы катушек изготавливают из медной проволоки диаметром 0,5 … 1,5 мм, который запрессовывают в пластмассовый каркас или вставляют в пазы керамических каркасов.
Сердечники катушек могут быть цилиндрическими, катушечными, броневыми, Ш-образными, тороидальными, Н-образными (рис. 5).

Рис. 5. Типы магнитных сердечников: а … г — цилиндрическое с резьбой, гладкие, с втулкой, трубчатые; д, е — катушечный; ж, з — броневое с замкнутой и разомкнутой магнитной цепью; и — чашечный; к — тороидальный; л — кольцевое; м — Н-образное; н — Ш-образное

Сплошные цилиндрические сердечники чаще всего используют в подстроечных  индуктивных элементах, а трубчатые — в феровариометрах. Броневые и чашечные сердечники, в свою очередь, обеспечивают высокую добротность катушек, их экранирование и делают настройки. Тороидальные и кольцевые сердечники уменьшают габариты катушек за счет малого рассеивания магнитного потока. Сердечники катушечной формы имеют повышенную степень использования магнитных свойств материала, но вызывают большие потери на высоких частотах. Ш-образные сердечники используют в тех катушках,
в которых управление индуктивностью будет осуществляться током. Поскольку катушки предназначены для работы на высоких частотах, для уменьшения потерь энергии сердечника для них изготавливают из ферромагнитных диэлектриков, в которых принадлежит карбонильное железо, и ферромагнитных полупроводников, каковы есть ферриты. Для катушек, предназначенных для работы на коротких и ультракоротких волнах, сердечники изготавливают из немагнитных материалов (медь, латунь). Подстроитель фактически — это сердцевина, изготовленная из ферромагнитного или немагнитного материала, имеющего цилиндрическую форму и может вкручиваться в каркас, в броневой, чашечный или катушечный сердечник для подстройки индуктивности катушки (рис. 5). Экранирование катушек индуктивности необходимо для локализации собственных электромагнитных полей и защиты их от внешних электромагнитных воздействий. С этой целью с высокопроводящих проводниковых материалов (чаще всего алюминия или меди) изготавливают цилиндрические, реже призматические кожухи (экраны), которые надежно соединяют с заземлением (рис. 6). В результате индуцированные в экране токи отводятся на землю.

Рис. 6. Экранированные катушки

Защита катушек от внешних условий обеспечивает их покрытия химически устойчивыми лаками, утечки жидкими диэлектриками или помещения их в специальные герметичные корпуса.

Работа. Работа катушки основывается на том, что переменный электрический ток, протекающий по катушке, вызывает появление в ней переменной электродвижущей силы самоиндукции, которая препятствует изменению тока, создавая ему реактивное индуктивное сопротивление. Электродвижущая сила самоиндукции прямо пропорциональна скорости изменению тока :

Коэффициент L, который входит в формулу, называют коэффициентом самоиндукции или индуктивностью катушки. Реактивное сопротивление прямо пропорционален частоте изменения тока и
индуктивности катушки:

Ферромагнитные сердечники взымают магнитные силовые линии переменного электрического тока и, вследствие этого, заставляют их большей степени пересекать витки катушки, что приводит к увеличению ЭДС самоиндукции, а следовательно, к увеличению индуктивности катушки. Действие немагнитных сердечников противоположная к действию их ферромагнитных аналогов. Регулировка индуктивности катушки основывается на изменении магнитного потока, пронизывающего его обмотку. Оно может быть осуществлено несколькими способами (рис. 5):

— введением в катушку немагнитного подстроителя, который выталкивает из нее магнитные силовые линии переменного тока;
— введением в катушку магнитного подстроителя, который увеличивает эффективную магнитную проницаемость;
— изменением щели между сердечником и катушкой;
— изменением магнитной проницаемости сердечника катушки при подмагничиванию его постоянным электрическим током;
— перемещением витков, секций катушек.

Свойства. Поскольку катушки работают на высоких частотах и предназначены преимущественно для создания в электрических цепях реактивного индуктивного сопротивления переменному току, обеспечения между ними электромагнитной связи, высокой избирательности колебательных контуров, то для них основными являются частотные характеристики, выражающие зависимости их реактивного и активного сопротивлений, а также сопротивления потерь в собственной емкости и добротности от частоты. По выражению видно, что реактивное сопротивление катушки переменному току меняется прямо пропорционально частоте (рис. 7, прямая 1).

Рис. 7. Частотные зависимости реактивного и активного сопротивлений и потерь в собственной емкости катушек

Активное сопротивление провода катушки переменным током тоже растет с частотой (рис. 7, кривая 2) в основном за счет скин-эффекта, виткового эффекта и эффекта близости. Аналогично изменяются с частотой потери в собственной емкости катушки (рис. 7, кривая 3). Добротность катушки определяется отношением ее реактивного сопротивления  к активному 

Поскольку в начале высокочастотного диапазона с повышением частоты быстрее растет реактивное сопротивление, а в конце его быстрее растут активное сопротивление и потери энергии в собственной емкости, экране и сердечнике, то кривые частотной зависимости добротности имеют максимум (рис. 8).

Рис. 8. Частотные характеристики добротности катушек с броневыми сердечниками, изготовленными из карбонильного железа (а) и феррита (б)

Катушки характеризуются следующими параметрами: индуктивностью, добротностью, температурными коэффициентами индуктивности и добротности, коэффициентами старения индуктивности и добротности, собственной емкостью и собственной резонансной частотой, надежностью. Индуктивность катушки характеризует значение индуцированной в ней электродвижущей силы самоиндукции, реактивного сопротивления, добротности, энергии магнитного поля:

где I — ток через катушку.
Добротность катушек, которая определяется отношением реактивного сопротивления к активному , который характеризует резонансные свойства (избирательность) колебательных контуров, их коэффициент полезного действия. Температурный коэффициент индуктивности характеризующий температурную стабильность индуктивности катушки, находят так:

где и — значение индуктивности при температурах  и . Аналогично определяют температурный коэффициент добротности

где и — значение добротности при температурах и . Коэффициент старения индуктивности , который характеризует временную стабильность индуктивности катушек, рассчитывают по формуле:

где  и  значение индуктивности катушки в момент времени и . Подобно определяется коэффициент старения добротности :

где и — значение добротности в момент времени и . Собственная емкость катушки , обусловлена ее конструктивными элементами. Расчеты не дают нужной точности, поэтому ее целесообразно определять экспериментально. Зная собственную емкость и индуктивность катушки, можно найти ее собственную резонансную частоту:

Надежность катушки определяется постепенными отказами, обусловленными старением диэлектриков и магнитных материалов, окислением проводов. Эти процессы ускоряются влагой и температурой. Защита от этих дестабилизирующих факторов замедляет процессы старения и за счет этого повышает параметрическую надежность катушек. Индуктивность катушки в условиях действия отмеченных выше факторов можно определить по выражению:

где — коэффициент, характеризующий изменение индуктивности катушки под действием влаги. Надежность в таком случае оценивают вероятностью невыхода параметров за пределы допусков.
Внезапные отказы в определенной степени влияют на надежность катушек. Они конечно вызванные нарушением электрического соединения обмотки с выводами, обрывами обмотки, короткого замыкания витков и тому подобное. Типичные значения некоторых из названных выше параметров катушек приведены в табл. 1.4.

Таблица 1.4 Типичные значения параметров дискретных катушек

Схема замещения катушки должна отражать ее свойства и содержать не только индуктивность самой катушки, но и индуктивность выводов, емкость витков и выводов, емкость, обусловленную сердечником, потери энергии в меди, в емкостях, сердцевине и тому подобное. Но такую схему замещения можно упростить, если обе составляющие индуктивности объединить в одну индуктивность L с потерями энергии , а все составляющие емкости — в одну емкость с потерями энергии. Тогда такая упрощенная эквивалентная схема катушки будет иметь вид, изображенный на рис. 9, а.

Рис. 9. Упрощенные схемы замещения катушек

Можно ввести понятие эквивалентной индуктивности катушки, которая отражает совместное действие индуктивности и емкости:

Так можно найти эквивалентную индуктивность

где — частота собственного резонанса.

Аналогично можно ввести понятие эквивалентного сопротивления потерь:

Тогда схему замещения катушки можно упростить (рис. 9, б).

Применение. Дискретные катушки применяют в колебательных контурах, электрических линиях задержки сигналов, фильтрах. Их используют для создание на отдельных участках электрических цепей реактивного индуктивного сопротивления, для обеспечения магнитной связи между электрическими цепями, для разделение постоянного и переменного токов и тому подобное. Катушки трудно поддаются микроминиатюризации, поэтому индуктивные элементы в интегрированных микросхемах практически отсутствуют. Исключением является тонкопленочные гибридные ИМС, в которых они имеют форму плоских спиралей Архимеда индуктивностью до 10 мкг. В полупроводниковых ИМС вместо катушек применяют специальные схемы на транзисторах, которые дают индуктивный эффект. В толстопленочных гибридных ИМС катушки преимущественно используют навесные.

Конструирование и расчет. В катушках рассчитывают геометрические размеры, индуктивность, количество витков, диаметр провода, потери энергии, добротность. Геометрические размеры катушек определяет их диаметр D, длина  глубина намотки , диаметр каркаса . В однослойной катушке диаметр D — это диаметр круга, образованного осевой линией активного сечения провода. На
высоких частотах диаметр катушки D можно считать равным диаметра каркаса . Длина катушки — это расстояние между осевыми линиями крайних витков. Расстояние между осевыми линиями смежных витков называют шагом намотки  Обычно принимают, что: 

или

где N — количество витков. При неплотной намотке, выполненной с коэффициентом неплотности  ≈ 1,05 … 1,3

где -диаметр провода с изоляцией. Для многовитковых однослойных катушек принимают, что: 

Для многослойных катушек можно считать, что внешний диаметр катушки D равен наружному диаметру намотки, а ее внутренний диаметр . В таком случае глубина намотки 

Средний диаметр катушки:

Для простой рядовой катушки и намотки «в навал» глубина

Индуктивность однослойных катушек со сплошной намоткой определяют по выражению:

где , , — поправочный коэффициент, который зависит от отношения  и определяется из графика, приведенного на рис. 9, или приближенно по выражению:

Рис. 9. График зависимости для однослойных катушек

Индуктивность однослойной катушки, намотанной с шагом, определяют с выражения:

где — индуктивность катушки,  А и В — поправочные коэффициенты, определяются из графиков, изображенных на рис. 10; d — диаметр провода без изоляции.
Индуктивность плоской круглой катушки может быть определена по выражению:

где b — глубина плоской намотки.

Рис. 10. Графики зависимостей и

Индуктивность плоской квадратной катушки рассчитывают по формуле:

www.kak-chto.info

Разновидности катушек индуктивности

Контурные катушки индуктивности 

Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность и добротность.

Катушки связи 

Такие катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы и коллектора и т. д. К таким катушкам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи.

Вариометры 

Это катушки, индуктивность которых можно изменять в процессе эксплуатации для перестройки колебательных контуров. Они состоят из двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз.

Дроссели 

Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включаются в цепях питания усилительных устройств. Предназначены для защиты источников питания от попадания в них высокочастотных сигналов. На низких частотах они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники.

Трансформатор T — электромагнитное устройство, служащее для преобразования одного переменного напряжения в другое той же частоты.

Конструктивно трансформатор состоит из двух отдельных обмоток — первичной и вторичной — с числом витков n1 и n2 соответственно. Входное напряжение переменного тока, приложенное к первичной обмотке U1, создает изменяющееся магнитное поле, которое создает во вторичной обмотке напряжение U2. Основная характеристика трансформатора — коэффициент трансформации Кт= U2/U1, при Кт>1 — повышающий трансформатор, при Кт<1 — понижающий трансформатор. Для трансформатора справедливо соотношение U2/U1 = n2/n1, I2/I1 = n1/n2.

Силовой трансформатор (трансформатор питания) — работает от сети переменного тока. Для повышения кпд трансформатора обе обмотки наматываются на одном магнитном сердечнике.

Переключатель S — устройство для переключения электрических цепей (частный случай переключателя — выключатель).

Реле К — устройство для автоматической коммутации мощных электрических цепей по внешнему маломощному сигналу.

Предохранитель F — элемент цепи, служащий для защиты схемы от перегрузок, возникающих при резком повышении значения тока из-за различных неисправностей элементов. Наиболее популярными являются плавкие предохранители, имеющие тонкую высокоомную токопроводящую нить, которая разрывается — перегорает — при увеличении тока выше допустимого значения, тем самым разрывая цепь и не допуская выхода из строя других элементов.

Для электрического соединения элементов для создания пути для прохождения тока используют соединительные провода — металлические проводники (чаще всего медные), покрытые изоляционной оболочкой (лак или синтетический материал). Несколько проводов, объединенных в единую конструкцию, называют кабелем. Для передачи радиочастотных сигналов применяют специальные радиочастотные кабели. Они представляют из себя металлический проводник — жилу, по которой протекает ток, изоляционное покрытие, металлическую оплетку — экран, препятствующий излучению высокочастотной энергии (так как металлический проводник представляет собой антенну) и защитное изоляционное покрытие. В диапазоне сверхвысоких частот для передачи электромагнитной энергии используют волноводы. В последние годы в технике связи широко используются волоконно-оптические системы передачи. Для передачи сигналов в них используются специальные световоды.

ИСТОЧНИКИ ЭЛЕКТРОПИТАНИЯ

Источник электропитания (ИП) — средство для получения электрической энергии (в виде энергии постоянного тока), обеспечивающее функционирование электронных систем.

Различают первичные источники электропитания — средства, в которых электрическая энергия получается за счет энергии других видов — электрохимической (гальванические элементы, аккумуляторы), механической (дизель-генераторы), световой — солнечной- энергии (фотоэлектрические источники энергии — солнечные батареи) и вторичные источники электропитания (выпрямительные устройства или блоки питания), которые обеспечивают преобразование энергии переменного тока от технической сети (промышленная или бортовая сеть) в энергию постоянного тока.

Основным источником питания на судне является бортовая сеть, вырабатывающая переменное напряжение промышленной частоты (обычно 50 Гц).

Резервные и автономных источников питания

Аварийным источником питания на судне является дизель-генератор, который включается при выходе из строя бортовой сети питания.

В качестве резервных и автономных источников питания используются

гальванические элементы и аккумуляторы. Для увеличения мощности их соединяют в батареи.

Гальванические элементы изготавливаются сухими или водоналивными. Распространенными являются сухие элементы с электролитом в виде густой пасты. Гальванические батареи являются источниками энергии, обеспечивающие мгновенную готовность к работе. Они являются источниками одноразового действия, т.е. после выработки ресурса их следует заменять. С течением времени происходит высыхание компонент гальванического элемента — на каждом элементе обозначается предельный срок хранения, после которого номинальное значение напряжения не гарантируется.

Аккумулятор — устройство для накопления энергии с целью последующего ее использования. Электрический аккумулятор — устройство, преобразующее электрическую энергию в химическую и по мере необходимости обеспечивающее обратное преобразование. Аккумуляторы делятся на кислотные и щелочные. В кислотных аккумуляторах пластины изготавливаются из свинца, а электролитом служит раствор серной кислоты определенной плотности. В щелочных аккумуляторах электроды бывают кадмиево-никелевыми (КН), железо-никелевыми (ЖН), никель-цинковыми (НЦ) и серебряно-цинковыми (СЦ). Электролитом служит раствор едкой щелочи определенной плотности. Щелочные серебряно-цинковые аккумуляторы обладают наиболее высокими эксплуатационными свойствами (небольшие габариты и вес — в 4…6 раз легче других аккумуляторов, широкий диапазон температур, большие токи). Однако эти аккумуляторы значительно дороже других. Перед использованием аккумулятор необходимо зарядить с помощью специального зарядного устройства. При использовании аккумулятора его емкость снижается, для восстановления номинальных значений тока и напряжения также требуется регулярная подзарядка аккумулятора. Существуют автоматические зарядные устройства, обеспечивающие автоматическое подключение источника постоянного тока к аккумулятору при снижении емкости последнего ниже номинальной.

studfiles.net

Сердечники катушек индуктивности — выбор материала и формы

Автор: Mark A. Swihart, Менеджер отдела прикладной техники Magnetics Inc, отделение Spang&Co. Питтсбург, Пенсильвания, США.

Резюме: Внимательное рассмотрение характеристик силовых катушек индуктивности часто является ключевым фактором успешного конструирования компактных и экономичных преобразователей с высоким к.п.д. Во многих вариантах применения катушек индуктивности порошковые сердечники обладают явными преимуществами в сравнении с сердечниками, изготовленными из других материалов – таких, как ферриты или стальные ламинаты. В распоряжении разработчика имеется множество вариантов выбора материала и формы порошкового сердечника, каждый из которых является выбором компромисса по таким характеристикам, как величина потерь, стоимость, габариты и простота намотки. Кроме того, при изменении критериев конструирования изменяется комбинация преимуществ и недостатков каждого из материалов для порошкового сердечника. Понимание этих преимуществ и недостатков необходимо для осуществления правильного выбора.

Катушка индуктивности является устройством, фильтрующим ток. Создавая препятствия прохождению тока, фильтрующая катушка индуктивности фактически накапливает электрическую энергию по мере того, как переменный ток нарастает в каждом цикле, и высвобождает данную энергию, когда ток спадает до минимума. В силовых катушках индуктивности требуется наличие воздушного зазора внутри конструкции сердечника. Назначение воздушного зазора состоит в накапливании энергии и в предотвращении насыщения сердечника при нахождении его под нагрузкой. В иной формулировке, назначение воздушного зазора состоит в том, чтобы уменьшать и регулировать эффективную магнитную проницаемость магнитной конструкции. Поскольку μ = B/H, то уменьшение μ означает увеличение H (то есть, рост электрического тока), который поддерживается при уровне B, меньшем максимально допустимого значения магнитной индукции (Bsat), являющегося внутренней (природной) характеристикой заданного магнитного материала.

Существует общее ограничение, связанное с узкими пределами изменений индукции насыщения Bsat. Физика мягких магнитных материалов такова, что значение Bsat материалов, доступных на современном рынке, составляет примерно от 0,3T до 1,8T. В наиболее экзотичном имеющемся материале, каковым является сплав кобальта – железа – ванадия (супермендюр), это значение достигает 2,2T. Более высокие значения не существуют.

Воздушный зазор в силовых катушках индуктивности может быть распределенным или дискретным. Распределенные зазоры создаются в порошковых сердечниках. На микроскопическом уровне, гранулы порошка магнитного сплава отделяются одна от другой посредством изоляции связующим веществом или посредством высокотемпературной изоляции покрытия каждой гранулы. (Это не относится к уровню магнитных доменов; домены имеют размеры намного меньше размеров гранул порошкового сердечника). Распределение зазора по всей конструкции порошкового сердечника служит двум основным целям: (1) устраняются недостатки конструкции с дискретным зазором, каковыми являются резкое насыщение, краевые потери и электромагнитные помехи (EMI), и (2) регулируются потери от вихревых токов до такой степени, при которой сплавы с повышенным значением Bsat могут быть использованы на относительно высоких частотах, несмотря на относительно низкое значение объемного удельного сопротивления в сплаве.

Дискретные зазоры используются главным образом в ферритовых сердечниках. Основным функциональным преимуществом феррита являются низкие потери по переменному току в сердечниках при работе на высокой частоте, что объясняется более высоким удельным сопротивлением в керамическом материале по сравнению с металлическими сплавами. Ферриты находятся на нижнем конце существующей области значений Bsat, и они существенно смещаются в сторону дальнейшего понижения Bsat при повышении температуры. Конструкция с дискретным зазором приводит к созданию катушки индуктивности, в которой достигается точка резкого насыщения и при этом требуется большая габаритная высота в конструкции. Дискретные зазоры приводят также к получению катушек индуктивности, которые уязвимы к потерям от вихревых токов в обмотке вследствие краевого эффекта и имеют тенденцию к генерации электромагнитных помех (EMI). Дискретные зазоры используются также в аморфных и нанокристаллических ленточных сердечниках с ориентацией потока вдоль волокна, имеющих улучшенные показатели потерь по переменному току в сравнении с порошковыми сердечниками, но зачастую более дорогостоящих.

Разработчик катушки индуктивности должен выполнять требования по накапливанию энергии (величине индуктивности) и одновременно учитывать требования к суммарным потерям, рабочему объему, стоимости, электромагнитным помехам, температурным характеристикам, надежности и устойчивости к отказам.

Во многих случаях порошковые сердечники обладают явными преимуществами. При этом разработчик имеет множество вариантов выбора среди имеющихся порошковых сердечников.

Сердечники MPP (из мо-пермаллоевого (Molypermalloy) порошка) представляют собой тороидальные сердечники с распределенным воздушным зазором, изготавливаемые из порошкового материала, являющегося сплавом никеля, железа и молибдена. MPP обеспечивает самые низкие потери в сердечнике по сравнению с другими материалами для порошкового сердечника, но сердечники из данного сплава являются при этом самыми дорогостоящими ввиду высоких затрат на технологическую обработку и по причине 80-процентного содержания никеля в сплаве. Тороидальные сердечники из MPP выпускаются с наружными диаметрами от 3,5 мм до 125 мм.

Сердечники High Flux представляют собой тороидальные сердечники с распределенным воздушным зазором, изготавливаемые из порошкового материала, являющегося сплавом никеля с железом. Сплав High Flux содержит 50% никеля, по затратам на технологическую обработку сравним с MPP и по цене обычно выигрывает по сравнению с MPP примерно 5% – 25%. High Flux характеризуется более высокими потерями в сердечнике, нежели MPP и Kool Mμ, но благодаря своему повышенному значению Bsat сплав High Flux имеет оптимальное соотношение между магнитной проницаемостью и силой подмагничивания. Иными словами, повышенное значение Bsat трансформируется в оптимальную стабильность (самый низкий уровень сдвига) катушки индуктивности в условиях сильного подмагничивания постоянным током или при высоких пиковых значениях переменного тока. Как и сердечники из MPP, сердечники из сплава High Flux не получили широкого распространения в каких-либо геометрических формах, кроме тороидов.

Сердечники Kool Mμ®, или «сендаст», представляют собой сердечники с распределенным воздушным зазором, изготавливаемые из порошкового материала, являющегося сплавом железа, алюминия и кремния. По характеристикам подмагничивания постоянным током материал Kool Mμ сравним с MPP. Отсутствие никеля в формуле сплава делает Kool Mμ намного более экономичным, чем MPP. Основной недостаток Kool Mμ состоит в том, что данный сплав имеет более высокие потери по переменному току, нежели MPP. Этот сплав призван служить практичной альтернативой в случаях, когда порошковое железо имеет слишком высокие потери (в типовых случаях при умеренных или высоких значениях частоты) и при этом использование MPP является слишком дорогостоящим. Сердечники из Kool Mμ выпускаются не только в форме тороидов, но и в виде E-сердечников, что позволяет в максимально возможной степени снизить затраты на намотку.

В таблице 1 приведены сравнительные данные о свойствах различных материалов для сердечников.

MPPHigh FluxKool MμЖелезный порошок
Проницаемость14 — 55014 — 16026 — 12510 — 100
Насыщение (Bsat)0,7 T1,5 T1,0 T1,2 — 1,4 T
Максимальная температура (°C)200200200
Потери в сердечнике по переменному токуСамые низкиеВысокиеНизкиеСамые высокие (и переменные)
Форма сердечникаТороидТороидТороид, E-сердечникТороид, E-сердечник, другие формы

Сердечники из железного порошка имеют более высокие внутренние потери (потери в сердечнике), чем сердечники из MPP, High Flux или Kool Mμ, но обычно являются менее дорогостоящими. Железный порошок часто является оптимальным выбором для силовых катушек индуктивности, в которых не требуется максимально высокий к.п.д. и миниатюрные размеры, но критичным показателем является цена; этот выбор может быть оптимальным также при работе на очень низкой частоте или с очень малой амплитудой пульсаций переменного тока (что означает очень слабый магнитный поток от переменного тока и соответственно низкие потери по переменному току). Большинство сердечников из железного порошка содержит связующее вещество для изоляции между гранулами, и это вещество уязвимо к пробоям при работе с высокими температурами в течение длительного времени, поэтому разработчику может понадобиться учет кривых теплового старения для выбираемого железного порошка. Значения плотности штамповки (то есть, прижимных усилий сжатия) для железных порошков являются умеренно высокими, поэтому данные материалы обеспечивают возможность широкого разнообразия геометрических форм, включая тороидальные сердечники, E-сердечники, броневые сердечники, U-сердечники и стержневые сердечники. Для сердечников с очень сильными токами, но без необходимости работы на высоких частотах, крупногабаритный E-сердечник, U-сердечник или броневой сердечник из порошкового железа может оказаться единственным практически приемлемым вариантом.

Ферритовые сердечники с зазором являются альтернативой порошковым сердечникам при выборе вариантов конструирования. Как видно из рисунка 1, порошковые материалы насыщаются постепенно и при этом сохраняют полезную предсказуемую индуктивность даже при существенном нарастании тока нагрузки. Ферритовый сердечник с зазором сохраняет значение индуктивности, приближенное к значению при отсутствии подмагничивания, пока не происходит насыщение, при котором наблюдается резкое спадание индуктивности. При создании конструкций с ферритами для работы на повышенных температурах необходимо учитывать ряд дополнительных факторов. Как видно из рис. 2, мощность потока индукции любого силового феррита существенно уменьшается при повышении температуры; в то же время, мощность потока индукции порошковых сердечников фактически не зависит от температуры.

Кривая плавного насыщения порошкового сердечника отражает существенные преимущества для конструирования: (1) рабочая точка в основной части кривой (80% — 50%), позволяющая повысить степень компактности конструкции; (2) минимальный сдвиг при изменении температуры; (3) малая чувствительность к изменениям кривой как в части температуры, так и в части допусков на материал; (4) природная устойчивость к отказам; (5) естественные колебания индуктивности – высокое значение L при низкой нагрузке, регулируемая индуктивность при высокой нагрузке. Другие преимущества порошковых сердечников в сравнении с ферритовыми сердечниками состоят в том, что порошковые сердечники не уязвимы к краевым потерям и к EMI-эффектам в зазоре и имеют более высокие значения внутренней Bsat.

Рисунок 1. Кривые подмагничивания постоянным током для феррита и Kool Mμ.

Рисунок 2. Кривая насыщения для силового феррита.

Возможными вариантами применения катушки индуктивности, в частности, являются:

  1. Компактная катушка индуктивности цепи постоянного тока (DC) с малыми пульсациями переменного тока (конструкция с ограниченным размером окна)
  2. Крупногабаритная катушка индуктивности цепи постоянного тока (конструкция с ограничением насыщения)
  3. Катушка индуктивности с сильным переменным током (конструкция с ограничением потерь в сердечнике)

Каждый из трех вариантов характеризуется специфическими требованиями к конструкции. В компактной катушке индуктивности цепи постоянного тока ограничительный фактор определяется в большей степени доступным размером окна сердечника, нежели площадью поперечного сечения сердечника. Окно сердечника должно быть достаточно большим для того, чтобы расположить в нем количество витков провода, достаточное для получения требуемой индуктивности. В крупногабаритной катушке индуктивности цепи постоянного тока ограничительным фактором часто является точка насыщения сердечника. Сердечник должен иметь достаточно крупные габариты и достаточно малую магнитную проницаемость, чтобы избежать насыщения (или смещения величины индуктивности ниже минимального требуемого уровня). Эти факторы требуют увеличения числа витков и длины медных проводов, что вызывает проблему в виде потерь в проводах. Основным ограничительным фактором для катушки индуктивности с сильным переменным током являются потери в сердечнике. Поскольку потери в сердечнике зависят от колебаний потока, создаваемого переменным током, а не уровнем индукции, создаваемой постоянным током, потери в сердечнике становятся доминирующим фактором, определяющим выбор конструкции.

Ниже приведены в качестве примера требования, которым должна отвечать типовая конструкция.

Постоянный ток (IDC)500 мА (не более)
Требуемая индуктивность (Lmin)100 мкГ
Пульсации переменного тока (Iac)50 мА (пиковый размах)
Частота (f)100 кГц

Для конструирования катушки с данными характеристиками компания Magnetics использует программное обеспечение Inductor Design Using Powder Cores (Конструирование катушки индуктивности с использованием порошковых сердечников). В данной программе реализуется алгоритм конструирования, имеющий целью определение минимально возможных габаритов модуля для заданных входных параметров (значений тока, индуктивности, частоты и др.). Программа определяет размер требуемого сердечника, исходя из необходимой величины энергетического показателя в виде произведения, получаемого умножением индуктивности при полной нагрузке на квадрат пикового значения тока (постоянного тока с приращением на пульсацию переменного тока), проходящего через катушку индуктивности. Увеличение значений индуктивности и силы тока подразумевают увеличение габаритов сердечника. Программы выполнялись с вводом указанных выше исходных значений конструирования, а материал сердечника выбирался вручную для каждого из типов сердечников, указанных ниже в таблице 2. Число витков, коэффициент плотности намотки провода, габариты намотки, величина потерь и рост температуры были определены по выходным данным выполняемых программ.

MPPHigh FluxKool Mμ, торидальные сердечникиKool Mμ, E-сердечники
Номер компонента55025-A258278-A277280-A7K1808E090
Проницаемость30016012590
Габариты сердечника (дюймы)0,335 x 0,1500,405 x 0,1500,405 x 0,1500,77 x 0,65 x 0,19
AL (нГ/виток²)124685369
Число витков32414839
Коэффициент плотности намотки провода37%31%37%14%
Габариты обмотки (дюймы)0,375 x 0,2090,448 x 0,2090,455 x 0,2090,77 x 0,65 x 0,644
Потери в сердечнике (мВт)2,00,70,70,5
Потери в проводе (мВт)24,233,340,083,0
Суммарные потери (мВт)26,234,040,783,5
Рост температуры (°C)6,16,06,94,3

В каждом случае программы определяли самое высокое значение магнитной проницаемости из числа значений, имеющихся для выбранного материала. С учетом относительно слабого тока, любое уменьшение магнитной проницаемости выбранного материала не приводит к оптимизации индуктивности при пиковой нагрузке; в этих условиях больше теряется ввиду уменьшения индуктивности при отсутствии нагрузки, нежели приобретается за счет оптимизации кривой спадания силы подмагничивания постоянным током. Потери в сердечнике и рост температуры не являются важными влияющими факторами в катушке индуктивности данного типа вследствие низкой магнитной индукции по переменному току в сердечнике. Например, в сердечнике High Flux сила намагничивания H определяется по закону Ампера следующим образом:

H (эрстеды) = .4 (π) (N) (I)/Le, где:

N — число витков
I — ток в амперах
Le — длина линии магнитной индукции сердечника в см.

Сердечник 58278-A2 имеет длину линии магнитной индукции, равную 2,18 см, поэтому сила намагничивания постоянным током равняется:

H = .4 (π) (41) (0,5)/(2,18) = 11,8 эрстед

Процент начальной магнитной проницаемости, или значение «спадания», можно определить по данным, публикуемым в справочнике Magnetics по порошковым сердечникам (см. рис. 3).

Рисунок 3. Кривая спадания подмагничивания постоянным током для High Flux.

Кривая проницаемости 160 для High Flux показывает, что магнитная проницаемость при силе подмагничивании постоянным током, равной 11,8 эрстедам, равняется примерно 90% начального значения этой проницаемости. Эта рабочая точка является консервативной рабочей точкой для данного материала, но возможности конструирования ограничиваются в большей степени не уровнем насыщения сердечника, а площадью окна сердечника. Коэффициент заполнения окна для катушки данного типа равняется 37%, что приближается к типовому предельному значению для тороидальных сердечников. Усилия по уменьшению габаритов сердечника с целью получения преимуществ от имеющейся мощности магнитной индукции приводят к нереалистичным значениям коэффициента заполнения окна, равным 50% и более.

Как видно из приводимых данных, тороидальный сердечник MPP обеспечивает получение наиболее компактной и эффективной конструкции вследствие того, что данный материал доступен для использования с более высоким значением магнитной проницаемости (300μ), чем другие материалы. Это трансформируется в более высокое значение коэффициента одновитковой индуктивности (AL) при заданном размере сердечника, что позволяет снижать габариты используемого сердечника. Компромиссным фактором является ускоренное спадание силы намагничивания постоянным током. Тороидальный сердечник Kool Mμ является привлекательным в основном благодаря существенным преимуществам в цене. Выбираемый E-сердечник из материала Kool Mμ является самым «миниатюрным» из числа сердечников, имеющихся в настоящее время, и имеет избыточные габариты для рассматриваемого здесь набора требований.

Типовыми требованиями к катушкам данного типа являются:

Постоянный ток (IDC)20 А (не более)
Требуемая индуктивность (Lmin)100 мкГ (минимум)
Пульсации переменного тока (Iac)1 А (пиковый размах)
Частота (f)100 кГц
Максимальный рост температуры (°C)40°C

В таблице 3 приведены применимые данные конструирования, полученные на выходе программы для данного случая.

MPPHigh FluxKool Mμ, торидальные сердечникиKool Mμ, E-сердечники
Номер компонента55868-A258867-A277868-A7K5528E040
Проницаемость26602640
Габариты сердечника (дюймы)3,108 x 0,5453,108 x 0,5453,108 x 0,5452,19 x 2,20 x 0,81
AL (нГ/виток²)306830157
Число витков62457030
Коэффициент плотности намотки провода24%18%27%72%
Габариты обмотки (дюймы)3,657 x 0,8843,514 x 0,8843,720 x 1,0532,19 x 2,20 x 1,98
Потери в сердечнике (мВт)116230182290
Потери в проводе (мВт)143719780169595489
Суммарные потери (мВт)1448710010171415779
Рост температуры (°C)35,327,437,722,4

Для катушки данного типа необходимо выбирать сердечники с пониженной магнитной проницаемостью и с большим поперечным сечением, чтобы избежать насыщения при высоком уровне подмагничивания постоянным током.

Сердечник 58867-A2 имеет длину линии магнитной индукции, равную 20 см, поэтому сила намагничивания H равняется:

H = 0,4 (π) (45) (20)/(20) = 56,5 эрстед

Кривая для материала High Flux с магнитной проницаемостью 60 на рисунке 3 показывает, что магнитная проницаемость составляет примерно 83% своего начального значения при силе подмагничивания постоянным током, равной 56,5 эрстедам, что соответствует безопасной рабочей точке. Критичным параметром является в данном случае не коэффициент плотности намотки провода, а рост температуры вследствие потерь в меди. Последующие итерации при конструировании должны быть направлены на увеличение диаметра провода или на использование многожильного провода для уменьшения плотности тока с целью снижения потерь в меди, что достигается ценой повышения плотности намотки. Из приводимых данных можно видеть, что High Flux обеспечивает конструирование тороидальных сердечников с меньшим ростом температур, нежели другие материалы. Высокая индкуция насыщения данного материала и улучшенные характеристики подмагничивания постоянным током позволяют выбирать сердечники с повышенной магнитной проницаемостью и увеличенным значением AL, что позволяет уменьшить число витков и сократить потери в меди. И в этом случае потери в сердечнике малы следствие относительно слабого потока подмагничивания переменным током в сердечнике.

Конструкция E-сердечника из материала Kool Mμ превосходит аналоги в части потерь благодаря тому, что поперечное сечение E-сердечника (и значение AL) намного превышают аналогичные показатели тороидальных сердечников. Это позволяет уменьшить и существенно сократить потери в меди. E-сердечник имеет относительно малую площадь окна, что подразумевает повышенный коэффициент плотности намотки (72%), но это достижимо в конструкциях с бобинной намоткой. Для E-сердечников допускается вариант с намоткой фольги. Недостаток состоит в том, что суммарная высота E-сердечника с готовой обмоткой примерно в 2 раза превышает аналогичную высоту в других конструкциях.

Типовыми требованиями к катушкам индуктивности переменного тока являются:

Постоянный ток (IDC)4 А (номинал)
Требуемая индуктивность (Lmin)100 мкГ (минимум)
Пульсации переменного тока (Iac)8 А (пиковый размах)
Частота (f)100 кГц
Максимальный рост температуры (°C)35°C

В отличие от малых и крупногабаритных катушек индуктивности постоянного тока, рассмотренных в двух предыдущих примерах, генерация тепла, сопутствующая потерям в сердечнике, в катушке индуктивности переменного тока достаточно велика для того, чтобы являться первичным ограничительным фактором при выборе конструкции. Варианты выбора конструкции ограничиваются ростом температуры вследствие потерь в сердечнике, или целевым показателем к.п.д. В таблице 4 приведены значения характеристик для данного примера.

MPPHigh FluxKool Mμ, тороидальные сердечникиKool Mμ, E-сердечники
Номер компонента55440-A258441-A277191-A7K4020E026
Проницаемость26142626
Габариты сердечника (дюймы)1,875 x 0,7451,875 x 0,7452,285 x 0,6351,71 x 1,67 x 0,61
AL (нГ/виток²)59326080
Число витков42574337
Коэффициент плотности намотки провода12%16%10%23%
Габариты обмотки (дюймы)1,982 x 0,8432,019x 0,9402,375 x 0,7331,71 x 1,67 x 1,53
Потери в сердечнике (мВт)2947331641103255
Потери в проводе (мВт)1722235218362212
Суммарные потери (мВт)4669566859465467
Рост температуры (°C)31,734,932,131,8

Для определения потерь в сердечнике необходимо вычислить колебания потока подмагничивания переменным током в сердечнике. Поток подмагничивания постоянным током не вызывает потерь в сердечнике. Первым шагом расчета является вычисление силы намагничивания H по закону Ампера с использованием размаха значений переменного тока (в данном случае пиковый размах составляет 8 А). Для сердечника 58441-A2 из материала High Flux длина линии магнитной индукции равняется 10,74 см.

H = 0.4 (π) (57) (8)/(10.74) = 53,4 эрстед

Изменение плотности потока можно определить путем приложения данного результата к нормальной кривой намагничивания из справочника (см. рис. 4).

Рисунок 4. Кривые намагничивания при высокой плотности потока намагничивания.

Диапазон изменения силы намагничивания составляет от 0 эрстед до 53,4 эрстед. В случае материала с магнитной проницаемостью 14 это трансформируется в диапазон изменения магнитной индукции от 0 гаусс до 600 гаусс – то есть, ΔB = 600 гаусс. Кривые потери для мягких магнитных материалов подразумевают биполярный режим работы (сердечник возбуждается в первом и третьем квадрантах петли гистерезиса B-H). Следовательно, независимо от того, является ли схема биполярной или однополярной, значение магнитной индукции, которое действует, всегда равняется ½ΔB. В данном случае плотность магнитной индукции переменного поля равняется 300 гаусс. Из рисунка 5 видно, что при 300 гауссах на частоте 100 кГц плотность потерь составляет примерно 150 мВт/см³. По справочнику можно определить, что объем сердечника 58441-A2 равняется 21,3 см³, поэтому суммарные потери в сердечнике равняются произведению от умножения (150) на (21,3) – то есть, 3195 мВт. Программное обеспечение, использующее уравнения в привязке к кривым, вычислило потери в сердечнике, равняющиеся 3316 мВт.

Рост температуры вычисляется, исходя из указанной ниже аппроксимации.

Рост температуры (°C) = [Суммарные потери мощности (мВт)/площадь поверхности (см²)]0,833

Согласно выходным данным программного обеспечения, суммарные потери мощности для катушки индуктивности High Flux равняются 5668 мВт. Сердечник 58438-A2 имеет без обмотки площадь поверхности 69,3 см², а с полной обмоткой – 94,3 см² (значения взяты из справочника). Программное обеспечение интерполирует площадь поверхности для коэффициента плотности намотки провода, равного 17%, и получает значение площади поверхности, равное 79,3 см². Рост температуры, вычисляемый в этом случае по приведенному выше уравнению, равняется примерно 35°C. Заметим, что данная оценка является довольно грубым приближением, поскольку характеристики тепловыделения зависят не только от величины потерь, но и от механической конфигурации, вида сборочных материалов и от течения воздуха.

Рисунок 5. Кривые потерь в сердечнике при высоком уровне потока намагничивания.

В общем, характеристики потерь, по которым MPP обладает преимуществом над другими материалами, позволяют использовать катушки индуктивности с меньшими габаритами и более высокими значениями к.п.д. Суммарные потери в случае MPP составляют на 15% меньше потерь материала, являющегося следующим в сторону увеличения потерь. Поскольку материал High Flux обладает более высокими потерями, чем MPP, для сохранения одинаковой величины потерь необходимо выбирать сердечник с более низкой магнитной проницаемостью. Это, однако, приводит к увеличению числа витков, росту потерь в меди и к некоторому увеличению общих габаритов модуля. Причина того, что пониженная магнитная проницаемость приводит к уменьшению плотности потока переменного поля (то есть, к уменьшенным потерям в сердечнике) является очевидной и состоит в том, что наклон кривых для материалов с пониженной магнитной проницаемостью имеет на графике кривых намагничивания меньшую крутизну (см. рис. 4). Материал Kool Mμ требует еще большего увеличения общих габаритов, но суммарные потери сравнимы с потерями для High Flux. И в этом случае возможен вариант с E-сердечником Kool Mμ, который имеет несколько меньшие потери, уменьшенную площадь основания, но увеличенную габаритную высоту.

E-сердечник Kool Mμ является самым экономичным из четырех рассмотренных вариантов; вместе с тем, преимущества от габаритов и к.п.д. тороидального сердечника MPP становятся менее очевидными из-за самой высокой стоимости данного сердечника. Сердечники High Flux и MPP имеют одинаковые габариты и сравнимы по цене, поскольку порошки 14μ являются более дорогостоящими в производстве и в штамповке, нежели порошки 26μ.

Для требуемой катушки индуктивности решение о выборе материала определяется комбинацией следующих ограничительных факторов: пространство, к.п.д., удобство сборки, суммарная стоимость, индуктивность в зависимости от характеристик нагрузки, роста и рабочей температуры. Среди порошковых сердечников материал MPP превосходит другие материалы по такому свойству, как потери в сердечнике, и обладает самым высоким значением применимой магнитной проницаемости. High Flux обладает преимуществами над другими материалами в случаях, когда определяющими ограничительными факторами является минимизация габаритов и намагничивание постоянным полем. Kool Mμ является более экономичным материалом, нежели MPP или High Flux, и является стандартным материалом как для тороидальных сердечников, так и для E-сердечников. Сердечники на основе распыленного железа (Iron powder cores) являются менее дорогостоящими, чем Kool Mμ, но серьезно ухудшают характеристики изделия.

  1. Magnetics «Inductor Design Using Powder Cores» software PCD-3.1
  2. Magnetics «Powder Cores Design Manual and Catalog»

 

ferrite.ru

Типы катушек индуктивности — Справочник химика 21

    Для осуществления метода высокочастотного титрования исследуемый раствор подвергается действию высокочастотного электромагнитного поля, создаваемого внутри так называемых измерительных ячеек, которые представляют собой — электрический конденсатор или катушку индуктивности. По этому признаку измерительные ячейки разделяются на две большие группы 1) емкостные ячейки, или ячейки с-типа, и [c.116]
    Катушка индуктивности ячейки типа л выполнена в виде проволочной спирали и заключена в стеклянную трубку, которая целиком погружена в исследуемый раствор. Особенность этой ячейки состоит в наибольшем по сравнению с предыдущими ячейками взаимодействии раствора с магнитной компонентой поля ячейки. [c.129]

    Э-Метры (рис. 29, б)—устройства, широко известные в практике радиотехнических измерений, служащие для определения добротности колебательных контуров и значений индуктивности и емкости, составляющих подобные контуры. При высокочастотном титровании измерительная ячейка подключается к цепи колебательного контура. Такое включение может быть либо параллельным (рис. 30, а) при сравнительно малой электропроводности раствора, либо последовательным (рис. 30, б)—в случае хорошо проводящих объектов. При титровании в ячейке индуктивного типа сосуд с раствором помещают в катушку индуктивности. Если катушка электрически не экранирована от исследуемого раствора, такая ячейка в значительной степени взаимодействует с раствором через электрическую компоненту (см. 13). [c.130]

    Схема, приведенная на рис. 3.28, в, отличается от выше рассмотренной тем, что в ней используется дифференциальная катушка индуктивности, выполняющая роль автотрансформатора. Для уменьшения сопротивлений 2з и 2 обеих половин обмотки трансформатора или катушки по отношению к источнику питания наиболее оптимальным соотношением является отношение индуктивного сопротивления обмотки трансформатора или катушки к измеряемому сопротивлению от 6 1 до 10 1. Следовательно, мостовая схема со вторым типом симметрии из-за наличия потока рассеяния и активного сопротивления обмоток не позволяет получить ту же [c.451]

    На рис. 1-3 представлена измерительная ячейка конденсаторного типа с ее эквивалентными электрическими схемами. Параллельной схемой удобно пользоваться в тех случаях, когда в измерительной схеме прибора параллельно датчику подключается катушка индуктивности или параллельный колебательный контур. В этом случае при резонансе собственной частоты колебательного контура и частоты питающего генератора эквивалентная емкость и сопротивление ячейки могут проявлять свое действие независимо друг от друга согласно уравнениям параллельной эквивалентной цепи. [c.10]

    Измерительные ячейки индуктивного типа характеризуются тем, что сосуд с раствором электролита помещается в качестве сердечника в катушку индуктивности, питаемую высокочастотным напряжением. [c.35]

    Для индуктивных ячеек предлагаются три типа эквивалентных схем трансформаторная (рис. 1-12,6), последовательная (рис. 1-12,б) и схема без связи (рис. 1-12,г) [Л. 17]. В этих схемах 1—индуктивность самой катушки 2 — дополнительная индуктивность анализируемого раствора в сосуде, определяемая его геометрией Яг — активное сопротивление катушки индуктивности Я2— дополнительное сопротивление анализируемого раствора в сосуде Я — эквивалентное сопротивление индуктивной ячейки. [c.37]

    На рис. 3-7 представлена схема автоматического высокочастотного кондуктометра типа АВК-58 Л. 16], предназначенного для измерения концентрации серной кислоты в пределах 0—10%. Принцип действия прибора основан на измерении потерь высокочастотной энергии в колебательном контуре, одним из элементов которого является катушка индуктивности с. анализируемым раствором. Эти потери являются функцией концентрации раствора, если изменение последней однозначно из-58 [c.58]

    Блок зарядки состоит из высоковольтной установки типа АИИ-70 либо УПУ-1М. Выпрямленное регулируемое высокое напряжение подается к одному из электродов через катушку индуктивности 12 в цепь зарядки рабочего конденсатора. [c.102]

    В последнее время нашли применение безэлектродные высокочастотные концентратомеры, являющиеся разновидностью кондуктометрических приборов. В зависимости от вида измерительной ячейки эти концентратомеры могут быть конденсаторного и индуктивного типа [9]. В концентратомерах конденса-торного типа измерительная ячейка состоит (рис. 20, а) из стеклянного сосуда 1 с исследуемым раствором 2, на поверхности которого устанавливаются изолированные друг от друга металлические электроды, служащие обкладками конденсатора. В концентратомерах индуктивного типа (рис. 20, б) стеклянный сосуд помещен внутрь катушки индуктивности. [c.60]

    Электролитическая ячейка емкостного типа, которую подключают параллельно катушке индуктивности, образует вместе с ней колебательный контур. Добротность контура будет меняться в процессе титрования в результате изменения проводимости раствора. Это отразится на значении сеточного тока, величина которого и может служить мерой электропроводности раствора. [c.263]

    Электролитическая ячейка емкостного типа, которую подключают параллельно катушке индуктивности, образует вместе с ней колебательный контур. Добротность контура будет меняться в про- [c.228]

    В резонанс. После этого амплитуда резонансных колебаний на контурах будет обратно пропорциональна их добротности. Разность напряжений между контурами после выпрямления подается на измерительный прибор, в качестве которого может служить гальванометр типа М-82. Все катушки индуктивности намотаны на ферри-товых сердечниках диаметром 9 мм проводом ПЭЛ 0,25. Катушки [c.239]

    Основные типы автогенераторов. Два распространенных тина автогенераторов ( трехточек ) представлена на рис. 39. Один из них является индуктивным или автотрансформаторным типом, второй — емкостной трехточкой . Разделительный конденсатор Ср обладает большой емкостью, поэтому он полностью шунтирует высокочастотную составляюш ую анодного тока лампы. Следовательно, зажимы а катушки индуктивности во всех случаях могут считаться соединенными с анодом лампы, а точки б — с ее сеткой. В соответствии с выражениями (4.2, 4.3) и (4.6) условие амплитуд для этих схем записываются следующим образом  [c.88]

    Трудно найти радиотехническое устройство, в котором не использовались бы электрические фильтры. Первые простейшие фильтры, служившие для разделения телеграфных и телефонных сигналов, передававшихся по одному проводу, и состоявшие из одной катушки индуктивности и одного конденсатора, были применены русским военным связистом капитаном Игнатьевым еще в XIX веке. Другим простейшим типом фильтров, появившимся практически с момента зарожд

www.chem21.info

Coil32 — О конструкции катушек индуктивности

Для начинающих радиолюбителей хотелось бы немного рассказать об особенностях конструктивного исполнения катушек индуктивности. Основой любой катушки служит каркас, на который наматывается провод в виде спирали. Обычно начинающий радиолюбитель повторяет конструкцию, в описании которой указано, что надо намотать N-витков на каркасе диаметром D. Но очень часто нужного каркаса в наличии нет, а есть другой. Тогда возникают следующие вопросы:

  1. Сколько витков нужно намотать на другом каркасе?
  2. Подойдет ли этот каркас и как изменятся характеристики устройства?

Программа Coil32 легко решает первый вопрос. Зная параметры контура, в который входит катушка, или ее конструктивные размеры и число витков из описания устройства, можно вычислить ее индуктивность, а зная индуктивность — рассчитать число витков для нового каркаса, т.е. пересчитать катушку индуктивности.

Во втором вопросе следует разобраться подробнее. Какими параметрами характеризуется катушка индуктивности?

  • Прежде всего, это величина индуктивности
  • Добротность катушки, характеризующая величину потерь в ней
  • Паразитная собственная емкость катушки
  • Температурная нестабильность индуктивности

Величина индуктивности обычно прямо пропорциональна диаметру катушки и квадрату числа витков. Для уменьшения габаритов катушки и числа витков применяют магнитные сердечники – кольцевые, броневые. Разрез броневого сердечника показан на рисунке. Однако они имеют ограничения по частоте и по мощности. Например, в фильтрах для акустики их применение недопустимо, т. к. при большой мощности из-за особенностей магнитного материала, величина индуктивности будет зависеть от амплитуды сигнала и он, соответственно, сильно исказится. В выходных каскадах передатчиков и фильтрах акустики уменьшать габариты катушек нельзя, при этом возрастают потери, а вы же не хотите, что бы мощность усилителя шла на нагрев провода.

Добротность важна для контурных катушек. Она обратно пропорциональна величине сопротивления потерь в ней. Напомню, что программа Coil32 позволяет провести приблизительный расчет добротности однослойных катушек. Однажды, я с удивлением обнаружил, что мой сайт «нагуглили» по запросу — «Единица измерения добротности катушки индуктивности». Добротность измеряется в относительных единицах и не имеет специальной единицы измерения (типа Ом, Кг). Строго говоря, добротность — это отношение реактивного сопротивления катушки ( 2πƒL ) к ее сопротивлению потерь.
Часто в сети можно встретить online калькуляторы для расчета однослойных катушек, которые еще и вычисляют ее добротность. Однако, они учитывают только омические потери в катушке, что не совсем верно.
Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране, а также потери на излучение.
Потери в проводах вызваны тремя причинами

    • Во-первых, провода обмотки обладают омическим сопротивлением, поэтому катушку следует наматывать проводом с наименьшим удельным сопротивлением (медь, серебро)
    • Во-вторых, сопротивление провода обмотки переменному току возрастает с ростом частоты, что обусловлено поверхностным эффектом, суть которого состоит в том, что ток протекает не по всему сечению проводника, а по наружной кольцевой части поперечного сечения.

  • В третьих, в проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока к периферии провода, прилегающей к каркасу, в результате чего сечение, по которому протекает ток, принимает серповидный характер, что ведет к дополнительному возрастанию сопротивления провода. Уменьшить потери обусловленные эффектом близости можно применяя намотку с шагом. Существует оптимальный шаг намотки зависящий от геометрии катушки.

 

На частотах не превышающих 1,5..2 мегагерц, уменьшить потери в проводах можно применяя провод «литцендрат», состоящий из большего числа жилок, скрученных в жгут. При небольшом диаметре тонких жилок ослабляется поверхностный эффект, а скручивание жилок в жгут ослабляет эффект близости.
На очень высоких частотах проявляется влияние шероховатости провода, т.к. неровности на его поверхности увеличивают его длину для высокочастотного тока и соответственно сопротивление потерь.

Потери в диэлектрике обусловлены тем, что электромагнитная волна, проходя вдоль катушки, теряет энергию при взаимодействии с материалом каркаса. Эти потери подобны потерям в конденсаторах или коаксиальных кабелях и зависят от качества материала каркаса (tgδ). Уменьшить эти потери можно применяя ребристые каркасы, в результате форма катушки становиться многоугольной, либо полным отказом от каркаса.

Потери в сердечнике прямо пропорциональны частоте и мощности проходящей через катушку и зависят от материала сердечника. На высоких частотах, для уменьшения потерь применяют немагнитные латунные подстроечные сердечники, либо вовсе их не применяют. Проблеме учета потерь в ферритовых сердечниках посвящена отдельная статья.

Потери в экране обусловлены тем, что ток, протекающий по катушке, индуцирует ток в экране. Для их уменьшения экран должен дальше отстоять от катушки. Диаметр экрана должен превышать диаметр катушки не менее чем в 2,5 — 3 раза. Под влиянием экрана уменьшается индуктивность катушки. Степень этого уменьшения можно оценить с помощью плагина screen

Потери на излучение обусловлены излучением электромагнитного поля катушкой (антенный эффект). Они зависят от формы катушки и также влияют на ее добротность.

Для однослойной катушки — при увеличении ее размеров, сохраняя постоянными величину индуктивности и форму намотки, добротность примерно пропорциональна корню квадратному из диаметра катушки. Кроме того, добротность зависит от отношения длины намотки к ее диаметру и имеет тупой максимум при l/D ≈ 1. Для такой катушки оптимальный шаг намотки практически равен двум диаметрам провода (или другими словами расстояние между витками должно быть равно диаметру провода).

Для ориентировки можно посмотреть таблицу оптимизированных по добротности контурных катушек для радиолюбительских диапазонов.

Собственная емкость является паразитным параметром катушки индуктивности, ограничивающим возможности ее применения прежде всего по частоте, т.к. эта емкость суммируется с емкостью контура. Кроме того, даже без внешней емкости, эта емкость совместно с индуктивностью катушки образует резонансный контур, резонансная частота которого называется собственной частотой резонанса катушки. Выше этой частоты применение катушки бессмысленно, т.к. она в этом случае уже имеет емкостное сопротивление. Ясно, что нужно по возможности уменьшать эту емкость. Наименьшей собственной емкостью обладают однослойные катушки индуктивности.

У однослойных катушек собственная емкость пропорциональна диаметру катушки, а также зависит от отношения длины намотки к ее диаметру и имеет тупой минимум при l/D ≈ 1. Увеличение шага между витками уменьшает индуктивность такой катушки, при этом собственная емкость практически не меняется.

С физикой явления и методикой расчета собственной емкости однослойных катушек можно ознакомиться здесь.

Собственная емкость многослойных катушек значительно больше, для ее уменьшения применяют намотку типа «универсаль», либо секционированную намотку. При секционной намотке емкости отдельных секций соединяются последовательно, что уменьшает суммарную емкость. Применение провода в шелковой изоляции также уменьшает эту емкость.

 


Каркасы катушек в зависимости от рабочего диапазона частот и назначения могут быть выполнены самыми различными способами и из различных материалов (бумаги, прессшпана, органического стекла, высокочастотной керамики и разнообразных высокочастотных материалов). Материал каркаса влияет на добротность катушки. В отношении электрических характеристик наилучшими, являются не требующие пропитки и влагостойкого покрытия полистироловые каркасы. Затем в порядке ухудшения диэлектрических качеств можно назвать следующие материалы для каркасов: высокочастотная керамика, ультрафарфор, бакелизированные трубки из кабельной бумаги.

Для катушек в задающих генераторах на первое место выходит параметр температурной нестабильности индуктивности и механическая прочность катушки. При этом желательно иметь хорошую добротность. Наивысшими качествами по этим параметрам обладают катушки на сплошном каркасе из высокочастотной керамики с обмоткой нанесенной методом выжигания серебра в каркас.

Плоские печатные катушки применяют на высоких частотах для уменьшения габаритов устройства. До частот 100-150 МГц можно применять фольгированный стеклотекстолит. Заземлять в таких катушках следует внешний вывод. Если печатная плата двусторонняя, то с обратной стороны напротив катушки не должно быть металлизации.

Подводя итоги, можно заметить, что конструкция катушки зависит от особенностей устройства в котором она работает. Однако можно сделать один главный вывод — уменьшение габаритов катушки всегда ведет к ухудшению параметров самой катушки и, соответственно, общих параметров устройства, в состав которого она входит. Например, миниатюризация катушек во входных каскадах приемника ухудшает его избирательность по зеркальному каналу.

coil32.ru

Катушка индуктивности. Классификации катушек индуктивности

Катушкой индуктивности называют изделие, обладающее сосредоточенной индуктивностью и используемое в цепях частотной селекции.

В зависимости от назначения катушки индуктивности могут быть разделены на контурные, катушки связи и дроссели высокой частоты.

Контурные катушки предназначаются для работы в колебательных контурах входных цепей приемных устройств, в узкополосных и широкополосных фильтрах, в промежуточных и оконечных цепях передающих устройств, задающих генераторах и т.д.

Катушки связи используются для передачи энергии от оконечного каскада передатчика в антенное устройство и от антенного устройства – во входную часть приемника, а также для связи отдельных цепей различных каскадов радиоэлектронных устройств.

Дроссели высокой частоты представляют собой катушки индуктивности, предназначающиеся для создания в электрической цепи реактивного сопротивления.

По конструктивным признакам катушки индуктивности подразделяют на катушки без магнитопроводов, катушки с магнитопроводами, катушки с экранами.

По форме катушки индуктивности подразделяют на цилиндрические, спиральные и кольцевые.

Наибольшее применение находят катушки с постоянной индуктивностью а также катушки, индуктивность которых можно плавно изменять в небольших (ме­нее 20 %) пределах – для подстройки. Ка­тушки переменной индуктивности (варио­метры) используют значительно реже.

Катушки индуктивности классифици­руют по типу намотки (рис. 3.1), способу подстройки индуктивности, виду защиты (экраниро­ванные, неэкранированные).

electrono.ru

Типы катушек индуктивности — Энциклопедия по машиностроению XXL

Типы катушек индуктивности  [c.379]

Выдавливанием получают поршневые пальцы, корпуса электролитических и подстроечных конденсаторов, экраны радиоламп и катушек индуктивности, цоколи, оболочки электрических нагревательных элементов, клапаны, корпуса карданных подшипников и другие заготовки деталей. Некоторые типы сплошных и пустотелых заготовок деталей представлены на рис. 29. Формообразование при выдавливании осуществляют по схемам прямого, обратного, комбинированного выдавливания.  [c.150]


М а й о р о в А. С. Альбом частотных характеристик добротности катушек индуктивности на броневых сердечниках типа СБ. Госэнергоиздат, 1958.  [c.389]

Основные электрические характеристики катушек и комплектов катушек индуктивности приведены в табл. 77, а основные размеры, назначение и типы наиболее употребительных ящиков с катушками индуктивности — в табл. 78.  [c.46]

Электрические характеристики катушек индуктивности некоторых типов приведены в табл. 22.  [c.550]

В разработке пассивных разделительных фильтров важную роль играет их конструкция, а также выбор типа конкретных элементов — конденсаторов, а-тушек индуктивности, резисторов, в частности, большое влияние на характеристики АС с фильтрами оказывает взаимное размещение катушек индуктивности, при их неудачном расположении вследствие взаимной связи возможны наводки сигнала между близко расположенными катушками. По этой причине нх рекомендуется располагать взаимно перпендикулярно, только такое расположение позволяет свести к минимуму лх влияние друг на друга. Катушки индук—тивности являются одним из важнейших компонентов пассивных разделительных фильтров. В настоящее время многие зарубежные фирмы применяют катушки индуктивности на сердечниках нз магнитных материалов, обеспечивающих большой динамический диапазон, низкий уровень нелинейных искажений н малые габариты катушек. Однако конструирование катушек с магнитными сердечниками связано с применением специальных материалов, поэтому до настоящею времени многие разработчики применяют катушки с воздушными сердечниками, основные недостатки которых — большие габариты при условии малых потерь (особенно в фильтре низкочастотного канала), а также большой расход меди достоинства — пренебрежимо малые нелинейные искажения.  [c.92]

При каждом малом периодическом ремонте следует проверять, соответствуют ли техническим данным величины пусковых сопротивлений, сопротивлений типа ТСО, а также катушек индуктивных шунтов.  [c.149]

Основным элементом электроискрового источника является накопитель электрической энергии. По ряду соображений технического, технологического и эксплуатационного характера в качестве накопителя энергии, за редким исключением, в технике сильных импульсных токов используются конденсаторы, Отметим сразу же, что возможные конструкции чисто индуктивных, электромеханических накопителей типа тяжелых маховиков, сопряженных с электрическими генераторами или выполненных в виде линейных моторов-генераторов — движущихся с большой скоростью катушек индуктивности, — по удельной весовой энергоемкости на порядок и более могут превосходить емкостные накопители. Они обычно используются в стационарных установках, но в настоящее время являются громоздкими и сложными устройствами, несмотря на большие надежды, связываемые с ними в технике импульсных токов.  [c.10]

Мост с симметрией первого типа обеспечивает получение линейной зависимости силы тока в показывающем приборе от изменения сопротивлений катушек датчика, благодаря чему данная схема находит широкое применение в построении индуктивных приборов для линейных измерений.  [c.110]

Для измерения перемещений в несколько десятков миллиметров используют индуктивные датчики соленоидного типа. Такой датчик состоит из двух катушек, внутри которых находится сердечник-якорь. При перемещении якоря индуктивность катушек меняется пропорционально его массе. Цена делений соленоидных датчиков — от 0,05 до 1 мкм. На рис. 13 изображена схема дифференциального индуктивного датчика соленоидного типа мод. БВ-6067 для измерения больших перемещений.  [c.147]

Индуктивный безрычажный датчик типа ДИ1-М, показанный на фиг. 148, применяют для контроля линейных размеров деталей 1—4-го классов точности. Датчик состоит из цилиндрического корпуса 3, в котором расположены две индуктивные катушки 5. Между сердечниками этих катушек перемещается якорь 6 в виде диска, закрепленного на верхнем конце измерительного штока 9. На другом конце штока ввернут наконечник 10, соприкасающийся с контролируемой деталью 11. Измерительное усилие создается пружиной 4. Свободный ход штока обеспечивается пружиной 7. В верхнюю часть корпуса вставлена втулка 2, через отверстие которой проводит шнур 1 для подключения датчика.  [c.160]

Требуемое магнитное рассеяние можно получить увеличением расстояния между обмотками. В этом случае часть магнитного потока минует вторичную обмотку. Чтобы регулировать индуктивное сопротивление и тем самым устанавливать необходимый режим сварки, следует менять расстояние между обмотками, т. е. часть катушек сделать подвижными. Трансформаторы такого типа называются трансформаторами с подвижными катушками.  [c.53]

У индуктивных тензометров так же, как и у механических индикаторных, имеются два ножа, установленные на подшипниках. Их перемещение в процессе деформации передается не на индикаторы часового типа, а на феррито-вые сердечники катушек, по которым протекает электрический ток (рис. 28). В мостовой схеме первичное и изменяющееся при перемещении ферритовых сердечников вторичное напряжение датчика приводят к возникновению разности напряжений, пропорциональной удлинению образца. Возникающая разность напряжений усиливается и фиксируется самопишущим прибором.  [c.52]

Трансформатор с подвижным магнитным шунтом. К этому типу относятся трансформаторы СТ-150 СТ-480 11 СТАН. Увеличение магнитного рассеяния, что создает большее индуктивное сопротивление, в трансформаторах достигается своеобразным размещением катушек первичной и вторичной обмоток трансформатора и введением специального железного пакета, так называемого магнитного шунта, который вводится перпендикулярно к сердечнику трансформатора между вторичной и первичной обмотка.ми (фиг. 37).  [c.102]

В табл. 11.1 приведены ориентировочные значения [2] температурного коэффициента индуктивности добротности ( и собственной емкости С( катушек различных типов и назначений.  [c.374]

Пределы подстройки катушек цилиндрическими сердечниками можно определить из графиков (рис, 11.11, 11.12) [2], На рис. 11.11 показана зависимость относительного изменения индуктивности от положения сердечников типов СЦР, СЦГ, СЦТ (карбонильное железо) при различных соотношениях между геометрическими раз-  [c.387]

Рк. 2. Некоторые типы катушек индуктивности (о), распределения йеременного тока в скии-слое (6) и вызываемые индукционным механи 1мом поля упругих смещений (в).  [c.539]

Рис. 11.1. Типы катушек индуктивности д —однослойная с шаюм 6 —многослойнгя , в — плоская г—тороидальная С круглым и прямоугольным сечением.
Обмоточные провода. -Такие провода предназначают для обмоток электрических машин, трансформаторов, реле, катушек индуктивности и т. п. Обмоточные провода имеют медную жилу и эмалевую, волокнистую, пленочную и смешанную изоляцию выпускаются провода определенных марок и с жилами из алюминия. Эмалевая изоляция имеет меньшую толщину (Д = 0,01 -h 0,06 мм) по сравнению с другими видами изоляции. Эмалевая изоляция имеет кроме того высокую прочность на истирание и эластичность, У медных обмоточных проводов диаметр жилы d = 0,02 2,44 мл1. Допустимая температура для проводов с эмалевой изоляцией в зависимости от типа эмали составляет 105—120° С. Пробивное напряжение двух слоевэмали, измеренное на скрученных проводах npnZ) = 0,1 0,14 мм, составляет 500 -г- 700 е при D = 0,2 0,4 мм это напряжение увеличивается до 800 1200 в.  [c.283]

Для изготовления катушек индуктивностей тракта ПЧ могут быть использованы унифицированные двух- или трехсекционные каркасы, снабженные подстроечными сердечниками из феррита марки Ф-600, а также броневые сердечники из карбонильного железа типа СБ-1а. Такие каркасы широко применялись в контурах 114 памповых приемников, например таких, как Родина-52 , Рекорд-53 ,  [c.23]

В процессе эксплуатации системы дистанционного управления возникают также неисправности, связанные с фактором качества изготовления отдельных изделий. Например, в пускателях типа ПМЕ происходит отрыв контактов от мостиков, что вызывает вначале подергивание того или иного механизма крана во время работы, а затем и его остановку. Отказ в работе механизмов крана иногда связан с повреждением избирательной ячейки платы блока управления. Чаще всего наблюдается межвитковое замыкание в обмотке катушек индуктивности торов, что также является следствием некачественного изготовления. Нередко в поставляемых установках изготовленные шкафы аппаратуры не имеют заданного исполнения ЛР54, что потенциально способствует развитию условий для возникновения неисправностей.  [c.129]

Наиболее существенным дестабилизирующим фактором при работе частотных преобразователей является изменение температуры окружающей среды. При этом в наибольшей степени изменяется индуктивность катушки. Для оценки этой температурной погрешности были проведены экспериментальные исследования, состоящие в измерении девиации частоты измерительного автогенератора при нагревании и охлаждении катушек индуктивности, выполненных на основе ферритовых сердечников, как это было сказано выше. Катушки были намотаны проводом типа ПЭВ-0,08 на фторопластовые каркасы и имели оптимальное значение Ким- При нагревании температура фиксировалась через каждые 10°С. При охлаждении фиксировалась лишь конечная температура. На рис. 2 графически представлены результаты экспериментов. Кривые 1—3 соответствуют катушке с ферри-товым сердечником типа 41 без стержня, а кривые 1С—ЗС соответствуют тем же условиям, но со стержнем, внесенным на половину длины катушки.  [c.119]

Полученное выражение для полного сопротивления фильтра с кварцевыми пластинами по форме совпадает с выражением для сопротивления параллельного плеча полосового фильтра типа т (фиг. 109, в), и, следовательно, если не принимать в расчет потери, то можно получить ячейку фильтра с полосой пропускания между двумя максимумами затухания, равной 8,5% [22]. Однако фильтр такого типа не нашол практического применения вследствие того, что потери энергии в последовательно включенной катушке оказывают существенное влияние на реальную характеристику фильтра. Поэтому если учесть потери в катушке индуктивности Ьд, то выигрыш, получаемый от кварцевого фильтра, по сравнению с АС-фильтром оказывается незначительным. На частотах последовательного резонанса полное сопротивление определяется активным сопротивлением пос4гедовательно включенных катушек индуктивности, Если сравнивать цепи, имеющие ту же добротность Q, что и последовательно включенная катушка индуктивности />0) то можно показать, что при последовательных резонансах активное сопротивление возрастет приблизительно вдвое по сравнению с сопротивлением кварца и катушки. Следовательно, так ая комбинация дает увеличение добротности вдвое по сравнению со схемой, содержащей только конденсатор и катушку инду1 -тивности. Однако такое повышение добротности не достаточно для того, чтоб >1 обеспечить необходимое увеличение избирательности.  [c.413]

Механизм моделирования программы SPI E имеет встроенные модели для следующих типов аналоговых компонентов резисторов, конденсаторов, катушек индуктивности, катушек трансформаторов с индуктивной связью, независимых и управляемых источников напряжения и тока, линий передачи с потерями и без таковых, переключателей, равномерно распределенных R линий, а также для пяти наиболее часто  [c.231]

Преимущество эквивалентной модели в системе координат [d, q. О] заключается во взаимной неподвижности и строго фиксированном положении катушек, токи которых взаимодействуют друг с другом. Благодаря этому индуктивности bhj и их частные производные по углу взаимного расположения катушек dL jlda становятся постоянными. Более того, токи катушек d, q, отображающих трехфазную обмотку а, Ь. с, являются знакопостоянными в отличие от периодических фазных токов, что вносит дополнительные упрощения в процесс решения. Подставляя постоянные коэффициенты L j и dLnjlda в уравнения динамики типа (3.16) и (3.17), получаем уравнения эквивалентной модели в осях d. q.  [c.85]

Работа приборов бесконтактного типа основана на изменении индуктивного сопротивления катушек дифференциального трансформатора при изменении зазора между сердечниками катушек и якорем. В них якорь I, соединенный с рычагом 2, располагается между сердечниками 3 м. 4 дифференциального трансформатора. Величина воздушного зазора регулируется в пределах от О до 2 мм. Первичные обмотки и намотаны на средних стержнях и включены последовательно во вторичную обмотку питающего трансформатора ПТ. Вторичные обмотки З Л 4 дифференциального трансформатора последовательно соединены с первичной обмоткой трансформатора управления ТрУ1. Вторичные обмотки ТрУ2 и ТрУЗ включены после-  [c.308]

Основным элементом счетно-импульсной системы числового программного управления, определяющим точность ее работы, является датчик обратной связи. Датчики могут быть контактными, например, электроконтактиые, регистрирующие обороты и доли оборотов ходового винта, и бесконтактными. К последним относятся индуктивные датчики различных типов. Некоторое распространение в СССР получили индуктивные датчики с проходным якорем. Принцип действия такого датчика показан на рис. 97, а. Якорь 1 датчика закрепляется на исполнительном органе станка и вместе с ним перемещается по отношению к непод вижным сердечникам катушек Zi и включенных в измерительную мостовую схему (рис. 97, б). Недостатком датчика является значительное магнитное сопротивление, а следовательно, малая чувствительность, так как основной магнитный поток замыкается только по граням сердечников и якоря. Этот недостаток устраняют увеличением количества рабочих граней, т. е. созданием полюсных наконечников на сердечнике и якоре зубчатой формы  [c.171]

На рис. 11.5, б приведена схема бесконтактного преобразователя типа БНД-5 разработки Омского политехнического института. Сердечник 3 преобразователя набран из пластин пермаллоя марки 79НМ толщиной 0,1 мм и состоит из двух половин, имеющих разъем по осевой линии. На каждую половину сердечника надет каркас 8 с катушкой 2. Катушки соединены последовательно. Преобразователь своим торцом устанавливается над измеряемой поверхностью ферромагнитной (стальной) детали, которая выполняет роль якоря. При изменении зазора между деталью и торцом преобразователя меняется индуктивность катушек 2. С помощью преобразователя возможно измерение зазоров до 1,5 мм. Погрешность от нелинейности при измерении зазоров от 0,7 до 1,2 мм составляет 14 %. Преобразователь работает в диапазоне частот 80—8000 Гц, габаритные размеры преобразователя 0 28X 71 мм.  [c.311]

Трансформаторы типов ТДФ-1001 УЗ и ТДФ-1601 УЗ с под-магничиваемым шунтом предназначены для механизированной сварки под флюсом. Трансформатор ТДФ-1001 УЗ (рис. 5.8) имеет стержневой магнитопровод J и неподвижный магнитный шунт 4 также стержневого типа. Магнитная проводимость шунта регулируется с помощью обмотки управления 5, питаемой постоянным током. Первичная обмотка 7, состоящая из двух параллельно соединенных катушек, закреплена у верхнего ярма. Вторичная обмотка состоит из трех частей, по две параллельно соединенные катушки в каждой катушки 2а расположены рядом с первичной обмоткой, а катушки 26 и 2в отделены от нее магнитным шунтом. Падающая ВВАХ у трансформатора с подмагничиваемым шунтом обусловлена увеличенным магнитным рассеянием вследствие размещения первичной и вторичной обмоток (или части последней) на значительном расстоянии друг от друга и наличия магнитного шунта. Основной способ регулирования режима работы трансформатора заключается в изменении индуктивного сопротивления магнитного шунта.  [c.121]

Стационарные приборы с датчиками индуктивного типа (рис. 5.7, б) устанавливают на зарубежных машинах, а также на некоторых машинах ПО Сиблитмаш в каждой направляющей колонне. Деформации измеряют индуктивным датчиком. Основными элементами датчика являются электромагнитные катушки, а также якорь. Щуп постоянно прижат к торцу стержня, вставленного в глубокое отверстие колонны. При перемещении щупа 6 под влиянием деформации колонны изменяется индуктивность системы, так как изменяется положение якоря относительно катушек. Электрические сигналы поступают на индикаторный прибор, находящийся на панели шкафа электроавтоматики или на рабочем пульте машины. Прибор предусматривает блокировку, а также звуковую или световую сигнализацию, срабатывающую при недопустимых отклонениях от требуемой настройки механизма запирания пресс-формы. Дальнейшим шагом совершенствования машин является создание автоматических самонастраивающихся конструкций запирающих механизмов.  [c.171]

На рис. III.6, в изображена принципиальная схема дифференциального индуктивного датчика плунжерного типа с экранирующими кольцами. На измерительном стержне 1 датчика, перемещающемся в направляющих 3, закреплены с рритовый якорь 2 и два медных экранирующих кольца S и 9. Этот датчик обладает высокой чувствительностью, так как изменение индуктивности и Lj обеих катушек зависит от совместного действия двух факторов , положений сердечника и колец. Датчик питается высокочастотным напряжением 50— 100 кгц.  [c.141]

Для повышения чувствительности преобразователя катушку обычно заключают в ферромагнитный кожух. Характеристика соленоидного преобразователя линейна, но в значительной степени зависит от качества намотки катушек. Катушки преобразователя по всей своей длине должны быть строго идентичны как по числу витков, так и по геометрическим размерам. Особую группу составляют преобразователи трансформаторного типа, в которых используется влияние линейного перемещения якоря на 1шдуктивную связь между двумя катушками. На рис. 77, д показан индуктивный преобразователь трансформаторного типа. Обмотка 1 питается от источника переменпого тока. К зажимам второй обмотки 2 подключен вольтметр. При изменении воздушного зазора б изменяется магнитное сопротивление магнитопровода, а следовательно, и величина магнитного потока. В результате изменяется индуктированная во вторичной обмотке э. д. с. Ь г, которая будет равна  [c.173]


mash-xxl.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *