Термопара для: принцип работы, устройство, типы и виды, проверка работы

Содержание

принцип работы, устройство, типы и виды, проверка работы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы
  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.
Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара Стандартная термопара
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай
Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Буквенные обозначения и диапазон температур для различных типов термопар Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр Потенциометр

принцип работы, устройство, типы, замена

Для приготовления пищи в быту зачастую применяются газовые плиты, в которых устанавливаются специальные устройства контроля температуры. За счет ряда преимуществ для измерения используется термопара. Как правило, одно упоминание об этом незамысловатом устройстве вызывает ряд трудностей в понимании его назначения и принципа работы. Поэтому в данной статье мы рассмотрим назначение и принцип действия термопары для газовой плиты.

Что такое термопара?

Термопара представляет собой датчик, преобразующий  изменение температуры в электрический сигнал. В дальнейшем электрическая энергия от такого датчика участвует в работе электроники и автоматики плит, газовых котлах и колонках. При изменении электрического потенциала на концах термопары в определенных пределах происходит блокировка газконтроля и горение в газовой плите прекращается. Такое устройство позволяет, как поддерживать подачу газа к пламени горелки, так и прерывать его подачу в аварийных ситуациях.

Физически термопара представляет собой электрический контакт между двумя проводниками из различных материалов. Такой контакт может обеспечиваться посредством:

  • Пайки – обеспечивает хороший контакт для легкоплавких материалов;
  • Сварки – обеспечивает наиболее точные измерения, но и наиболее энергоемкий процесс при изготовлении контакта, хорошо подходит для тугоплавких материалов;
  • Обжима – наиболее простой способ, но обеспечивает достаточно низкую точность, поскольку при температурном расширении и сужении нарушается плотность контакта.

В зависимости от параметров работы газовых колонок или плит применяются соответствующие способы соединения проводников. Следует отметить, что термопара плиты – это сам контакт, в то время, как все остальные составляющие (провода, экран, выводы и т.д.) представляют собой термометр.

Принцип работы

Принцип работы термопары заключается в наличии определенного уровня электрического заряда у любого металла. Его уровень составляет порядка нескольких микровольт, эта величина определяет способность электронов металла совершать направленное движение в замкнутой электрической цепи. При соединении двух металлов с различным уровнем потенциала, в точке контакта возникает переход электронов из зоны с большим потенциалом в зону с меньшим.

В холодном состоянии на выходе получается небольшое напряжение, но, при увеличении температуры этих материалов с одной стороны, увеличивается и разность потенциалов, соответственно, растет величина вырабатываемой термопарой ЭДС. В физике такое явление получило название эффекта Зеебека, по фамилии ученного, открывшего процесс. Пример выработки термоэдс приведен на рисунке 1:

принцип работы термопарыРис. 1: принцип работы термопары

На практике для соединения используются материалы с различными по направленности термоэдс. К примеру, в термопаре из алюмеля и хромеля величина потенциала изменяется на – 17,3 мкВ и + 24 мкВ соответственно при изменении температуры на один градус Цельсия. Таким образом, при нагревании этого соединения до 300ºС, на выходе возникнет напряжение равное 24 мВ.

Если рассмотреть схему работы (рис. 2), в ее цепи включены  три элемента: термопара, термореле и электромагнитный клапан. Термопара специально располагается вблизи очага горения, чтобы моментально реагировать на основные процессы в духовых шкафах.

Схема работыРис. 2: Схема работы

Посмотрите на рисунок, при нагревании контакта термопары в ней возникает ЭДС, которая обуславливает протекание электрического тока через цепь термореле к катушке электромагнита. Когда от электрического поджига зажигается газ, происходит нагревание одного конца термопары в духовке, благодаря описанному выше эффекту в цепи возникает ЭДС. При замкнутых контактах термореле электрический ток протекает от термопары через замкнутые контакты термореле по катушке электромагнитного клапана. При нагревании термопары величина тока в катушке становится достаточной для перемещения и удержания сердечника катушки, который открывает клапан подачи газа.

В случае нагрева духовки до установленной вами величины срабатывает термореле и разрывает свои контакты в цепи. Из-за чего катушка теряет возбуждение и магнитный поток больше не удерживает сердечник, который возвращается в исходное положение и закрывает клапан газконтроля. При отсутствии подачи газа пламя в плите гаснет.

Если возникает аварийная ситуация, когда в системе происходит утечка газа или перебой, при котором прекращается подача, а через какой-то промежуток снова возобновляется, срабатывает система газконтроля. Как только в плите тухнет газ, она стремительно остывает, из-за чего снижается и ЭДС, и величина тока в цепи электромагнита клапана. Клапан полностью закрывается и даже при возобновлении газового снабжения печи, клапан предотвращает его проникновение в духовку.

Таким образом, термопара осуществляет функцию газконтроля как в  штатной ситуации, так и в аварийной.

Устройство и конструкция

Пример конструкции термопарыРис. 3: пример конструкции термопары

Конструктивно термопару можно подразделить на такие элементы:

  • Спай термопары – состоит из двух проводников, реже полупроводников, соединенных в одну цепь;
  • Изолированные металлы – продолжают вывод рабочих проводников от места спайки до точки подключения к электрической цепи, на всей протяженности провода изолируются друг от друга;
  • Экранирующее покрытие – выполняется в виде металлической трубки по всей длине датчика температуры и проводов его подключения.

Спай включает в себя две проволоки из разнородных материалов. В состав которых могут входить цветные и благородные металлы, как правило, в сплавах. В зависимости от состава проводников термопары подразделяются на несколько типов, особенности которых приведены в таблице.

Таблица 1. Типы термопары

Тип термопарыСплавРоссийская маркировкаДиапазон температур, °СОсобенности термопары
Kхромель-алюмельTXAот -200 °С
до +1000 °С
Возможность работы в нейтральной атмосфере либо атмосфере с избытком кислорода
Lхромель-копельTXKот -200 °С
до +800 °С
Самая высокая чувствительностью из всех промышленных термопар. Свойственна только высокая термоэлектрическая стабильность при температурах до 600 °С.
Eхромель-константанTXKnот -40 °С
до +900 °С
Высокая чувствительность.
Tмедь-константанTMKnот -250 °С
до +300 °С
Может работать в атмосфере, в которой  небольшой избыток или недостаток кислорода. Не чувствительна к повышенной влажности.
Jжелезо-константанТЖКот -100 °С
до +1200 °С
Хорошо работает в разряженной атмосфере. Невысокая стоимость обусловлена входящим в состав железом.
Авольфрам-ренийТВРвыше +1800 °СХорошие показатели механических свойств при высокой температуре. Может работать при частых и резких теплосменах и при больших нагрузках. Неприхотливость при изготовлении и монтаже, так как имеют небольшую чувствительность к загрязнениям.
Nнихросил-нисилТННот -200 °С
до +1300 °С
В группе неблагородных металлов считается самой точной термопарой. Высокая стабильность при температурах от 200 до 500 °С.
Bплатинородий-платинородиеваяТПРот +100 °С
до +1800 °С
Высокая механическая прочность. Большая стабильность при высоких температурах. Небольшая склонность к росту зерна и охрупчиванию. Невысокая чувствительность к загрязнению.
Sплатинородий-платинаТПП10от 0 °С
до +1700 °С
Высокая точность измерений. Хорошая воспроизводимость и стабильность термоЭДС.
Rплатинородий-платиноваяТПП14от 0 °С
до +1700 °С
Обладает свойствами, идентичными термопаре типа S.

Как видите из таблицы, различный тип обуславливает разный рабочий диапазон температур, чувствительность к ее изменению, стабильность при длительной нагрузке и другие характеристики. Что обязательно следует учитывать при выборе конкретной модели для плиты в случае замены или установки с нуля.

В зависимости от рабочей температуры подбирается и соответствующий материал для изоляции витой скрутки проводников термопары. К примеру, до 120ºС могут применяться любые виды, до 1300ºС фарфоровые. Существуют модели и свыше 1300 ºС, в которых для изоляции используются окислы магния, бериллия и алюминия, но из-за того, что в бытовых приборах такие температуры отсутствуют, приобретать и рассматривать подобные термопары нецелесообразно.

Проверка, чистка, замена

Если плита начала плохо загораться, вполне вероятно, что термопара засорилась или вышла со строя. Но стоит отметить, что причина неисправности может и не затрагивать этот элемент. Для проверки следует выполнить такие действия – поверните ручку духовки и подожгите газ. Если после того, как вы отпустите ручку, духовка тухнет, это первый признак, что система газконтроля не открывает клапан подачи газа в плите.

Скорее всего, что поверхность измерительного элемента засорилась, и он не воспринимает температурные изменения в окружающей среде. Чтобы починить газовое оборудование в плитах фирм Гефест, Ariston, Indesit, Gorenje      и т.д. следует для начала почистить термопару в плите, для этого:

  • Предварительно закройте газовые краники и отключите плиту от сети внешнего электроснабжения; Перекрыть подачу газа на духовкуРис. 4: перекрыть подачу газа на духовку
  • Откройте духовку и удалите из нее все лишнее – вы должны свободно проникнуть внутрь, если что-то вам мешает, уберите это, при необходимости можете снять дверцу с плиты; Удалите из духовки все лишнееРис. 5: удалите из духовки все лишнее
  • Найдите саму термопару – как правило, она расположена в верхней части духовки, ее обязательно устанавливают вблизи рассекателя пламени; Термопара в духовкеРис. 6: термопара в духовке
  • При обнаружении нагара, копоти и прочего мусора на ее поверхности их следует очистить при помощи мелкой наждачки, очищать ударным методом категорически запрещено, так как вы можете повредить термопару безвозвратно;
  • Соберите удаленный мусор и опробуйте работоспособность.

Если такой ремонт газконтроля не принес желаемого результата, следует проверить термопару при помощи мультиметра или милливольтметра. Для этого вам понадобится добраться до места подключения термопары к электрической сети плиты. Как правило, она располагается под передней панелью или верхней крышкой, где находиться переключатель температуры или газовый клапан. Здесь также могли отойти контакты, тогда их достаточно просто поправить, если нет, переходите к измерениям.

Установите предел измерения мультиметра в районе десятков милливольт. Подключите щупы к выводам термопары и подогрейте измерительный элемент (не обязательно открытым огнем, но это довольно доступный способ).

Проверка термопары мультиметромРис. 7: проверка термопары мультиметром

Если милливольтметр покажет изменение напряжения на выводах, устройство исправно и причина в чем-то другом. В противном случае вы могли неправильно установить предел для вашей модели термопары или  автоматика газконтроля неисправна.

Замена термопары газовой плиты

В большинстве случаев, выход со строя характеризуется перегоранием проводников. Их самостоятельная пайка или сваривание в домашних условиях возможны, но нецелесообразны, так как после сращивания невозможно обеспечить прежнюю точность измерений. Поэтому оптимальным вариантом является замена термопары. Для этого:

  • Приобретите в интернете новую модель для замены, лучше это делать по коду термопары, который можно обнаружить на самом устройстве либо в паспорте газовой плиты;
  • Также отключите плиту от электрической сети и системы газоснабжения;
  • Снимите переднюю панель и верхнюю крышку плиты и отключите электрические выводы в месте их подключения к электромагнитному клапану; Снимите переднюю панель или верхнюю крышкуРис. 8: Снимите переднюю панель или верхнюю крышку
  • Открутите в духовке гайку крепления и выньте термопару, если крепежный элемент сразу не поддается, не прилагайте чрезмерный усилий, чтобы не сломать место крепления, используйте WD-40 или любой другой растворитель; Открутите термопаруРис. 9: Открутите термопару
  • Установите новую термопару в отверстие и закрепите ее по аналогии с предыдущей, подключите к цепи внутренней электропроводки плиты; Установите новую термопаруРис. 10: Установите новую термопару
  • Соберите в обратной последовательности и опробуйте работоспособность газовой плиты.

Советы по безопасности

Ввиду того, что термопара отвечает за безопасную работу газовой плиты, следует проследить, чтобы во время замены и эксплуатации обеспечивались оптимальные условия:

  • При первых признаках утечки газа сразу перекрывайте газовые краны и обеспечьте проветривание помещения;
  • Направление измерительного элемента должно равномерно приближаться к пламени или располагаться вдоль источника тепла;
  • Проволока не должна испытывать механической нагрузки или натяжения, но и свободно болтаться она так же не должна;
  • При замене одной модели на другую, выбирайте подходящую по параметрам и температурному режиму для вашей плиты.

Если самостоятельно вам не получается выполнить данную процедуру или после замены вы ощущаете запах газа, сразу обратитесь в газовую службу для предотвращения аварийной ситуации.

Видео по теме

Термопара — Википедия

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля равной 300 °C и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Международный стандарт на термопары МЭК 60584 (п.2.2) даёт следующее определение термопары: Термопара — пара проводников из различных материалов, соединённых на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединённые навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик[1]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

Для измерения температуры различных типов объектов и сред, а также в качестве датчика температуры в автоматизированных системах управления. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры[2]. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Для контроля пламени и защиты от загазованности в газовых котлах и в других газовых приборах (например, бытовые газовые плиты). Ток термопары, нагреваемой пламенем горелки, удерживает в открытом состоянии газовый клапан. В случае пропадания пламени ток термопары снижается и клапан перекрывает подачу газа.

В 1920—1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Приёмник излучения

Крупный план термобатареи фотоприёмника. Каждый из проволочных уголков представляет собой термопару.

Исторически термопары представляют один из наиболее ранних термоэлектрических приёмников излучения[3]. Упоминания об этом их применении относятся к началу 1830-х годов[4]. В первых приёмниках использовались одиночные проволочные пары (медь — константан, висмут — сурьма), горячий спай находился в контакте с зачернённой золотой пластинкой. В более поздних конструкциях стали применяться полупроводники.

Термопары могут включаться последовательно, одна за другой, образуя термобатарею (англ.). Горячие спаи при этом располагают либо по периметру приёмной площадки, либо равномерно по её поверхности. В первом случае отдельные термопары лежат в одной плоскости, во втором параллельны друг другу[5].

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94. Стандартные таблицы для термоэлектрических термометров — номинальные статические характеристики преобразования (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.


Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ[6].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопар[7]. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0,0025 Г—T имела бы точность В±2,5 В°C в 1000 В°C.

Тип термопары IEC (МЭК)Материал положительного электродаМатериал отрицательного электродаТемп. коэффициент, μV/°CТемпературный диапазон °C (длительно)Температурный диапазон °C (кратковременно)Класс точности 1 (°C)Класс точности 2 (°C)IEC (МЭК)

Цветовая маркировка

KХромель

Cr—Ni

Алюмель

Ni—Al

40…410 до +1100−180 до +1300±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Зелёный-белый
JЖелезо

Fe

Константан

Cu—Ni

55.20 до +700−180 до +800±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 750 °C
±2,5 от −40 °C до 333 °C
±0,T от 333 °C до 750 °C
Чёрный-белый
NНикросил

Ni—Cr—Si

Нисил

Ni—Si—Mg

0 до +1100−270 до +1300±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Сиреневый-белый
RПлатинородий

Pt—Rh

(13 % Rh)

Платина

Pt

0 до +1600−50 до +1700±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
SПлатинородий

Pt—Rh (10 % Rh)

Платина

Pt

0 до 1600−50 до +1750±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
BПлатинородий

Pt—Rh (30 % Rh)

Платинородий

Pt—Rh (6 % Rh)

+200 до +17000 до +1820±0,0025×T от 600 °C до 1700 °CОтсутствует
TМедь

Cu

Константан

Cu—Ni

−185 до +300−250 до +400±0,5 от −40 °C до 125 °C
±0,004×T от 125 °C до 350 °C
±1,0 от −40 °C до 133 °C
±0,0075×T от 133 °C до 350 °C
Коричневый-белый
EХромель

Cr—Ni

Константан

Cu—Ni

680 до +800−40 до +900±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 800 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 900 °C
Фиолетовый-белый

См. также

Примечания

Литература

Киес Р. Дж., Крузе П. В., Патли Э. Г., Лонг Д., Цвиккер Г. Р., Милтон А. Ф., Тейч М. К. § 3.2. Термопара // Фотоприёмники видимого и ИК диапазонов = Optical and Infrared Detectors / пер. с англ. под ред. В. И. Стафеева. — М.: Радио и связь, 1985. — 328 с.

H. Melloni. Ueber den Durchgang der Wärmestrahlen durch verschiedene Körper (нем.) // Annalen der Physik und Chemie : журнал. — Leipzig: Verlag von Johann Ambrosius Barth, 1833. — Bd. 28. — S. 371—378.

Грунин В. К. § 2.3.4. Термоэлектрические приёмники излучения // Источники и приёмники излучения: учебное пособие. — СПб.: Издательство СПбГЭТУ «ЛЭТИ», 2015. — 167 с. — ISBN 978-5-7629-1616-5.

Ссылки

конструкция и принцип работы датчика, виды устройств для измерения температуры

Устройство термопарыТермоэлектрический преобразователь, или термопара, представляет собой устройство, используемое в промышленности и медицине при проведении научных экспериментов, а также в системах автоматики. С помощью этого прибора проводятся замеры температуры. Для определения разности температурных показателей зон применяются дифференциальные устройства, которые представляют собой две термопары, соединенные навстречу друг другу.

Конструктивные особенности

Если относиться более скрупулезно к процессу замера температуры, то эта процедура осуществляется с помощью термоэлектрического термометра. Основным чувствительным элементом этого прибора считается термопара.

Сам процесс измерения происходит за счет создания в термопаре электродвижущей силы. Существуют некоторые особенности устройства термопары:

  • Виды термопарЭлектроды соединяются в термопарах для измерения высоких температур в одной точке с помощью электрической дуговой сварки. При замере небольших показателей такой контакт выполняется с помощью пайки. Особенные соединения в вольфрам-рениевых и вольфрамо-молибденовых устройствах проводятся с помощью плотных скруток без дополнительной обработки.
  • Соединение элементов проводится только в рабочей зоне, а по остальной длине они изолированы друг от друга.
  • Метод изоляции осуществляется в зависимости от верхнего значения температуры. При диапазоне величины от 100 до 120 °C используется любой тип изоляции, в том числе и воздушный. При температуре до 1300 °C применяются трубки или бусы из фарфора. Если величина достигает до 2000 °C, то применяется изоляционный материал из оксида алюминия, магния, бериллия и циркония.
  • В зависимости от среды использования датчика, в которой происходит замер температуры, применяется наружный защитный чехол. Выполняется он в виде трубки из металла или керамики. Такая защита обеспечивает гидроизоляцию и поверхностное предохранение термопары от механических воздействий. Материал наружного чехла должен выдерживать высокую температуру воздействия и обладать отличной теплопроводностью.

Конструкция датчика во многом зависит от условий его применения. При создании термопары во внимание принимается диапазон измеряемых температур, состояние внешней среды, тепловая инерционность и т. д.

Принцип действия

Работа термопары основана на принципе термоэлектрического эффекта. Это явление было открыто физиком из Германии Т. Зеебеком в начале XIX века. Его суть состоит в следующем:

  • Как использовать термопаруЕсли соединить два термоэлектрода из разных металлов или сплавов в замкнутую электрическую цепь, а их рабочую поверхность подвергнуть воздействию разных температур, то по ней начнет протекать электрический ток.
  • Цепь, состоящая только из двух разных электродов, называется термоэлементом.
  • Работает термопара за счет электродвижущей силы, которая вызывает ток в цепи и зависит от материала элементов и разности температуры их соединения.
  • Элемент, из которого поступает ток от горячего соединения к холодному, считается положительным электродом, а от холодного к горячему — отрицательным.
  • Если говорить простым языком, то зная температуру одного соединения, которая поддерживается обычно постоянной, в результате измерения значения тока можно узнать величину нагрева другого соединения.

Термопара ПП расшифровывается как платинородий-платиновый, где первым идет обозначение положительного электрода, а вторым — отрицательного. Величина электродвижущей силы составляет небольшую величину, которая измеряется милливольтами при разнице температуры в 100 К (173,15 °C).

Принцип действия термопары

Виды устройств

Каждый вид термопар имеет свое обозначение, и разделены они согласно общепринятому стандарту. Каждый тип электродов имеет свое сокращение: ТХА, ТХК, ТВР и т. д. Распределяются преобразователи соответственно классификации:

  • Измерение термопаройТип E — представляет собой сплав хромеля и константана. Характеристикой этого устройства считается высокая чувствительность и производительность. Особенно это подходит для использования при крайне низких температурах.
  • J — относится к сплаву железа и константана. Отличается высокой чувствительностью, которая может достигать до 50 мкВ/ °C.
  • Вид K — считается самым популярным устройством, состоящим из сплава хромеля и алюминия. Эти термопары могут определить температуру в диапазоне от -200 °C до +1350 °C. Приборы используются в схемах, расположенных в неокисляющих и инертных условиях без признаков старения. При применении устройств в довольно кислой среде хромель быстро разъедается и приходит в негодность для измерения температуры термопарой.
  • Тип M — представляет сплавы никеля с молибденом или кобальтом. Устройства могут выдерживать до 1400 °C и применяются в установках, работающих по принципу вакуумных печей.
  • Вид N — нихросил-нисиловые устройства, отличием которых считается устойчивость к окислению. Используются они для измерения температур в диапазоне от -270 до +1300 °C.

Существуют термопары, выполненные из сплавов родия и платины. Относятся они к типам B, S, R и считаются самыми стабильными устройствами. К минусам этих преобразователей относится высокая цена и низкая чувствительность.

При высоких температурах широко используются устройства из сплавов рения и вольфрама. Кроме того, по назначению и условиям эксплуатации термопары могут бывать погружаемыми и поверхностными.

По конструкции крепления устройства обладают статическим и подвижным штуцером или фланцем. Широкое применение термоэлектрические преобразователи нашли в устройстве компьютеров, которые обычно подсоединяются через COM порт и предназначены для измерения температуры внутри корпуса.

Компенсационные провода

Компенсационные проводаВ состав термопар входят компенсационные провода, которые выглядят как удлинители для подсоединения устройств к измерительному прибору. Если устроить свободные концы в головке термоэлектрического преобразователя, то практически его подсоединение выполнить нельзя, так как прибор работает при очень высоких температурах.

Кроме того, не всегда прибор, на который поступают данные, можно расположить недалеко от датчиков. Поэтому часто требуется подсоединение измерительного прибора на расстоянии от места, где установлены датчики. Эту задачу с успехом решают компенсационные провода. Обычно их изготавливают из того же материала, что и термоэлектрические датчики.

Удлинительные провода находятся на участках с более низкими температурами, поэтому существует возможность изготавливать их из более дешевого материала. При использовании компенсационных проводов необходимо учитывать возможность появления паразитных электродвижущих сил. Провода должны обеспечить отведение свободных концов от термопары в зону с пониженной и постоянной температурой.

Источники погрешностей измерений

Термопары для высоких температурНа выполнение правильного процесса измерения влияют внешние источники, техническое состояние средств измерения и другие условия. На точность измерения с использованием термоэлектрического преобразователя влияет изменение электродвижущей силы.

Это явление называется термоэлектрической нестабильностью используемых сплавов. В процессе эксплуатации стало известно, что сплавы электродов изменяют свою ЭДС, которая приводит к искажению показаний.

Во время длительной эксплуатации при высоких температурах такие ошибки могут достигать больших величин, что приводит к снижению точности измерений.

Основными причинами нестабильности измерений считаются:

  • взаимодействие термоэлектродов с внешней средой;
  • влияние на датчики изолирующих и защитных устройств;
  • взаимодействие электродов друг с другом;
  • внутренние процессы, которые возникают при изменении температуры;
  • влияние радиации, электромагнитных полей и перепадов давления.

Под воздействием высокой температуры происходит снижение сопротивления изоляции датчиков, которое приводит к искажению измерений. Часто источником возникновения ошибок при замерах становится неправильный выбор термоэлектрода, так как его сопротивление не совпадает с показаниями электрической цепи. Изменение электродвижущей силы по длине термоэлектрического преобразователя тоже приводит к возникновению ошибок при получении показателей.

Термопара — это… Что такое Термопара?

Схема термопары. При температуре спая нихрома и алюминий-никеля равной 300 °C термоэдс составляет 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик [1]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежании наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 31 июля 2012.

Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

В 1920х—30х годах термопары использовались для питания детекторных приемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т.п) с использованием открытого огня.

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С)
  • Большой температурный диапазон измерения: от −200 °C до 2500 °C
  • Простота
  • Дешевизна
  • Надежность

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.


Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ [2].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0.0025Г—T имела бы точность В±2.5 В°C в 1000 В°C.

Тип термопары МЭКТемпературный диапазон °C (длительно)Температурный диапазон °C (кратковременно)Класс точности 1 (°C)Класс точности 2 (°C)IEC Цветовая маркировка
K0 до +1100−180 до +1300±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 1000 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 1200 °C
J0 до +700−180 to +800±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 750 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 750 °C
N0 до +1100−270 to +1300±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 1000 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 1200 °C
R0 до +1600−50 to +1700±1.0 от 0 °C до 1100 °C
±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C
±1.5 от 0 °C до 600 °C
±0.0025×T от 600 °C до 1600 °C
S0 до 1600−50 до +1750±1.0 от 0 °C до 1100 °C
±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C
±1.5 от 0 °C до 600 °C
±0.0025×T от 600 °C до 1600 °C
B+200 до +17000 до +1820±0.0025×T от 600 °C до 1700 °C
T−185 до +300−250 до +400±0.5 от −40 °C до 125 °C
±0.004×T от 125 °C до 350 °C
±1.0 от −40 °C до 133 °C
±0.0075×T от 133 °C до 350 °C
E0 до +800−40 до +900±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 800 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 900 °C

См. также

Примечания

Ссылки

Термопара принцип работы

Что такое термопара, принцип действия

Термопара – это устройство для измерения температур во всех отраслях науки и техники. 

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера.

Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом.

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Особенности устройства промышленной термопары

Термодатчики изготавливаются по большей части из неблагородных металлов. От воздействия внешней среды их закрывают трубой с фланцем, служащим для крепления прибора. Защитная арматура предохраняет проводники от влияния агрессивной среды и делается без шва. Материалом служит обычная (до 600ºС) или нержавеющая (до 1100ºС) сталь. Термоэлектроды изолируют друг от друга асбестом, фарфоровыми трубками или керамическими бусами.

Если терминал расположен близко, то провода термопары подключаются к нему напрямую, без дополнительных разъемов. При расположении измерительного прибора на удалении, при включении его в цепь свободные концы термопары размещаются в литой головке, прикрепленной к защитной трубе. Внутри располагаются латунные клеммники на фарфоровом основании для подключения компенсационных проводов, изготовленных из таких же материалов, что и термоэлектроды, но не обладающих точными и строго контролируемыми характеристиками. Они имеют меньшую стоимость и большую толщину. Их вводят в головку через штуцер с асбестовой прокладкой. Керамика служит для выравнивания температуры во всех местах соединения. Сверху располагается резьбовая защитная крышка с герметичным уплотнением.

На провода нельзя устанавливать обжимные оконцеватели, поскольку они могут ухудшить точность показаний. Из проволоки делают кольцо и зажимают его под винт.

Корректировка изменения температуры на клеммах может производиться электронным прибором, что повышает точность измерений.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

состоит из следующих составных частей:

  • случайная погрешность, вызванная особенностями изготовления термопары;

  • погрешность, вызванная нарушением температурного режима «холодного» контакта;

  • погрешность, причиной которой послужили внешние помехи;

  • погрешность контрольной аппаратуры.

Устройство и принцип действия термопары

Действительно, постоянно находиться в зоне открытого пламени может далеко не каждый материал. Термоэлемент же изготовлен из металла, точнее, из нескольких металлов, поэтому высокой температуры не боится. При работе газовой котельной установки без него никак не обойтись, выход из строя термопары означает полную остановку агрегата и немедленный ремонт. Все дело в том, что термоэлемент работает совместно с электромагнитным отсекающим клапаном, перекрывающим вход в топливный тракт. Стоит только этой детали выйти из строя, как клапан закроется, подача топлива прекратится и горелочное устройство потухнет.

Чтобы лучше понять принцип работы термопары газового котла, стоит рассмотреть схему, представленную на рисунке.

Схема термопары

В основе этого принципа лежит следующее физическое явление: если надежно соединить между собой 2 разнородных металла, а потом место соединения нагревать, то на холодных концах этого спая появится разница потенциалов, то есть, напряжение. А при подключении к ним измерительного прибора цепь замкнется и возникнет постоянный электрический ток. Напряжение будет совсем небольшим, но этого вполне достаточно, чтобы в чувствительной катушке электромагнитного клапана возникла индукция и он открылся, позволяя топливу пройти к запальнику.

Для справки. Некоторые современные электромагнитные клапаны настолько чувствительны, что остаются открытыми, пока напряжение на входе не станет ниже 20 мВ. Термоэлемент в обычном рабочем режиме вырабатывает напряжение порядка 40—50 мВ.

Соответственно, устройство термопары газового котла основано на описанном явлении, носящем название эффекта Зеебека. Две детали из различных металлов прочно соединяются между собой в одной или нескольких точках, при этом качество соединения играет большую роль. Оно влияет на рабочие параметры элемента и долговечность его эксплуатации. Место соединения и будет той самой рабочей частью, помещаемой в зону открытого огня.

Поскольку для изготовления термоэлементов применяется множество различных пар металлов, не вдаваясь в подробности, отметим, что в термопаре для газового котла используется пара хромель – алюминий. К холодным концам этих металлов приварены проводники, заключенные в защитную оболочку. Второй конец проводников вставляется в соответствующее гнездо автоматики агрегата и закрепляется с помощью зажимной гайки.

В процессе розжига запальника и горелки газового котла для подачи топлива мы открываем электромагнитный клапан вручную, нажимая на его шток. Газ попадает на запальник и поджигается, а термопара находится рядом и нагревается от его пламени. Спустя 10—30 сек кнопку можно отпускать, так как термоэлемент уже начал вырабатывать напряжение, удерживающее шток клапана в открытом состоянии.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

 

Как работает датчик пламени в газовом котле

Датчик ионизации пламени – прибор, который призван обеспечить безопасную работу газового котельного оборудования. Устройство следит за наличием огня, и при обнаружении отсутствия пламени автоматически отключает котел. Принцип работы датчика пламени газового котла предусматривает следующее:

  • функционал основан на образовании ионов и электронов при зажигании пламени. Образование ионного тока вызывает процесс притягивания ионов к электроду ионизации. Устройство подключается к датчику контроля горения;
  • если при проверке датчиком контроля горения обнаруживается образование достаточного уровня ионов, это означает, что котел работает в штатном режиме. В случае снижения уровня ионов датчик блокирует работу котельного оборудования.

К ключевым причинам срабатывания датчика ионизации относят загрязнение клапана и некорректное соотношение уровня «газ-воздух». Также это происходит при оседании большого количества пыли на устройстве розжига.

Основные типы термопар для газового котла

При изготовлении термоэлектрических преобразователей применяют сплавы благородных и неблагородных металлов. Для конкретных диапазонов рабочих температур используют определенные группы сплавов.

В зависимости от металлических пар, применяемых при изготовлении, приборы делятся на несколько типов.

Для работы котельного оборудования на газовом топливе чаще всего используют следующие типы устройств:

  • термопара типа E. Заводская маркировка ТХКн, представляет собой пластины из хромеля и константана. Прибор предназначен для температурного диапазона от 0°C и до +600°C;
  • тип J. Предусматривает композицию из железа и константана, маркировка ТЖК. Используется для рабочих температур в пределах от -100°C и до +1200°C;
  • тип Kс маркировкой ТХА, изготавливается на основе пластин из хромеля и алюмеля. Температурный диапазон применения термопары типа Kзначительный – от -200°C и до +1350°C;
  • тип Lс маркировкой ТХК. Элементы конструкции представляют собой хромель и копель. Устройство предназначено для температур от -200°C и до +850°C.

Термопара для газового котла типа J

Следующие образцы продукции находят применение в сфере тяжелой промышленности:

  • тип Sс маркировкой ТПП10 представляет собой композицию платинородий-платина. Применяется в установках при температурном режиме до +1700°C;
  • тип Bс маркировкой ТПР состоит из композиции пластин платинородий-платинородий. Продукт предназначен для температурного диапазона от -100°C и до +1800°C.

Также изготавливаются и другие варианты аналогичных приборов из сплавов благородных металлов, которые актуальны в тяжелой промышленности и литейном производстве.

Термопара в системе газового контроля

При эксплуатации газового оборудования требуется энергонезависимая автоматика, что способствует оперативному перекрытию подачи газа в случае, если внезапно погаснет пламя. В современных отопительных котлах с газовой горелкой предусмотрена система газ-контроль, которая включает в себя электромагнитный клапан и термопару. К составным элементам электроклапана относятся:

  • сердечник с обмоткой;
  • колпачок;
  • возвратная пружина;
  • якорь;
  • резинка, перекрывающая подачу газа.

При нажатии на кнопку подачи газа, шток заглубляется внутрь катушки и заряжается пружина. По регламенту клапан подачи следует удерживать около 30 секунд, чтобы термопара прогрелась, и на концах образовалось напряжение для удержания клапана внутри катушки. Термопара начинает остывать, если гаснет горелка. Что дальше происходит:

  • это сопровождается уменьшением напряжения на концах термопары;
  • возвратная сила пружины превышает электромагнитную силу, которая удерживает шток внутри катушки;
  • клапан возвращается в исходное положение и перекрывается подача газа.

В этом заключается работа термопары в газовом котле. Система газ-контроль на термопаре отличается высокой надежностью, в том числе и благодаря тому, что она способна функционировать без подключения к энергосети.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Термопары-Типы термопар — J, K, E, T, N, B, R, S

Хромель {90% никеля и 10% хрома} Alumel {95% никеля, 2% марганца, 2% алюминия и 1% кремния}


Твитнуть


Type K Thermocouple Color Code

Термопара типа K

Это наиболее распространенный тип термопар, обеспечивающий самый широкий диапазон рабочих температур. Термопары типа K обычно работают в большинстве случаев, поскольку они сделаны на основе никеля и обладают хорошей коррозионной стойкостью.

• 1. Положительный полюс — немагнитный (желтый) , отрицательный — магнитный (красный).

• 2. Традиционный выбор недрагоценных металлов для высокотемпературных работ.

• 3. Подходит для использования в окислительной или инертной атмосфере при температурах до 1260 ° C (2300 ° F).

• 4. Уязвим к воздействию серы (воздерживаться от воздействия серосодержащих атмосфер).

• 5. Лучше всего работать в чистой окислительной атмосфере.

• 6.Не рекомендуется для использования в условиях частичного окисления в вакууме или при чередовании циклов окисления и восстановления.

Состоит из положительной ветви, состоящей примерно из 90% никеля, 10% хрома и отрицательной ветви, состоящей примерно из 95% никеля, 2% алюминия, 2% марганца и 1% кремния. Термопары типа K являются наиболее распространенными термопарами общего назначения. термопара с чувствительностью примерно 41 мкВ / ° C, хромель положительный по отношению к алюмелю. Это недорогое решение, и предлагается широкий выбор датчиков в диапазоне от -200 ° C до + 1260 ° C / от -328 ° F до + 2300 ° F.Тип K был определен в то время, когда металлургия была менее развита, чем сегодня, и, следовательно, характеристики значительно различаются между образцами. Один из составляющих металлов, никель, является магнитным; Характерной чертой термопар, изготовленных из магнитного материала, является то, что они претерпевают ступенчатое изменение выходной мощности, когда магнитный материал достигает точки отверждения (около 354 ° C для термопар типа K).

Термопары типа K (хромель / константан)

Термопары типа K обычно работают в большинстве случаев, поскольку они сделаны на основе никеля и обладают хорошей коррозионной стойкостью.Это наиболее распространенный тип калибровки датчиков, обеспечивающий самый широкий диапазон рабочих температур. Благодаря своей надежности и точности термопара типа K широко используется при температурах до 2300 ° F (1260 ° C). Этот тип термопары должен быть защищен подходящей металлической или керамической защитной трубкой, особенно в восстановительной атмосфере. В окислительной атмосфере, такой как электрические печи, защита труб не всегда необходима, если подходят другие условия; тем не менее, он рекомендуется для обеспечения чистоты и общей механической защиты.Тип K обычно дольше, чем тип J, потому что проволока JP быстро окисляется, особенно при более высоких температурах.

Type K Thermocouple Color Code

Диапазон температур:
• Провод класса термопары, от −454 ° до 2300 ° F (от −270 до 1260 ° C)

• Провод класса удлинения, от −32 ° до 392 ° F (от 0 до 200 ° C)

• Точка плавления, 2550 ° F (1400 ° C)

Точность (в зависимости от того, что больше):
• Стандарт: ± 2.2C% или ± 0,75%

• Специальные пределы погрешности: ± 1,1C или 0,4%

Отклонения в сплавах могут повлиять на точность термопар. Для термопар типа K первый класс допуска составляет ± 1,5 K в диапазоне от -40 до 375 ° C. Однако отклонения между термопарами одного производства очень малы, и при индивидуальной калибровке можно достичь гораздо более высокой точности.

Изменения в металлургии могут вызвать отклонение калибровки от 1 до 2 ° C за несколько часов, которое со временем увеличится до 5 ° C.Доступен специальный сплав типа K, который может поддерживать особую предельную точность до десяти раз дольше, чем обычный сплав.

.

Типы термопар, диапазоны и их применение, Сравнение термопар

Термопара — это один из типов температурных датчиков, используемых для измерения температуры, и у него есть две разные ножки из металлической проволоки. Эти две ветви из металлической проволоки соединены вместе в конце цепи, образуя соединение. Таким образом, можно рассчитать температуру на этом стыке. Когда соединение понимает изменение температуры, создается напряжение. Создаваемое напряжение может быть изменено с помощью этой справочной таблицы датчика для расчета температуры.

Области применения термопар в основном включают многочисленные научные, промышленные применения OEM. Промышленные применения в основном включают газ (или) нефть, производство электроэнергии, цемент, фармацевтику, биотехнологии, бумагу и мягкие ткани. Этот датчик также используется в бытовой технике, а именно в тостерах, плитах и ​​обогревателях. Обычно использование этих устройств является высоким из-за их характеристик, таких как предельная высокая температура, низкая стоимость, долговечность по своей природе и широкий спектр термопар.


Различные Типы и диапазоны термопар

Термопары подразделяются на различные типы, а именно: Тип-K, Тип-J, Тип-T, Тип-E, Тип-N, Тип-S, Тип-R и Type-B.У этих типов термопар есть свои особенности. Но термопара окружена защитной оболочкой для отделения ее от окружающей среды. Эта защитная оболочка резко снижает эффект коррозии.

Прежде чем говорить о типах термопар, необходимо отметить, что они часто окружены защитным кожухом для изоляции от окружающей среды. Это защитное покрытие значительно снизит эффект ржавчины.

Термопара J-типа

Это наиболее часто используемая термопара, состоящая из положительной (железная) и отрицательной (константановая) ножек.Области применения этой термопары включают восстановительную, вакуумную, окислительную и инертную среды. Температурный диапазон этой термопары невелик, а срок службы при высоких температурах меньше, чем у К-типа. По надежности и стоимости он не уступает K-Type.

J Type Thermocouple J Type Thermocouple Термопара типа J

Термопара типа K

Термопара k-типа является наиболее распространенным типом термометров и состоит из положительной (хромель) и отрицательной (алюминий) ножек.Эта термопара рекомендуется для инертной или окислительной атмосферы до 2300 0 F Цикл выше и, но не рекомендуется для ниже 1800 0 F из-за изменения ЭДС из-за гистерезиса. Он достаточно стабилен, а также точен при высоких температурах.

PCBWay PCBWay
K Type Thermocouple K Type Thermocouple Термопара типа K

Термопара типа N

Термопара N-типа состоит из положительной (Nicrosil) и отрицательной (Nisil) ножек. Он обладает более высокой устойчивостью к деградации из-за циклического изменения температуры, гистерезиса и зеленой гнили, чем у K-типа.Обычно это очень дорого.

N Type Thermocouple N Type Thermocouple N Термопара типа

Термопара T-типа

Термопара T-типа состоит из положительной (медь) и отрицательной (константановой) ножек. Области применения в основном включают окисление, восстановление в вакууме и инертных средах. Он сохраняет стабильную устойчивость к разложению в большинстве сред, а также высокую стабильность при отрицательных температурах.

T Type Thermocouple T Type Thermocouple Термопара типа T

Термопара E-типа

Термопара E-типа состоит из положительной (хромель) и отрицательной (константан) ножек и не ориентирована на окисление в атмосфере.Этот тип также имеет максимальную ЭДС на градус, как и любой типичный тип термопары. Но этот тип нужно защищать от сернистых сред.

E Type Thermocouple E Type Thermocouple Термопара типа E

Термопара S-типа

Термопара S-типа используется в системах с очень высокими температурами. Применения этого в основном касаются фармацевтической, а также биотехнологической промышленности. Иногда он используется в низкотемпературных приложениях из-за стабильности и высокой точности.

S Type Thermocouple S Type Thermocouple Термопара типа S

Термопара типа B

Термопара типа B широко используется в высокотемпературных приложениях, и ее температурный предел выше, чем у других типов термопар, описанных выше. Он поддерживает высокий уровень точности, а также стабильность при очень высоких температурах.

B Type Thermocouple B Type Thermocouple Термопара типа B

Термопара R-типа

Термопара R-типа применима для высоких температур.Он состоит из более высокого процента химических элементов (родий), чем S-тип, что делает его более дорогостоящим. Этот тип очень похож на S-Type с точки зрения действия. Иногда он используется в низкотемпературных приложениях из-за его стабильности и высокой точности.

R Type Thermocouple R Type Thermocouple Термопара типа R

Сравнение типов термопар

Сравнение типов термопар включает следующее.

Для J-типа

Состав: Имеет железные (+) и константановые (-) ножки

Температурный диапазон: Температурный диапазон J-типа составляет от –210 до +1200 ° C

Точность: Точность для J-типа стандартная: +/- 2.2C (или) +/- 0,75% конкретные пределы погрешности: +/- 1,1C (или) 0,4%

Чувствительность: Чувствительность J-типа составляет 50-60 мкВ / ° C

Для K- Тип

Состав: Имеет ножки из хромеля (+) и алюмеля (-)

Температурный диапазон: Температурный диапазон K-типа составляет от 200 до 2300, o F и от 95 до 1260 o C

Точность: Точность для K-типа стандартная: +/- 2,2C (или) +/-.Особые пределы погрешности 75%: +/- 1,1C (или) 0,4%

Чувствительность: Чувствительность K-типа 28-42 мкВ / ° C

Для N-типа

Состав: Он имеет ножки Nicrosil (+) и Nisil (-).

Диапазон температур: Диапазон температур для N-типа составляет от –250 до +1300 ° C Точность: Точность для N-типа стандартная: + / — 2,2C (или) +/- 0,75% конкретные пределы погрешности: +/- 1,1C (или) 0,4%

Чувствительность: Чувствительность N-типа составляет 24 — 38 мкВ / ° C

Для T-тип

Состав: Имеет медные (+) и константановые (-) ножки

Диапазон температур: Температурный диапазон T-типа составляет от –330 до 660 ° F и — –200 до 350 ° C

Точность: Точность для Т-типа стандартная: +/- 2.2C (или) +/- 0,75% конкретные пределы погрешности: +/- 1,1C (или) 0,4%

Чувствительность: Чувствительность T-типа составляет 17-58 мкВ / ° C

Для E- Тип

Состав: Имеет ножки из хромеля (+) и константана (-)

Температурный диапазон: Диапазон температур для E-Type составляет от –200 до 1650 ° F и — –95 до 900 ° C

Точность: Точность для E-типа стандартная: +/- 1.7C (или) +/- 0,5% конкретные пределы погрешности: +/- 1,1C (или) 0,4%

Чувствительность: Чувствительность E-Type составляет 40-80 мкВ / ° C

Для S-типа

Состав: Имеет платиновые 10% родиевые (+) и платиновые (-) ножки

Температурный диапазон: Температурный диапазон S-типа составляет от 1800 до 2640 ° F и 980-1450 ° C

Точность: Точность для S-типа стандартная: +/- 1,5 ° C (или) +/-.Пределы погрешности 25%: +/- 0,6C (или) 0,1%

Чувствительность: Чувствительность S-типа составляет 8-12 мкВ / ° C

Для B-типа

Состав: Он имеет ножки из платины 30% родия (+) и платины 6% родия (-)

Диапазон температур: Диапазон температур для типа B составляет от 2500 до 3100 ° F и 1370-1700 ° C

Точность: Точность для типа B стандартная: +/- 0,5% (или) +/-.Пределы погрешности 25%: +/- 0,25%

Чувствительность: Чувствительность типа B составляет 5-10 мкВ / ° C

Для R-типа

Состав: Платина 30% Родиевые (+) и платиновые (-) ножки

Диапазон температур: Диапазон температур для R-типа составляет от 1600 до 2640 ° F и от 870 до 1450 ° C

Точность: Точность для R- Тип — Типичный: +/- 1,5 ° C (или) +/- 0,25%. Конкретные пределы погрешности: +/- 0.6C или 0,1%

Чувствительность: Чувствительность R-типа составляет 8–14 мкВ / ° C

Таким образом, речь идет о типах термопар. В этой статье описывается, что такое термопара? как это работает, различные типы термопар и их сравнение. Мы полагаем, что вы лучше понимаете обзор этой концепции. Кроме того, любые вопросы относительно этой концепции. Пожалуйста, вернитесь к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос, каковы области применения термопар?

.

Термопары

Одним из наиболее распространенных промышленных термометров является термопара. Он был открыт Томасом Зеебеком в 1822 году. Он заметил, что при нагревании проволоки на одном конце возникает разность напряжений. Независимо от температуры, если оба конца были при одинаковой температуре, разницы напряжений не было. Если бы цепь была сделана с помощью провода из того же материала, ток не протекал.

Термопара состоит из двух разнородных металлов, соединенных вместе на одном конце и создающих небольшое уникальное напряжение при заданной температуре.Это напряжение измеряется и интерпретируется термометром термопары.

Термоэлектрическое напряжение, возникающее в результате разницы температур от одного конца провода к другому, фактически является суммой всех разностей напряжений вдоль провода от конца до конца.

Термопары могут изготавливаться из различных металлов и работать в диапазоне температур от 200 o C до 2600 o C . Сравнение термопар с другими типами датчиков следует производить с учетом допуска, указанного в ASTM E 230.

Термопары из недрагоценных металлов

* Не используются ниже 1250 o C .

Thermocouples Type E, J, K, N, R, S, T, B

Преимущества термопар

  • Возможность использования для прямого измерения температуры до 2600 o C .
  • Спай термопары можно заземлить и привести в прямой контакт с измеряемым материалом.

Недостатки с термопарами

  • Измерение температуры с помощью термопары требует измерения двух температур: спая на рабочем конце (горячий спай) и спая, где провода встречаются с медными проводами КИП (холодный спай).Чтобы избежать ошибки, температура холодного спая обычно компенсируется в электронных приборах путем измерения температуры на клеммной колодке с помощью полупроводника, термистора или RTD.
  • Термопары относительно сложны в эксплуатации с потенциальными источниками ошибок. Материалы, из которых изготовлены провода термопары, не являются инертными, и на термоэлектрическое напряжение, возникающее по длине провода термопары, может влиять коррозия и т. Д.
  • Зависимость между температурой процесса и сигналом термопары (милливольт) не является линейной.
  • Калибровку термопары следует проводить путем сравнения ее с ближайшей термопарой. Если термопару снимают и помещают в калибровочную ванну, выходной сигнал, интегрированный по длине, не воспроизводится точно, поскольку разница температур от одного конца провода к другому является суммой всех разностей напряжений вдоль провода от конца до конца.

Типы термопар

Термопары доступны в различных комбинациях металлов или калибровок.Четыре наиболее распространенных калибровки — это J, K, T и E. Каждая калибровка имеет свой диапазон температур и среду, хотя максимальная температура зависит от диаметра провода, используемого в термопаре.

Некоторые типы термопар стандартизированы с помощью калибровочных таблиц, цветовых кодов и присвоенных буквенных обозначений. Стандарт ASTM E230 предоставляет все спецификации для большинства общепромышленных марок, включая буквенные обозначения, цветовые коды (только для США), рекомендуемые пределы использования и полные таблицы зависимости напряжения от температуры для холодных спаев, поддерживаемых на уровне 32 o F и 0 o C.

Существует четыре «класса» термопар:

  • Класс домашнего корпуса (называемый основным металлом),
  • класс верхней корки (называемый редким металлом или драгоценным металлом),
  • класс разреженного металла (тугоплавкие металлы) и ,
  • экзотический класс (эталоны и разработки).

Домашние тела — это типы E, J, K, N и T. Верхняя кора — это типы B, S и R, платина — все в разном процентном соотношении. Экзотический класс включает несколько термопар из вольфрамового сплава, обычно обозначаемых как тип W (что-то).

Температурные преобразования

  • o F = (1,8 x o C) + 32
  • o C = ( o F — 32) x 0,555
  • Кельвин = o C + 273.2
  • o Rankin = o F + 459.67

Стандарты ASTM, относящиеся к термопарам

  • E 207-00 … Метод испытания материалов одного термоэлемента на термоЭДС путем сравнения с вторичным эталоном аналогичных характеристик ЭМП-температуры
  • E 220-02 Стандартный метод испытаний для калибровки термопар методами сравнения
  • E 230-98e1..Таблицы температурной электродвижущей силы (ЭДС) для стандартизованных термопар
  • E 235-88 (1996) e1..Технические требования к термопарам в оболочке типа K для ядерных или других высоконадежных приложений
  • E 452-02..Метод испытаний для калибровки термопар из тугоплавкого металла с использованием радиационного термометра
  • E 574-00..Спецификация для дуплексного провода термопары из недрагоценных металлов с изоляцией из стекловолокна или кварцевого волокна
  • E 585 / E 585M-01a ​​.. Стандартные технические условия для уплотненного минерала -Изолированный кабель термопары из недрагоценных металлов в металлической оболочке
  • E 601-81 (1997)..Метод испытаний для сравнения стабильности ЭДС материалов одноэлементных термопар из недрагоценных металлов в воздухе
  • E 608 / E 608M-00. Стандартные технические условия на термопары из недрагоценных металлов с минеральной изоляцией и металлической оболочкой
  • E 696-00 Стандартные технические условия на провод для термопар из вольфрам-рениевого сплава
  • E 710-86 (1997) Стандартный метод испытаний для сравнения стабильности ЭДС термопары основного металла. элементы в воздухе с использованием двойных, одновременных индикаторов термо-ЭДС
  • E 780-92 (1998) Стандартный метод испытаний для измерения сопротивления изоляции материала термопары в оболочке при комнатной температуре
  • E 839-96 Стандартный метод испытаний термопар в оболочке и в оболочке Материал термопары
  • E 988-96 (2002) Таблицы стандартной температуры и электродвижущей силы (ЭДС) для вольфрам-рениевых термопар
  • E1129 / E1129M-98 Стандартные технические условия для разъемов термопар
  • E 1159-98 Стандартные технические условия на материалы термопар, платина -Родиевые сплавы и платина
  • E 1350-97 (2001) Стандартные методы испытаний для испытания термопар в оболочке до, Во время и после установки
  • E 1652-00 Стандартные технические условия на оксид магния и порошок оксида алюминия и разрушаемые изоляторы, используемые при производстве платиновых термометров сопротивления в металлической оболочке, термопар из недрагоценных металлов и термопар из благородных металлов
  • E 1684-00 Стандартные технические условия для миниатюрных соединителей для термопар
  • E 1751-00 Стандартное руководство по температуре Таблицы электродвижущей силы (ЭДС) для комбинаций термопар без буквенного обозначения
  • E 2181 / E 2181M-01 Стандартные технические условия для благородных металлов с уплотненной минеральной изоляцией и металлической оболочкой Термопары и кабель для термопар
,

Simple English Wikipedia, бесплатная энциклопедия

Термопара , подключенная к мультиметру, отображающая комнатную температуру в ° C

Термопара , сокращенно TC, — это устройство, которое преобразует тепло непосредственно в электричество. Термопара также может работать в обратном направлении — используя электрический ток для преобразования в тепло, а также в холод.

Представьте, что на одном конце соединены два провода из разных металлов. Если место соединения двух проводов нагревается, через провод будет протекать электричество.

Электроны при нагревании начнут самостоятельно пересекать переход. Из-за разных свойств разных металлов электроны теряют потенциальную энергию и приобретают кинетическую энергию, как мяч, катящийся по холму в более низкую область. Хотя напряжение, создаваемое термопарой, очень мало (в диапазоне милливольт), многие термопары можно соединить вместе, чтобы получить большее напряжение. Это называется термобатареей.

Термопары не только производят электричество из тепла.Они также могут вырабатывать тепло от электричества и даже холод от электричества, как холодильник. Если два разных провода подключены к обоим концам, и какой-то источник напряжения пропускает ток через петлю, одно соединение станет горячим, а другое — холодным. Электроны в горячем спайе приобретают кинетическую энергию, когда они пересекают стык. Вот почему они делают металл горячим. Электроны в холодном спайе теряют кинетическую энергию, когда пересекают переход. Вот почему они делают стык холодным.

Интересно, что трудно измерить точное напряжение, которое создает термопара, когда к ее спайу прикладывается тепло. Это связано с тем, что любые провода вольтметра, подключенные к термопаре, вероятно, будут сделаны из другого материала, чем провода термопары. Это означает, что соединение между вольтметром и термопарой само по себе является другой термопарой. Инженеры, разрабатывающие микрочипы, сталкиваются с проблемой, что практически каждое электрическое соединение на микрочипе представляет собой термопару, хотят они этого или нет.

Газовые обогреватели с запальным пламенем — один из самых известных примеров использования термопар. Термопары уложены друг на друга, образуя термобатарею, которая может генерировать достаточно напряжения из тепла пилотного пламени, чтобы держать газовый клапан открытым, который, в свою очередь, подает газ для пилотного пламени. Если газ заканчивается, пламя гаснет, и напряжение на термобатареи уменьшается, что приводит к закрытию электрического газового клапана. Многие космические зонды получают электроэнергию от термопары в радиоизотопном термоэлектрическом генераторе.

Термопары также используются и в других целях. Например, они контролируют температуру в кондиционерах и холодильниках, а также процессоров в компьютерах, которые могут быть повреждены из-за перегрева.

Существуют сотни термопар, но только 8 из них стандартизированы на международном уровне.
Тип E (хромель-константан), тип J (железо-константан), тип N (никросил-низил), тип T (медь-константан) и тип K (хромель-алюмель) являются неблагородными металлами. В термопарах
типов B, R и S используется платина или платина-родий.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *