Технология получения алюминия – Технология производства алюминия. Электролитическая технология производства алюминия

Содержание

Технология получения алюминия в домашних условиях. Промышленное получение алюминия.

ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ АЛЮМИНИЯ

В настоящее время по объему производства алюминий занимает первое место среди цветных металлов, и производство его постоянно расширяется.

Сегодня отечественная алюминиевая промышленность для производства глинозема использует апатито-нефелиновые породы Хибинского массива и нефелиновые сиениты ряда ме­сторождений Сибири и Урала.

Глины и каолины широко используют во многих отраслях промышленности при производстве керамики, огнеупоров и других изделий. Глина, как извесно, является алюмосиликатом кальция, а кроме этого содержит много разных компонентов. Глина состоит из мельчайших кристаллов. Эти кристаллы формируют глинообразующий минерал класса силикатов — каолинит. Его состав: 47% оксида кремния IV (SiO2), 39% оксида алюминия (АL2О3) и 14 % воды (Н20).

Следует обратить внимание на самые важные качества используемых сортов глины, наиболее распространенными из которых являются: красная глина, белая керамика (майолика), глина из песчаника, глина для производства фарфора и огнеупорная глина (каолин). Лучшие сорта каолинов, содержащие .до 49% Al2О3, ис­пользуют либо в алюминиевой промышленности для получения алюминиево-кремниевых сплавов прямым восстановлением, либо в качестве сырья для получения глинозема.

Глинозем - чистый оксид алюминия (Аl2О3), основной, исходный материал для производства алюминия электролизом.

При промышленном производстве бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния (Si), железа (Fe) и других элементов. В результате такой переработки получают чистый оксид алюминия Al2O3 — основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al2O3 очень высока (более 2000°C), использовать его расплав для электролиза не удается.

Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит Na3AlF6 (температура расплава немного ниже 1000°C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al

3 (до 10% по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий:

2Al2О3 = 4Al + 3О2.

Так как анодом при электролизе служит графит, то выделяющийся на аноде кислород (O) реагирует с графитом и образуется углекислый газ СО2.

При электролизе получают металл с содержанием алюминия около 99,7%. В технике применяют и значительно более чистый алюминий, в котором содержание этого элемента достигает 99,999% и более.

Электролиз криолитоглиноземных расплавов является основным способом получения алюминия, хотя некоторое количество алюминиевых сплавов получается электротермическим способом.

Первые промышленные электролизеры были на силу тока до 0,6 кА и за последующие 100 лет она возросла до 300 кА. Тем не менее, это не внесло существенных изменений в основы производственного процесса.

Общая схема производства алюминия представлена на рисунке ниже:

Основным агрегатом является электролизер. Электролит представляет собой расплав криолита с небольшим избытком фторида алюминия, в котором растворен глинозем. Процесс ведут при переменных концентрациях глинозема приблизительно от 1 до 8 % (масс.). Сверху в ванну опущен угольный анод, частично погруженный в электролит. Существуют два основных типа расходуемых анодов: самообжигающиеся и предварительно обожженные. Первые используют тепло электролиза для обжига анодной массы, состоящей из смеси кокса-наполнителя и связующего – пека. Обожженные аноды представляют собой предварительно обожженную смесь кокса и пекового связующего.

Расплавленный алюминий при температуре электролиза (950 – 960°С) тяжелее электролита и находится на подине электролизера. Криолитоглиноземные расплавы – очень агрессивны, противостоять которым могут углеродистые и некоторые новые материалы. Из них и выполняется внутренняя футеровка электролизера.

Процесс, протекающий в электролизере, состоит в электролитическом разложении глинозема, растворенного в электролите. На жидком алюминиевом катоде выделяется алюминий, который периодически выливается с помощью вакуум-ковша и направляется в литейное отделение на разливку или миксер, где в зависимости от дальнейшего назначения металла готовятся сплавы с кремнием, магнием, марганцем, медью или проводится рафинирование. На аноде происходит окисление выделяющимся кислородом углерода. Отходящий анодный газ представляет собой смесь СО2 и СО.

Теоретически на процесс электролиза расходуются глинозем и углерод анода, а также электроэнергия, необходимая не только для осуществления электролитического процесса – разложения глинозема, но и для поддержания высокой рабочей температуры. Практически расходуется и некоторое количество фтористых солей, которые испаряются и впитываются в футеровку. Для получения 1 т алюминия необходимо:

глинозема, кг

1925 – 1930

углерода анода, кг

500 – 600

фтористых солей, кг

50 – 70

электроэнергии (в перемен­ном токе), кВт-ч

14500 – 17500

Производство алюминия является одним из самых энергоемких процессов, поэтому алюминиевые заводы строят вблизи источников энергии.

svoyaluminiy.narod.ru

Технология производства алюминия | АльпПлюс

Технология получения алюминия предполагает соблюдение следующих основных пунктов:

  • создать глинозем из алюминиевых руд;
  • получить алюминий из глинозема;
  • рафинировать алюминий.

 

Чтобы получить глинозем, можно применить один из методов: кислотный, щелочной или электролитический. Самый распространенный метод – щелочной. В его основе лежит принцип введения алюминиевой гидроокиси, приводящий к быстрому процессу разложения алюминиевых растворов. Раствор, оставшийся после того, как его выпарят, при активном перемешивании способен растворить включающий в себя бокситы глинозем.

Стадии данного способа:

  1. Производят подготовку боксита, дробя его и измельчая вместе с известью и щелочью в специально предназначенных для этого мельницах с дальнейшим выщелачиванием полученной пульпы.
  2. Выщелачивают боксит, в результате чего получают красный шлам, остающийся в железных и титановых окислах, придающих ему красный оттенок.
  3. Отделяют красный шлам, промывая алюминатный раствор в сгустителях, с последующим его оседанием и фильтрацией оставшегося алюминатного раствора.
  4. Осуществляют разложение алюминатного раствора. Проводят его с помощью фильтрации и отправления в резервуары. Когда данный раствор охлаждается и перемешивается, из него отделяется гидроокись алюминия.
  5. Получают гидроокись алюминия.
  6. Производят полное высушивание алюминиевой гидроокиси. Этот процесс проходит в постоянно крутящихся печах. Во время прохождения через печь сырая алюминиевая гидроокись полностью обезвоживается. 

Чтобы получить из глинозема алюминий, нужно пройти через такие стадии:

  1. Электролиз алюминиевой окиси.
  2. Переработка ее в хлорид алюминия с дальнейшим осуществлением электролиза хлорида алюминия, в результате чего выделившийся хлор отсасывают и направляют для повторного применения с дальнейшим оседанием алюминия.
  3. Освобождение алюминия путем воссоздания хлорида алюминия под действием марганца. В то время как хлор освобождается, происходит превращение хлорида марганца в его окись с дальнейшим восстановлением до состояния марганца, которое подойдет для повторного его использования. 

Заключительный этап производства алюминия – его рафинирование. Поскольку для рафинирующего электролиза алюминия, когда водные растворы солей разлагаются, нет возможности, то трехслойный электролиз больше всего подходит для его рафинирования.

alp-plus.com

Алюминий, производство алюминия: технология, процесс и описание

Бизнес 24 апреля 2016

Алюминий обладает массой свойств, которые делают его одним из самых используемых материалов в мире. Он широко распространен в природе, занимая среди металлов первое место. Казалось бы, и трудностей с его производством быть не должно. Но высокая химическая активность металла приводит к тому, что в чистом виде его не встретить, а производить – сложно, энергоемко и затратно.

Сырье для производства

Из какого сырья получают алюминий? Производство алюминия из всех минералов, его содержащих, дорого и нерентабельно. Добывают его из бокситов, которые содержат до 50% оксидов алюминия и залегают прямо на поверхности земли значительными массами.

Эти алюминиевые руды имеют достаточно сложный химический состав. Они содержат глиноземы в количестве 30-70% от общей массы, кремнеземы, которых может быть до 20%,окись железа в пределах от 2 до 50%, титан (до 10%).

Глиноземы, а это окись алюминия и есть, состоят из гидроокисей, корунда и каолинита.

В последнее время окиси алюминия стали получать из нефелинов, которые содержат еще и окиси натрия, калия, кремния, и алунитов.

Для производства 1 т чистого алюминия нужно около двух тонн глинозема, который, в свою очередь, получают из примерно 4,5 т боксита.

Месторождения бокситов

Запасы бокситов в мире ограничены. На всем земном шаре всего семь районов с его богатыми залежами. Это Гвинея в Африке, Бразилия, Венесуэла и Суринам в Южной Америке, Ямайка в Карибском регионе, Австралия, Индия, Китай, Греция и Турция в Средиземноморье и Россия.

В странах, где есть богатые месторождения бокситов, может быть развито и производство алюминия. Россия добывает бокситы на Урале, в Алтайском и Красноярском краях, в одном из районов Ленинградской области, нефелин - на Кольском полуострове.

Самые богатые месторождения принадлежат именно российской объединенной компании UC RUSAL. За ней идут гиганты Rio Tinto (Англия-Австралия), объединившийся с канадской Alcan и CVRD. На четвертом месте находится компания Chalco из Китая, затем американо-австралийская корпорация Alcoa, которые являются и крупными производителями алюминия.

Видео по теме

Зарождение производства

Датский физик Эрстед выделил первым алюминий в свободном виде в 1825 году. Химическая реакция проходила с хлоридом алюминия и амальгамой калия, вместо которой спустя два года немецкий химик Велер использовал металлический калий.

Калий – материал достаточно дорогой, поэтому в промышленном производстве алюминия француз Сент-Клер Девиль вместо калия в 1854 году использовал натрий, элемент значительно более дешевый, и стойкий двойной хлорид алюминия и натрия.

Русский ученый Н. Н. Бекетов смог вытеснить алюминий из расплавленного криолита магнием. В конце восьмидесятых годов того же века эту химическую реакцию использовали немцы на первом алюминиевом заводе. Во второй половине XVIII века было получено около химическими способами 20 т чистого металла. Это был очень дорогой алюминий.

Производство алюминия с помощью электролиза зародилось в 1886 году, когда одновременно были поданы практически одинаковые патентные заявки основоположниками этого способа американским ученым Холлом и французом Эру. Они предложили растворять глинозем в расплавленном криолите, а затем электролизом получать алюминий.

С этого и началась алюминие­вая промышленность, ставшая за более чем вековую историю одной из самых крупных отраслей металлургии.

Основные этапы технологии производства

В общих чертах технология производства алюминия не изменилась с момента создания.

Процесс состоит из трех стадий. На первой из алюминиевых руд, будь это бокситы или нефелины, получают глинозем – окись алюминия Al2O3 .

Затем из окиси выделяют промышленный алюминий со степенью очистки 99,5 % , которой для некоторых целей бывает недостаточно.

Поэтому на последней стадии рафинируют алюминий. Производство алюминия завершается его очисткой до 99,99 %.

Получение глинозема

Существует три способа получения окиси алюминия из руд:

- кислотный;

- электролитический;

- щелочной.

Последний способ - наиболее распространенный, разработанный еще в том же XVIII веке, но с тех пор неоднократно доработанный и существенно улучшенный, применяется для переработки бокситов высоких сортов. Так получают около 85 % глиноземов.

Сущность щелочного способа заключается в том, что алюминиевые растворы с большой скоростью разлагаются, когда в них вводится гидроокись алюминия. Оставшийся после реакции раствор выпаривается при высокой температуре около 170° С и опять используется для растворения глинозема;

Сначала боксит дробится и измельчается в мельницах с едкой щелочью и известью, затем в автоклавах при температурах до 250°С происходит его химическое разложение и образовывается алюминат натрия, который разбавляют щелочным раствором уже при более низкой температуре – всего 100° С. Алюминатный раствор промывается в специальных сгустителях, отделяется от шлама. Затем происходит его разложение. Через фильтры раствор перекачивают в емкости с мешалками для постоянного перемешивания состава, в который для затравки добавлена твердая гидроокись алюминия.

В гидроциклонах и вакуум-фильтрах выделяется гидроокись алюминия, часть которой возвращается в качестве затравочного материала, а часть идет на кальцинацию. Фильтрат, оставшийся после отделения гидроокиси, тоже возвращается в оборот для выщелачивания следующей партии бокситов.

Процесс кальцинации (обезвоживания) гидроокиси во вращающихся печах происходит при температурах до 1300° С.

Для получения двух тонн окиси алюминия расходуется 8,4 кВт*ч электроэнергии.

Прочное химическое соединение, температура плавления которого 2050° С, это еще не алюминий. Производство алюминия впереди.

Электролиз окиси алюминия

Основным оборудованием для электролиза является специальная ванна, футерованная углеродистыми блоками. К ней подводят электрический ток. В ванну погружаются угольные аноды, сгорающие при выделении из окиси чистого кислорода и образующие окись и двуокись улглерода. Ванны, или электрилизеры, как их называют специалисты, включаются в электрическую цепь последовательно, образуя серию. Сила тока при этом составляет 150 тысяч ампер.

Аноды могут быть двух типов: обожженные из больших угольных блоков, масса которых может быть больше тонны и самообжигающиеся, состоящие из угольных брикетов в алюминиевой оболочке, которые спекаются в процессе электролиза под действием высоких температур.

Рабочее напряжение на ванне обычно составляет около 5 вольт. Оно учитывает и напряжение, необходимое для разложения окиси, и неизбежные потери в разветвленной сети.

Из растворенной в расплаве на основе криолита окиси алюминия жидкий металл, который тяжелее солей электролита, оседает на угольном основании ванны. Его периодически откачивают.

Процесс производства алюминия требует больших затрат электроэнергии. Чтобы получить одну тонну алюминия из глинозема, нужно израсходовать около 13,5 тысяч кВт*ч электроэнергии постоянного тока. Поэтому еще одним условием создания крупных производственных центров является работающая рядом мощная электростанция.

Рафинация алюминия

Наиболее известный метод – это трехслойный электролиз. Он также проходит в электролизных ваннах с угольными подинами, футерованных магнезитом. Анодом в процессе служит сам расплавленный металл, который подвергается очистке. Он располагается в нижнем слое на токопроводящей подине. Чистый алюминий, который из электролита растворяется в анодном слое, понимается вверх и служит катодом. Ток к нему подводится с помощью графитового электрода.

Электролит в промежуточном слое – это фториды алюминия или чистые или с добавлением натрия и хлорида бария. Нагревается он до температуры 800°С.

Расход электроэнергии при трехслойном рафинировании составляет 20 кВт*ч на один кг металла, то есть на одну тонну нужно 20 тысяч кВт*ч. Вот почему, как ни одно производство металлов, алюминий требует наличия не просто источника электроэнергии, а крупной электростанции в непосредственной близости.

В рафинированном алюминии в очень малых количествах содержатся железо, кремний, медь, цинк, титан и магний.

После рафинирования алюминий перерабатывается в товарную продукцию. Это и слитки, и проволока, и лист, и чушки.

Продукты сегрегации, полученные в результате рафинирования, частично, в виде твердого осадка, используются для раскисления, а частично отходят в виде щелочного раствора.

Абсолютно чистый алюминий получают при последующей зонной плавке металла в инертном газе или вакууме. Примечательной его характеристикой является высокая электропроводность при криогенных температурах.

Переработка вторичного сырья

Четверть общей потребности в алюминии удовлетворяется вторичной переработкой сырья. Из продуктов вторичной переработке льется фасонное литье.

Предварительно отсортированное сырье переплавляется в пороговой печи. В ней остаются металлы, имеющие более высокую температуру плавления, чем алюминий, например, никель и железо. Из расплавленного алюминия продувкой хлором или азотом удаляются различные неметаллические включения.

Более легкоплавкие металлические примеси удаляются присадками магния, цинка или ртути и вакуумированием. Магний удаляется из расплава хлором.

Заданный литейный сплав получают, введя добавки, которые определяются составом расплавленного алюминия.

Центры производства алюминия

По объемам потребления алюминия КНР занимает первое место, оставляя далеко позади находящиеся на втором месте США и обладательницу третьего места Германию.

Китай – это и страна производства алюминия, с огромным отрывом лидирующая в этой области.

В десятку лучших, кроме КНР, входят Россия, Канада, ОАЭ, Индия, США, Австралия, Норвегия, Бразилия и Бахрейн.

В России монополистом в производстве глинозема и алюминия является объединенная компания RUSAL. Она производит до 4 млн т алюминия в год и экспортирует продукцию в семьдесят стран, а присутствует на пяти континентах в семнадцати странах.

Американской компании Alcoa в России принадлежат два металлургических завода.

Крупнейший производитель алюминия в Китае – компания Chalco. В отличие от зарубежных конкурентов, все ее активы сосредоточены в родной стране.

Подразделение Hydro Aluminium норвежской компании Norsk Hydro владеет алюминиевыми заводами в Норвегии, Германии, Словакии, Канаде, и Австралии.

Австралийская BHP Billiton владеет производством алюминия в Австралии, Южной Африке и Южной Америке.

В Бахрейне находится Alba (Aluminium Bahrain B. S. C.) – едва ли не самое крупное производство. Алюминий этого производителя занимает более 2 % общего объема «крылатого» металла, выпускаемого в мире.

Итак, подводя итоги, можно сказать, что главными производителями алюминия являются международные компании, владеющие запасами бокситов. А сам исключительно энергоемкий процесс состоит из получения глинозема из алюминиевых руд, производства фтористых солей, к которым относится криолит, углеродистой анодной массы и угольных анодных, катодных, футеровочных материалов, и собственно электролитического производства чистого металла, которое является главной составляющей металлургии алюминия.

Источник: fb.ru

monateka.com

Производство алюминия

Технологический процесс производства алюминия

 


Технологический процесс производства алюминия включает три основных этапа:

 

  • 1. Создание глинозема из алюминиевых руд;
  • 2. Создание из глинозема алюминия;
  • 3. Процесс рафинирования алюминия.

 


И при этом необходимо использование такого оборудования:

 

  • оборудование для системы центральной раздачи глинозема;
  • электролизер;
  • катодная ошиновка;
  • установки сухой газоочистки;
  • монтажные, технологические и литейные краны;
  • аспирационные установки;
  • оборудование литейного цеха;
  • оборудование анодно-монтажного цеха;
  • металлоконструкции производственных корпусов.

 

 

Создание глинозема из руд - этап производства алюминия


Глинозем можно получить тремя методами: кислотным, щелочным и электролитическим. Самым популярным является щелочной метод. Суть метода заключается в том, что алюминиевые растворы очень быстро начинают разлагаться при введении гидроокиси алюминия, а раствор, который остался от разложения после выпаривания при интенсивном перемешивании при температуре 170 С, может снова растворить глинозем, который содержится в бокситах. Данный способ имеет такие главные стадии:

1. Подготовка боксита, которая подразумевает его дробление и измельчение в специальных мельницах. В мельницы отправляют едкую щелочь, боксит и немного извести. Пульпу, которая получилась, направляют на выщелачивание.

2. Выщелачивания боксита подразумевает его химическое разложение от соединения с водным раствором щелочи. При этом гидраты окиси алюминия при соединении со щелочью в раствор переходят в форме алюмината натрия, а кремнезем, который содержится в боксите, соединяясь со щелочью, в раствор переходит в форме силиката натрия. В растворе эти соединения: алюминат натрия и силикат натрия формируют нерастворимый натриевый алюмосиликат. В этот остаток переходят окислы железа и титана, которые предают остатку красный оттенок. Такой остаток – это красный шлам. Когда растворение полученного алюмината натрия завершается, его разводят водным раствором щелочи при понижении температуры до 100°С.

3. Отделение красного шлама и алюминатного раствора друг от друга происходит благодаря промывке в сгустителях. После чего красный шлам оседает, а оставшийся алюминатный раствор фильтруют.

4. Разложение алюминатного раствора. Его фильтруют и отправляют в крупные емкости с мешалками. Из данного раствора при охлаждении до 60°С и перемешивании постоянном выделяется гидроокись алюминия. Из-за того что процесс протекает неравномерно и очень медленно, а рост кристаллов гидроокиси алюминия очень важен при дальнейшей обработке, то в эти емкости с мешалками — декомпозеры ещё добавляют много твердой гидроокиси.

5. Получение гидроокиси алюминия осуществляется в вакуум-фильтрах и гидроциклонах. Большую часть гидроокиси как затравочный материал возвращают к процедуре декомпозиции. После водной промывки остаток отправляется на кальцинацию; и фильтрат тоже возвращается в процесс.

6. Обезвоживание гидроокиси алюминия — завершающая стадия производства глинозема. Она проходит в трубчатых, постоянно вращающихся печах. Сырая гидроокись алюминия, когда проходит через печь, полностью высушивается и обезвоживается.

 

 

 

 

Создание из глинозема алюминия при производстве также проходит в несколько этапов.


1. Электролиз окиси алюминия происходит при температуре в электролизере — 970°С. Электролизер имеет футерованную углеродистыми блоками ванну, к которой подключается электрический ток. Выделившийся жидкий алюминий собирается на угольном основании, и оттуда его регулярно откачивают. В электролит сверху погружены угольные аноды, сгорающие в атмосфере кислорода, который выделяется из окиси алюминия, и при этом выделяетс я окись или двуокись углерода.

2.Электролиз хлорида алюминия осуществляется путем превращения окиси алюминия в реакционном сосуде в хлорид алюминия. После чего в изолированной ванне осуществляется электролиз хлорида алюминия. Хлор, который при этом выделился, отсасывается и направляется для вторичного использования. А алюминий выпадает в осадок на катоде.

3.Восстановление марганцем хлорида алюминия, при этом освобождается алюминий. За счет управляемой конденсации выделяются загрязнения, связанные с хлором, из потока хлорида марганца. Когда происходит освобождение хлора, хлорид марганца превращается в окись марганца, которая потом восстанавливается до состояния марганца, который пригоден к вторичному использованию.

 

 

 

 

Процесс рафинирования алюминия при производстве алюминия


Рафинирующий электролиз с разложением водных солевых растворов для алюминия невозможен. Так как степень очистки промышленного алюминия, который получен путем электролиза криолитоглиноземного расплава, для некоторых целей будет недостаточна, то из отходов металла и промышленного алюминия благодаря рафинированию получают алюминий еще более чистый. Самым распространённым методом рафинирования является трехслойный электролиз.

Алюминий применяется в изготовлении взрывчатых веществ (алюмотол, аммонал). Широко используются разнообразные соединения алюминия. Производство и потребление алюминия постоянно растет, сильно опережая по темпам роста производство меди, стали, цинка, свинца.

Текст, Ян Волховский, promplace.ru

Фото с сайта drugoi.livejournal.com

 

 

promplace.ru

Особенности производства алюминия.

Человек научился выплавлять металлы и применять их для собственных нужд очень давно. Историки и археологи даже применяют «металлические» термины для определения некоторых исторических периодов.

Высокопрочный алюминий имеет равную прочность с обычной конструкционной сталью

 

Первым металлом, который стали выплавлять и применять наши предки, считается медь. По своим физическим характеристикам этот металл мягкий и легко поддается формовке. Из него производили и до сих пор производят посуду и разную другую домашнюю утварь. Но если смешать медь с оловом, то такой сплав резко меняет свои качества. Из бронзы уже изготавливали инструменты и оружие — топоры, мечи, наконечники стрел.

Затем люди научились производить другой, более прочный металл — железо. И после бронзового века наступил век железный. Если говорить образно, то он продолжается до сих пор. Железо лежит в основе многих конструкционных материалов, которые применяются в разных отраслях промышленности. В этой связи следует заметить, что достойную конкуренцию железу сегодня составляет алюминий. Может быть, несколько, неожиданный переход, но это действительно так. Получать алюминий из соответствующей руды стали совсем недавно, в 19-м веке. К этому факту надо добавить то обстоятельство, что алюминий является самым распространенным в природе металлом.

Технология производства

Оценивая все вышесказанное, возникает вполне закономерный вопрос: почему люди производят медь уже давным-давно, хотя ее в природе гораздо меньше, чем алюминия, а этот металл получают недавно. Объяснение нужно искать в структуре руд и их химических особенностях. Если говорить про медь, то она иногда встречается в виде самородков, как золото, в которых содержание меди доходит до 99%. Из такого самородка при незначительном нагреве выплавляется металл, что было доступно еще с древности. К сожалению, сейчас медные самородки находится крайне редко и в промышленности используются руды содержанием меди 5% и меньше.

В отличие от меди, алюминий не встречается в самородном виде. Он является химически активным металлом, и вступает в реакцию с кислородом, многими кислотами и солями. Чтобы извлечь металл из этих соединений требуются сложные металлургические технологии.

Самая распространенная алюминиевая руда называется боксит. Она содержит до 60% оксида алюминия или глинозема. Первым этапом получения чистого металла является выщелачивание, в ходе которого боксит смешивается с содой и спекается. Полученное соединение сначала растворяют в воде, очищая от других примесей, а затем осаживают и выделяют из раствора. Осадок прокаливается в печах, и получается чистый оксид алюминия. Выход глинозема – до 85% от содержавшегося в руде. Глинозем достаточно устойчив к термическому воздействию, поэтому его растворяют в расплавленной соли, называемой криолит. Это позволяет снизить температуру процесса до 1000 °С. После чего через расплав пропускается электрический ток большой мощности, и алюминий оседает на одном из дне ванны, который является катодом в этом процессе. Расплавленный металл разливается в определенные формы и отправляется в прокатное производство.

Теперь можно со знанием дела сказать, что массовое производство алюминия стало возможным на только определенном этапе развития многих технологий. Первое, что надо отметить, с развитием химии, как науки, появился способ выделения металла из руды. Второй момент — инженеры и конструкторы создали оборудование, которое соответствовало всем необходимым требованиям. Плюс к этим составляющим появились мощные источники электрической энергии. Если говорить об экономической стороне дела, то производственные затраты делятся примерно на три части — сырье или глинозем, оборудование и электроэнергия. Затраты на электроэнергию составляют около 30%. Вот почему, как не трудно заметить, заводы по производству алюминия всегда строят поблизости от мощных электростанций.

Применение алюминия

Металл стал пользоваться большим спросом в то время, когда развивалась авиационная промышленность. Развитие самолетостроения, а затем и космической отрасли, подталкивали к увеличению производства алюминия. Именно в то время его стали называть «крылатый металл». Сам по себе алюминий мягкий и пластичный металл. Однако в сплаве с магнием или цинком и после термической обработки он обретает значительную прочность, которая сравнима с прочностью конструкционной стали с низким содержанием углерода. При этом алюминий легче стали в 2,9 раз. Вот почему космические корабли создаются, а небоскребы строятся с использованием материалов на основе алюминия.

samara-metall.ru

Алюминий, производство алюминия: технология, процесс и описание

Алюминий обладает массой свойств, которые делают его одним из самых используемых материалов в мире. Он широко распространен в природе, занимая среди металлов первое место. Казалось бы, и трудностей с его производством быть не должно.

Но высокая химическая активность металла приводит к тому, что в чистом виде его не встретить, а производить – сложно, энергоемко и затратно.

Сырье для производства

Из какого сырья получают алюминий? Производство алюминия из всех минералов, его содержащих, дорого и нерентабельно. Добывают его из бокситов, которые содержат до 50% оксидов алюминия и залегают прямо на поверхности земли значительными массами.

Эти алюминиевые руды имеют достаточно сложный химический состав. Они содержат глиноземы в количестве 30-70% от общей массы, кремнеземы, которых может быть до 20%,окись железа в пределах от 2 до 50%, титан (до 10%).

Глиноземы, а это окись алюминия и есть, состоят из гидроокисей, корунда и каолинита.

В последнее время окиси алюминия стали получать из нефелинов, которые содержат еще и окиси натрия, калия, кремния, и алунитов.

Для производства 1 т чистого алюминия нужно около двух тонн глинозема, который, в свою очередь, получают из примерно 4,5 т боксита.

Месторождения бокситов

Запасы бокситов в мире ограничены. На всем земном шаре всего семь районов с его богатыми залежами. Это Гвинея в Африке, Бразилия, Венесуэла и Суринам в Южной Америке, Ямайка в Карибском регионе, Австралия, Индия, Китай, Греция и Турция в Средиземноморье и Россия.

В странах, где есть богатые месторождения бокситов, может быть развито и производство алюминия. Россия добывает бокситы на Урале, в Алтайском и Красноярском краях, в одном из районов Ленинградской области, нефелин — на Кольском полуострове.

Самые богатые месторождения принадлежат именно российской объединенной компании UC RUSAL. За ней идут гиганты Rio Tinto (Англия-Австралия), объединившийся с канадской Alcan и CVRD. На четвертом месте находится компания Chalco из Китая, затем американо-австралийская корпорация Alcoa, которые являются и крупными производителями алюминия.

Зарождение производства

Датский физик Эрстед выделил первым алюминий в свободном виде в 1825 году. Химическая реакция проходила с хлоридом алюминия и амальгамой калия, вместо которой спустя два года немецкий химик Велер использовал металлический калий.

Калий – материал достаточно дорогой, поэтому в промышленном производстве алюминия француз Сент-Клер Девиль вместо калия в 1854 году использовал натрий, элемент значительно более дешевый, и стойкий двойной хлорид алюминия и натрия.

Русский ученый Н. Н. Бекетов смог вытеснить алюминий из расплавленного криолита магнием. В конце восьмидесятых годов того же века эту химическую реакцию использовали немцы на первом алюминиевом заводе. Во второй половине XVIII века было получено около химическими способами 20 т чистого металла.

Это был очень дорогой алюминий.

Производство алюминия с помощью электролиза зародилось в 1886 году, когда одновременно были поданы практически одинаковые патентные заявки основоположниками этого способа американским ученым Холлом и французом Эру. Они предложили растворять глинозем в расплавленном криолите, а затем электролизом получать алюминий.

С этого и началась алюминие­вая промышленность, ставшая за более чем вековую историю одной из самых крупных отраслей металлургии.

Основные этапы технологии производства

В общих чертах технология производства алюминия не изменилась с момента создания.

Процесс состоит из трех стадий. На первой из алюминиевых руд, будь это бокситы или нефелины, получают глинозем – окись алюминия Al2O3 .

Затем из окиси выделяют промышленный алюминий со степенью очистки 99,5 % , которой для некоторых целей бывает недостаточно.

Поэтому на последней стадии рафинируют алюминий. Производство алюминия завершается его очисткой до 99,99 %.

Получение глинозема

Существует три способа получения окиси алюминия из руд:

— кислотный;

— электролитический;

— щелочной.

Последний способ — наиболее распространенный, разработанный еще в том же XVIII веке, но с тех пор неоднократно доработанный и существенно улучшенный, применяется для переработки бокситов высоких сортов. Так получают около 85 % глиноземов.

Сущность щелочного способа заключается в том, что алюминиевые растворы с большой скоростью разлагаются, когда в них вводится гидроокись алюминия. Оставшийся после реакции раствор выпаривается при высокой температуре около 170° С и опять используется для растворения глинозема;

Сначала боксит дробится и измельчается в мельницах с едкой щелочью и известью, затем в автоклавах при температурах до 250°С происходит его химическое разложение и образовывается алюминат натрия, который разбавляют щелочным раствором уже при более низкой температуре – всего 100° С. Алюминатный раствор промывается в специальных сгустителях, отделяется от шлама. Затем происходит его разложение. Через фильтры раствор перекачивают в емкости с мешалками для постоянного перемешивания состава, в который для затравки добавлена твердая гидроокись алюминия.

В гидроциклонах и вакуум-фильтрах выделяется гидроокись алюминия, часть которой возвращается в качестве затравочного материала, а часть идет на кальцинацию. Фильтрат, оставшийся после отделения гидроокиси, тоже возвращается в оборот для выщелачивания следующей партии бокситов.

Процесс кальцинации (обезвоживания) гидроокиси во вращающихся печах происходит при температурах до 1300° С.

Для получения двух тонн окиси алюминия расходуется 8,4 кВт*ч электроэнергии.

Прочное химическое соединение, температура плавления которого 2050° С, это еще не алюминий. Производство алюминия впереди.

Электролиз окиси алюминия

Основным оборудованием для электролиза является специальная ванна, футерованная углеродистыми блоками. К ней подводят электрический ток. В ванну погружаются угольные аноды, сгорающие при выделении из окиси чистого кислорода и образующие окись и двуокись улглерода.

Ванны, или электрилизеры, как их называют специалисты, включаются в электрическую цепь последовательно, образуя серию. Сила тока при этом составляет 150 тысяч ампер.

Аноды могут быть двух типов: обожженные из больших угольных блоков, масса которых может быть больше тонны и самообжигающиеся, состоящие из угольных брикетов в алюминиевой оболочке, которые спекаются в процессе электролиза под действием высоких температур.

Рабочее напряжение на ванне обычно составляет около 5 вольт. Оно учитывает и напряжение, необходимое для разложения окиси, и неизбежные потери в разветвленной сети.

Из растворенной в расплаве на основе криолита окиси алюминия жидкий металл, который тяжелее солей электролита, оседает на угольном основании ванны. Его периодически откачивают.

Процесс производства алюминия требует больших затрат электроэнергии. Чтобы получить одну тонну алюминия из глинозема, нужно израсходовать около 13,5 тысяч кВт*ч электроэнергии постоянного тока. Поэтому еще одним условием создания крупных производственных центров является работающая рядом мощная электростанция.

Рафинация алюминия

Наиболее известный метод – это трехслойный электролиз. Он также проходит в электролизных ваннах с угольными подинами, футерованных магнезитом. Анодом в процессе служит сам расплавленный металл, который подвергается очистке. Он располагается в нижнем слое на токопроводящей подине.

Чистый алюминий, который из электролита растворяется в анодном слое, понимается вверх и служит катодом. Ток к нему подводится с помощью графитового электрода.

Электролит в промежуточном слое – это фториды алюминия или чистые или с добавлением натрия и хлорида бария. Нагревается он до температуры 800°С.

Расход электроэнергии при трехслойном рафинировании составляет 20 кВт*ч на один кг металла, то есть на одну тонну нужно 20 тысяч кВт*ч. Вот почему, как ни одно производство металлов, алюминий требует наличия не просто источника электроэнергии, а крупной электростанции в непосредственной близости.

В рафинированном алюминии в очень малых количествах содержатся железо, кремний, медь, цинк, титан и магний.

После рафинирования алюминий перерабатывается в товарную продукцию. Это и слитки, и проволока, и лист, и чушки.

Продукты сегрегации, полученные в результате рафинирования, частично, в виде твердого осадка, используются для раскисления, а частично отходят в виде щелочного раствора.

Абсолютно чистый алюминий получают при последующей зонной плавке металла в инертном газе или вакууме. Примечательной его характеристикой является высокая электропроводность при криогенных температурах.

Переработка вторичного сырья

Четверть общей потребности в алюминии удовлетворяется вторичной переработкой сырья. Из продуктов вторичной переработке льется фасонное литье.

Предварительно отсортированное сырье переплавляется в пороговой печи. В ней остаются металлы, имеющие более высокую температуру плавления, чем алюминий, например, никель и железо. Из расплавленного алюминия продувкой хлором или азотом удаляются различные неметаллические включения.

Более легкоплавкие металлические примеси удаляются присадками магния, цинка или ртути и вакуумированием. Магний удаляется из расплава хлором.

Заданный литейный сплав получают, введя добавки, которые определяются составом расплавленного алюминия.

Центры производства алюминия

По объемам потребления алюминия КНР занимает первое место, оставляя далеко позади находящиеся на втором месте США и обладательницу третьего места Германию.

Китай – это и страна производства алюминия, с огромным отрывом лидирующая в этой области.

В десятку лучших, кроме КНР, входят Россия, Канада, ОАЭ, Индия, США, Австралия, Норвегия, Бразилия и Бахрейн.

В России монополистом в производстве глинозема и алюминия является объединенная компания RUSAL. Она производит до 4 млн т алюминия в год и экспортирует продукцию в семьдесят стран, а присутствует на пяти континентах в семнадцати странах.

Американской компании Alcoa в России принадлежат два металлургических завода.

Крупнейший производитель алюминия в Китае – компания Chalco. В отличие от зарубежных конкурентов, все ее активы сосредоточены в родной стране.

Подразделение Hydro Aluminium норвежской компании Norsk Hydro владеет алюминиевыми заводами в Норвегии, Германии, Словакии, Канаде, и Австралии.

Австралийская BHP Billiton владеет производством алюминия в Австралии, Южной Африке и Южной Америке.

В Бахрейне находится Alba (Aluminium Bahrain B. S. C.) – едва ли не самое крупное производство. Алюминий этого производителя занимает более 2 % общего объема «крылатого» металла, выпускаемого в мире.

Итак, подводя итоги, можно сказать, что главными производителями алюминия являются международные компании, владеющие запасами бокситов. А сам исключительно энергоемкий процесс состоит из получения глинозема из алюминиевых руд, производства фтористых солей, к которым относится криолит, углеродистой анодной массы и угольных анодных, катодных, футеровочных материалов, и собственно электролитического производства чистого металла, которое является главной составляющей металлургии алюминия.

fcspam.ru

Производство алюминия | Технология судостроительных материалов

Алюминиевые деформируемые сплавы являются важнейшим конструкционным материалом в авиа-, судостроении и других отраслях техники.

Алюминий — наиболее распространенный металл в природе, он входит в состав более чем 250 минералов, основная его руда — бокситы, а также нефелины и алуниты. Бокситы содержат от 30 до 70% гидратов глинозема.

Производство чистого алюминия состоит из получения глинозема из бокситов и последующего получения алюминия из глинозема. Наиболее распространенный способ получения глинозема— щелочной. Боксит дробят и размалывают в шаровых мельницах, куда добавляют щелочь NaOH, в результате чего образуется суспензия тонкоизмельченного боксита с водой. Выщелачивание (варку) полученной пульпы производят в автоклавах при температуре 150—250 °С, давлении до 3,5 МПа и концентрации щелочи 250—300 г/л. При выщелачивании образуется алюминат натрия: Al2O3 + 2NaOH + 3H20 = Na2O · Al2O3 + 4H2O. Для очистки алюмината натрия пульпу разбавляют, промывают водой и направляют в чаны-сгустители для фильтрования. Затем производят разложение алюмината натрия: Na2O·Al2O3 + 4H2O = 2NaОН + 2Al(ОН)3↓ и обезвоживание Al(ОН)3 путем прокаливания при 1200 °С во вращающихся печах или в установках с кипящим слоем гидрата окиси алюминия: 2Al(ОН)3 = Al2O3 + ЗH2O. На 1 т глинозема расходуется 2—2,5 т боксита.

Для получения металлического алюминия проводят электролиз глинозема в ваннах из стального кожуха, облицованного внутри углеродными блоками. В кладку пода ванны вмонтированы катодные шины. Анодом является вертикально установленный угольный электрод, нижняя часть которого погружена в электролит — расплав из глинозема Al2O3 (8—10 %) и криолита Na3AlF6. При электролизе электролит нагревается до рабочей температуры 930—950 °С. В результате электролиза происходит распад молекул криолита и глинозема: Na3AlF6 →3Na+ + AlF63-; Al2O3 →Al3+ →AlO33-. На катоде разряжаются катионы алюминия: Al3+ +3e →Al, и, таким образом для получения металлического алюминия расходуется только глинозем. Его периодически догружают в ванну. Отрицательно заряженные анионы AlO33- направляются к аноду, и в результате процесса 2ALO33- — 6е →Al2O3 + 1,5O2 образуется глинозем, а кислород тратится при постепенном сгорании угольных анодов. Расплавленный алюминий скапливается на дне ванны, и его периодически удаляют.

Для получения 1 т алюминия расходуется 2 т глинозема, 0,6 т угольных анодов, около 0,1 т криолита и 16 500— 18 500 кВт · ч электроэнергии.

Полученный алюминий содержит примеси (железо, кремний), ухудшающие его свойства, и поэтому подвергается рафинированию хлором или электролитическому. Рафинирование хлором заключается в продувке расплавленного алюминия при 700—750 °С хлором в течение 10—15 мин с последующим отстаиванием в ковше в течение 30—45 мин. После хлорирования получают алюминий 99,86 %-й чистоты. При электролитическом рафинировании получают алюминий особой чистоты (до 99,999 %).

Выплавку алюминиевых сплавов производят в электрических и плазменных печах. Широко распространены электрические печи сопротивления типа САН, в которых нагревательные элементы из нихрома (сплава Ni с Cr) расположены над неглубокой, но широкой ванной. Шихту загружают через камеры, расположенные с обеих сторон ванны. В них металл нагревается до плавления и стекает в центральную часть печи. Емкость электрических печей 1—3 т, производительность до 15 т в сутки. Эти печи имеют ряд преимуществ перед пламенными: снижение угара, окисления и газонасыщенности металла; высокий КПД; легкость управления процессом.

Современными плавильными агрегатами являются электрические индукционные печи емкостью до 5 т. В качестве шихтовых материалов используют первичный алюминий заданной чистоты, добавляемый к основному металлу, и отходы производства. Металлическую шихту расплавляют, доводят температуру до 680—700 °С, и рафинируют металл хлористыми солями.

Алюминиевые сплавы при плавке склонны к поглощению газов (особенно водорода) и легко окисляются. Выделяясь при затвердевании, водород способствует образованию газовой пористости в слитках. Включения окислов Al2O3 снижают механические свойства. Для защиты от окисления и поглощения газов плавку проводят под слоем флюса, в состав которого входят NaCl, KCl, CaF2 и другие компоненты, и производят рафинирование.

При производстве полуфабрикатов из деформируемых алюминиевых сплавов выполняются следующие операции: отливка слитков (плоских — для листа, круглых — для прутков, труб и панелей) и горячее деформирование (прокатка, прессование, ковка, штамповка). Слитки получают методом непрерывного литья, а также отливкой в изложницах. Для обеспечения однородности состава и свойств металла их гомогенизируют при температурах 450—470 °С в течение 24—28 ч для устранения ликвации. Слитки, полученные полунепрерывной разливкой, имеют толщину 200—300, ширину 900—1500, длину 2500— 6000 мм и массу до 5000 кг.

www.stroitelstvo-new.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *