Температура пропана сжиженного – Сжиженный углеводородный газ (СУГ) — смесь пропана и бутана для газгольдера

Содержание

самые важные факты о свойствах СУГ

Утверждения об отличных характеристиках топливных смесей обычно слишком общие и малоинформативные. Мы восполняем недостаток информации – в этой статье приведены фактические данные о сжиженных углеводородных газах (СУГ). Они будут полезны всем, кто уже использует такое топливо или только планирует автономную газификацию своего дома (коммерческого объекта).

Что такое СУГ и в чем их главная особенность?

Под названием «сжиженные углеводородные газы» имеются в виду смеси низкомолекулярных углеводородов – пропана и бутана. Их основное отличие состоит в легком переходе из газообразной фазы в жидкую и наоборот:

  • В условиях нормального атмосферного давления и при обычной температуре окружающей среды компоненты смеси являются газами.
  • С незначительным увеличением давления (без снижения температуры) углеводороды СУГ превращаются в жидкости. При этом их объем резко уменьшается.

Такие свойства позволяют легко транспортировать и хранить СУГ. Ведь достаточно закачать смесь в закрытую емкость под давлением, чтобы она стала жидкой и получила небольшой объем. А перед эксплуатацией СУГ испаряется, и дальше его можно использовать точно так же, как обычный природный газ. При этом смесь бутана и пропана имеет более высокий коэффициент полезного действия. Удельная теплота сгорания сжиженного газа примерно на 25 % выше, чем природного.

Производят СУГ на газоперерабатывающих заводах из попутного нефтяного газа или конденсатной фракции природного газа. Во время переработки сырье разделяют на легкие и тяжелые фракции – этан, метан, газовый бензин и т.д. Две из них – пропан и бутан – дальше перерабатываются в сжиженный газ. Их очищают от примесей, смешивают в нужном соотношении, сжижают и транспортируют в хранилища или к потребителю.

Свойства составляющих СУГ – пропана и бутана

Оба газа являются низкомолекулярными предельными углеводородами:

  • Пропан (С3Н8). В линейную молекулу входят три атома углерода и восемь – водорода. Газ идеально подходит для применения в российских климатических условиях – его температура кипения составляет -42,1 °С. При этом до -35 °С пропан сохраняет высокую упругость паров. То есть, он хорошо испаряется естественным путем и транспортируется по наружному трубопроводу даже в самую суровую зиму. Чистый сжиженный пропан можно использовать в надземных газгольдерах и баллонах – сбоев в поступлении газа во время морозов не будет.
  • Бутан (С4Н10). Состоит из четырех атомов углерода и десяти атомов водорода. Молекула может быть линейной или разветвленной. Бутан имеет более высокую теплотворную способность, чем пропан, и дешевле стоит. Но у него есть серьезный недостаток. Температура кипения бутана – всего -0,5 °С. Это значит, что при малейшем морозе он будет оставаться в жидком состоянии. Естественное испарение бутана при температуре ниже -0,5 °С прекращается, и для получения газа приходится использовать дополнительный подогрев.

Из приведенной информации получаем важный вывод: температура сжиженной пропан-бутановой смеси в газгольдере или баллоне всегда должна быть положительной. Иначе бутан не будет испаряться и появятся проблемы с газоснабжением. Чтобы добиться нужной температуры, газгольдеры устанавливают подземно (здесь их подогревает геотермальное тепло). Другой вариант – оборудовать емкость электроподогревом (испарителем). Заправленные баллоны всегда держат в помещениях.

От чего зависит качество СУГ?

Итак, сжиженный газ, поставляемый для систем автономной газификации, это всегда смесь. В официальных документах она проходит как СПБТ – смесь пропана и бутана технических. Кроме этих двух газов, в СУГ всегда есть небольшой объем примесей – воды, щелочей, непредельных углеводородов и т.д. Качество смеси зависит от соотношения в ней пропана и бутана, а также от количества и типа примесей:

  1. Чем больше в СПБТ пропана, тем лучше она будет испаряться в холодное время года. Правда, сжиженные газы с повышенной концентрацией пропановой составляющей дороже стоят, поэтому их обычно используют лишь в качестве зимнего топлива. В любом случае, в условиях российского климата нельзя использовать смесь с содержанием бутана более 60 %. Она будет испаряться только при наличии испарителя.
  2. Чем больше в СУГ примесей, тем хуже для газового оборудования. Непредельные углеводороды не сгорают полностью, а полимеризуются и коксуются. Их остатки загрязняют оборудование и резко сокращают срок его службы. Тяжелые фракции – вода и щелочи – также не идут на пользу технике. Многие вещества остаются в резервуаре и трубопроводах в виде неиспаряемого конденсата, который снижает эффективность системы. Кроме того, примеси не дают такого количества тепла, как пропан и бутан, поэтому их повышенная концентрация понижает КПД топлива.
Полезные факты о сжиженных газах
  • Пропан-бутановая смесь отлично смешивается с воздухом, равномерно горит и полностью сгорает, не оставляя на элементах оборудования сажи и нагара.
  • СУГ в газообразном состоянии тяжелее воздуха: пропан – в 1,5 раза, бутан – в 2 раза. При утечке смесь опускается вниз. Поэтому резервуары со сжиженным газом нельзя устанавливать над подвалами и колодцами. Зато подземный газгольдер абсолютно безопасен – даже при его повреждении газовая смесь уйдет в нижние слои грунта. Там она не сможет смешаться с воздухом и взорваться или загореться.
  • Жидкая фаза СУГ имеет очень высокий коэффициент теплового расширения (0,003 для пропана и 0,002 для бутана на каждый градус повышения температуры). Это примерно в 16 раз выше, чем у воды. Поэтому газгольдеры нельзя заправлять более чем на 85 %. Иначе при повышении температуры жидкая смесь может сильно расшириться и в лучшем случае занять весь объем резервуара. Тогда места для испарения просто не останется и газ в систему поступать не будет. В худших случаях чрезмерное расширение жидкой смеси приводит к разрывам газгольдеров, большим утечкам и образованию взрыво- и пожароопасных смесей с воздухом.
  • При испарении 1 л жидкой фазы СУГ образуется 250 л газа. Поэтому так опасны резервуары со сжиженной смесью, установленные внутри помещений. Даже при незначительной утечке жидкой фазы происходит ее моментальное испарение, и комната наполняется огромным количеством газа. Газо-воздушная смесь в этом случае быстро достигает взрывоопасного соотношения.
  • Испарение жидкой фазы на воздухе происходит очень быстро. Пролитый на кожу человека сжиженный газ вызывает обморожение.
  • Чистые пропан и бутан – газы без запаха. К ним специально добавляют сильно пахнущие вещества – одоранты. Как правило, это соединения серы, чаще всего – этилмеркаптан. Они имеют очень сильный и неприятный запах, который «сообщает» человеку об утечке газа.
  • Смесь обладает высокими теплотворными способностями. Так, при сжигании 1 куб. м газообразного пропана используется 24 куб. м воздуха, бутана – 31 куб. м воздуха. В результате сгорания 1 кг смеси выделяется в среднем 11,5 кВт·ч энергии.

gazsever.com

Сжиженный газ. Сжиженные углеводородные газы СУГ = Liquefied petroleum gas (LPG) и ШФЛУ == WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids)

Сжиженный газ. Сжиженные углеводородные газы СУГ = Liquefied petroleum gas (LPG) и ШФЛУ == WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids)

Сжиженные углеводородные газы (СУГ) Liquefied petroleum gas (LPG) — смесь сжиженных под давлением лёгких углеводородов с температурой кипенияот −50 до 0 °C. Предназначены для применения в качестве топлива, а также используются в качестве сырья для органического синтеза. Состав может существенно различаться, основные компоненты: пропан, изобутан и н-бутан. Производятся СУГ в процессе ректификации широкой фракции лёгких углеводородов (ШФЛУ = WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids). ШФЛУ относится к сжиженным углеводородным газам и представляет собой легкокипящую и легковоспламеняющуюся жидкость, пожаро- и взрывоопасную, 4-го класса токсичности .

Таблица 1. Технические требования к ШФЛУ - это сырье для производства СУГ

Показатели Марка А Марка Б Марка В
Углеводородный состав, % масс. С1 - С2, не более 3 5 не регламентируется
С3, не менее 15 не регламентируется не регламентируется
С4 - С5, не менее 45 40 35
с6 и выше, не более 11 25 30
Плотность при 20оС, кг/м3 515 - 525 525 - 535 535 и выше
Содержание сернистых соединений в пересчете на серу, % масс., не более 0,025 0,05 0,05
в том числе сероводорода, % масс., не более 0,003 0,003 0,003
Содержание взвешенной воды  Отсутствие
Содержание щелочи  Отсутствие
Внешний вид   Бесцветная прозрачная жидкость.

Пары ШФЛУ образуют с воздухом взрывоопасные смеси с пределами взрываемости 1,3 - 9,5 % об. при 98 066 Па (1 ата.) 15 - 20оС.

Таблица 2. Температуры самовоспламенения компонентов ШФЛУ, оС

Пропан (С3Н8) Изо-бутан (С4Н10) Н-бутан (С4Н10) Изо-пентан (С5Н12) Н-пентан (С5Н12)
466 462 405 427 287

Предельно допустимая концентрация паров ШФЛУ в воздухе рабочей зоны составляет не более 300 мг/м3. ШФЛУ попадающее на кожу человека вызывает обморожение напоминающее ожог.

Таблица 3. Классификация СУГ в РФ: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический:

В зависимости от компонентного состава СУГ подразделяются на следующие марки:

Марка Наименование Код ОКПО

(общероссийский классификатор предприятий и организаций)

ПТ Пропан технический 02 7236 0101
ПА Пропан автомобильный 02 7239 0501
ПБА Пропан-бутан автомобильный 02 7239 0502
ПБТ Пропан-бутан технический 02 7236 0103
БТ Бутан технический 02 7236 0103

Таблица 4. Свойства Параметры торговых марок: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический

Наименование показателя Пропан технический Пропан автомобильный Пропан-бутан автомобильный Пропан-бутан технический Бутан технический
1. Массовая доля компонентов
Сумма метана, этана и этилена Не нормируется
Сумма пропана и пропилена не менее 75 % масс. Не нормируется
в том числе пропана не нормируется не менее 85±10 % масс. не менее 50±10 % масс. не нормируется не нормируется
Сумма бутанов и бутиленов не нормируется не нормируется не нормируется не более 60 % масс. не менее 60 % масс.
Сумма непредельных углеводородов не нормируется не более 6 % масс. не более 6 % масс. не нормируется не нормируется
2. Доля жидкого остатка при 20оС не более 0,7 % об. не более 0,7 % об. не более 1,6 % об. не более 1,6 % об. не более 1,8 % об.
3. Давление насыщенных паров не менее 0,16 МПа

(при минус 20оС)

не менее 0,07 МПа

(при минус 30оС)

не более 1,6 МПа

(при плюс 45оС)

не нормируется не нормируется
4. Массовая доля сероводорода и меркаптановой серы
в том числе сероводорода:
не более 0,013 % масс. не более 0,001 % масс. не более 0,001 % масс. не более 0,013 % масс. не более 0,013 % масс.
не более 0,003 % масс.
5. Содержание свободной воды отсутствие
6. Интенсивность запаха, баллы не менее 3

Сжиженные углеводородные газы пожаро- и взрывоопасны, малотоксичны, имеют специфический характерный запах углеводородов, по степени воздействия на организм относятся к веществам 4-го класса опасности. Предельно допустимая концентрация СУГ в воздухе рабочей зоны (в пересчете на углерод) предельных углеводородов (пропан, бутан) — 300 мг/м3, непредельных углеводородов (пропилен, бутилен) — 100 мг/м3. СУГ образуют с воздухом взрывоопасные смеси при концентрации паров пропана от 2,3 до 9,5 %, нормального бутана от 1,8 до 9,1 % (по объёму), при давлении 0,1 МПа и температуре 15 — 20оС. Температура самовоспламенения пропана в воздухе составляет 470оС, нормального бутана — 405оС.

Таблица 4. Физические характеристики: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Химическая формула СН4 С2Н6 С2Н4 С3Н8 С3Н6 С4Н10 С4Н10 С4Н8 С4Н8 С5Н12
Молекулярная масса, кг/кмоль 16,043 30,068 28,054 44,097 42,081 58,124 58,124 56,108 56,104 72,146
Молекулярный объем, м3/кмоль 22,38 22,174 22,263 21,997 21,974 21,50 21,743 22,442 22,442 20,87
Плотность газовой фазы, кг/м3, при 0оС 0,7168 1,356 1,260 2,0037 1,9149 2,7023 2,685 2,55 2,5022 3,457
Плотность газовой фазы, кг/м3, при 20о 0,668 1,263 1,174 1,872 1,784 2,519 2,486 2,329 2,329 3,221
Плотность жидкой фазы, кг/м3, при 0о 416 546 566 528 609 601 582 646 646 6455
Температура кипения, при 101,3 кПа минус 161 минус 88,6 минус 104 минус 42,1 минус 47,7 минус 0,5 минус 11,73 минус 6,9 3,72 36,07
Низшая теплота сгорания, МДж/м3 35,76 63,65 59,53 91,14 86,49 118,53 118,23 113,83 113,83 146,18
Высшая теплота сгорания, МДж/м3 40,16 69,69 63,04 99,17 91,95 128,5 128,28 121,4 121,4 158
Температура воспламенения, оС 545-800 530-694 510-543 504-588 455-550 430-569 490-570 440-500 400-440 284-510
Октановое число 110 125 100 125 115 91,20 99,35 80,30 87,50 64,45
Теоретически необходимое количество воздуха

для горения, м33

3,52 16,66 14,28 23,8 22,42 30,94 30,94 28,56 28,56 38,08

Таблица 5. Критические параметры  (температура и давление) газов: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Газы могут быть превращены в жидкое состояние при сжатии, если температура при этом не превышает определенного значения, характерного для каждого однородного газа. Температура при которой данный газ не может быть сжижен никаким повышением давления, называется критической температурой. Давление, необходимое для сжижения газа при этой критической температуре, называется критическим давлением.

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Критическая температура, оС минус 82,5 32,3 9,9 96,84 91,94 152,01 134,98 144,4 155 196,6
Критическое давление, МПа 4,58 4,82 5,033 4,21 4,54 3,747 3,6 3,945 4,10 3,331

Таблица 6. Упругость насыщенных паров МПа, Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Упругостью насыщенных паров сжиженных газов называется давление, при котором жидкость находится в равновесном состоянии со своей газовой фазой. При такой двухфазной системе не происходит ни конденсации паров ни испарения жидкости. Каждому компоненту СУГ при определенной температуре соответствует определенная упругость паров, возрастающая с ростом температуры.

Температура, оС Этан Пропан Изобутан н-Бутан н-Пентан Этилен Пропилен н-Бутилен Изобутилен
минус 50 0,553 0,07 1,047 0,100 0,070 0,073
минус 45 0,655 0,088 1,228 0,123 0,086 0,089
минус 40 0,771 0,109 1,432 0,150 0,105 0,108
минус 35 0,902 0,134 1,660 0,181 0,127 0,130
минус 30 1,050 0,164 1,912 0,216 0,152 0,155
минус 25 1,215 0,197 2,192 0,259 0,182 0,184
минус 20 1,400 0,236 2,498 0,308 0,215 0,217
минус 15 1,604 0,285 0,088 0,056 2,833 0,362 0,252 0,255
минус 10 1,831 0,338 0,107 0,0680 3,199 0,423 0,295 0,297
минус 5 2,081 0,399 0,128 0,084 3,596 0,497 0,343 0,345
0 2,355 0,466 0,153 0,102 0,024 4,025 0,575 0,396 0,399
плюс 5 2,555 0,543 0,182 0,123 0,030 4,488 0,665 0,456 0,458
плюс 10 2,982 0,629 0,215 0,146 0,037 5,000 0,764 0,522 0,524
плюс 15 3,336 0,725 0,252 0,174 0,046 0,874 0,594 0,598
плюс 20 3,721 0,833 0,294 0,205 0,058 1,020 0,688 0,613
плюс 25 4,137 0,951 0,341 0,240 0,067 1,132 0,694 0,678
плюс 30 4,460 1,080 0,394 0,280 0,081 1,280 0,856 0,864
плюс 35 4,889 1,226 0,452 0,324 0,096 1,444 0,960 0,969
плюс 40 1,382 0,513 0,374 0,114 1,623 1,072 1,084
плюс 45 1,552 0,590 0,429 0,134 1,817 1,193 1,206
плюс 50 1,740 0,670 0,490 0,157 2,028 1,323 1,344
плюс 55 1,943 0,759 0,557 0,183 2,257 1,464 1,489
плюс 60 2,162 0,853 0,631 0,212 2,505 1,588 1,645

Таблица 6. Зависимость плотности от температуры: Пропан, Изобутан, н-Бутан

Температура,оС Пропан Изобутан н-Бутан
Удельный объём Плотность Удельный объём Плотность Удельный объём Плотность
Жидкость, л/кг Пар, м3/кг Жидкость, кг/л Пар, кг/м3 Жидкость, л/кг Пар, м3/кг Жидкость, кг/л Пар, кг/м3 Жидкость, л/кг Пар, м3/кг Жидкость, кг/л Пар, кг/м3
минус 60 1,650 0,901 0,606 1,11
минус 55 1,672 0,735 0,598 1,36
минус 50 1,686 0,552 0,593 1,810
минус 45 1,704 0,483 0,587 2,07
минус 40 1,721 0,383 0,581 2,610
минус 35 1,739 0,308 0,575 3,250
минус 30 1,770 0,258 0,565 3,870 1,616 0,671 0,619 1,490
минус 25 1,789 0,216 0,559 4,620 1,639 0,606 0,610 1,650
минус 20 1,808 0,1825 0,553 5,480 1,650 0,510 0,606 1,960
минус 15 1,825 0,156 0,548 6,400 1,667 0,400 0,600 2,500 1,626 0,624 0,615 1,602
минус 10 1,845 0,132 0,542 7,570 1,684 0,329 0,594 3,040 1,635 0,514 0,612 1,947
минус 5 1,869 0,110 0,535 9,050 1,701 0,279 0,588 3,590 1,653 0,476 0,605 2,100
0 1,894 0,097 0,528 10,340 1,718 0,232 0,582 4,310 1,664 0,355 0,601 2,820
плюс 5 1,919 0,084 0,521 11,900 1,742 0,197 0,574 5,070 1,678 0,299 0,596 3,350
плюс 10 1,946 0,074 0,514 13,600 1,756 0,169 0,5694 5,920 1,694 0,254 0,5902 3,94
плюс 15 1,972 0,064 0,507 15,51 1,770 0,144 0,565 6,950 1,715 0,215 0,583 4,650
плюс 20 2,004 0,056 0,499 17,740 1,794 0,126 0,5573 7,940 1,727 0,186 0,5709 5,390
плюс 25 2,041 0,0496 0,490 20,150 1,815 0,109 0,5511 9,210 1,745 0,162 0,5732 6,180
плюс 30 2,070 0,0439 0,483 22,800 1,836 0,087 0,5448 11,50 1,763 0,139 0,5673 7,190
плюс 35 2,110 0,0395 0,474 25,30 1,852 0,077 0,540 13,00 1,779 0,122 0,562 8,170
плюс 40 2,155 0,035 0,464 28,60 1,873 0,068 0,534 14,700 1,801 0,107 0,5552 9,334
плюс 45 2,217 0,029 0,451 34,50 1,898 0,060 0,527 16,800 1,821 0,0946 0,549 10,571
плюс 50 2,242 0,027 0,446 36,800 1,9298 0,053 0,5182 18,940 1,843 0,0826 0,5426 12,10
плюс 55 2,288 0,0249 0,437 40,220 1,949 0,049 0,513 20,560 1,866 0,0808 0,536 12,380
плюс 60 2,304 0,0224 0,434 44,60 1,980 0,041 0,505 24,200 1,880 0,0643 0,532 15,400

Наиболее распространенным является использование СУГ в качестве топлива в двигателях внутреннего сгорания. Обычно для этого используется смесь пропан-бутан. В некоторых странах СУГ использовались с 1940 года как альтернативное топливо для двигателей с искровым зажиганием. СУГ являются третьим наиболее широко используемым моторным топливом в мире. В 2008 более 13 миллионов автомобилей по всему миру работали на пропане. Более 20 млн тонн СУГ используются ежегодно в качестве моторного топлива.

Использование СУГ в качестве топлива в промышленных и коммунально-бытовых нагревательных аппаратах позволяет осуществлять регулирование процесса горения в широком диапазоне, а возможность хранения СУГ в резервуарах делает его более предпочтительным по сравнению с природным газом в случае использования СУГ на автономных узлах теплоснабжения.

Таблица 7. Использование СУГ  для производства продуктов для органического синтеза

Основное направление химической переработки СУГ — это термические и термокаталитические превращения. В первую очередь здесь подразумеваются процессы пиролиза и дегидрирования, приводящие к образованию ненасыщенных углеводородов — ацетилена, олефинов, диенов, которые широко применяются для производства высокомолекулярных соединений и кислородсодержащих продуктов. Это направление включает в себя также процесс производства сажи термическим разложением в газовой фазе, а также процесс производства ароматических углеводородов. Схема превращений углеводородных газов в конечные продукты представлена в таблице.

Продукты прямого превращения

углеводородных газов

Производное вещество Конечный продукт
первичное вторичное
Этилен Полиэтилен Полиэтиленовые пластмассы
Окись этилена Поверхностно-активные вещества
Этиленгликоль Полиэфирное волокно, антифриз и смолы
Этаноламины Промышленные растворители, моющие вещества, мыло
Хлорвинил Хлорполивинил Пластиковые трубы, пленки
Этанол Этиловый эфир, уксусная кислота Растворители, химические преобразователи
Ацетальдегид Уксусный ангидрид Ацетатная целлюлоза, аспирин
Нормальный бутан
Винилцетат Поливиниловый спирт Пластификаторы
Поливинилацетат Пластиковые пленки
Этилбензол Стирол Полистироловые пластмассы
Акриловая кислота Волокна, пластмассы
Пропиональдегид Пропанол Гербициды
Пропионовая кислота Консервирующие средства для зерна
Пропилен Акрилонитрил Адипонитрил Волокна (нейлон-66)
Полипропилен Пластичные пленки, волокна
Окись пропилена Пропиленкарбонат Полиуретановые пены
Полипропиленгликоль Специальные растворители
Аллиловый спирт Полиэфирные смолы
Изопропанол Изопропилацетат Растворители типографических красок
Ацетон Растворитель
Изопропилбензол Фенол Фенольные смолы
Акролеин Акрилаты Латексные покрытия
Аллилхлориды Глицероль Смазочные вещества
Нормальные и изомолярные альдегиды Нормальный бутанол Растворитель
Изобутанол Амидные смолы
Изопропилбензол
Номальные бутены Полибутены Смолы
Вторичный бутиловый спирт Метилэтиловый кетон Промышленные растворители, покрытия, связывающие вещества
Депарафинизирующие добавки к нефти
Изобутилен Изобутиленметиловый бутадиеновый сополимер
Бутиловая смола Пластмассовые трубы, герметики
Третичный бутиловый спирт Растворители, смолы
Метилбутиловый третичный эфир Повыситель октанового числа бензина
Метакролеин Метилметакрилат Чистые пластиковые листы
Бутадиен Стирилбутадиеновые полимеры Буна-каучуковая синтетическая резина
Адипонитрил Гексаметилендиамин Нейлон
Сульфолен Сульфолан Очиститель промышленного газа
Хлоропрен Синтетическая резина
Бензол Этилбензол Стирол Полистироловые пластмассы
Изопропилбензол Фенол Фенольные смолы
Нитробензол Анилин Красители, резина, фотохимикаты
Линейный алкилбензол Разлагающиеся под действием бактерий моющие вещества
Малеиновый ангидрид Модификаторы пластмасс
Циклогексан Капролактам Нейлон-6
Адипиновая кислота Нейлон-66
Толуол Бензол Этилбензол, стирол Полистироловые пластмассы
Изопропилбензол, фенол Фенольные смолы
Нитробензол, хлорбензол, анилин, фенол Красители, резина, фотохимикаты

Кроме перечисленного СУГ используют в качестве аэрозольного энергоносителя. Аэрозолем является смесь активного компонента (духов, воды, эмульгатора) с пропиленом. Это коллоидный раствор, в котором тонкодиспергированные (размером 10 — 15 мкм) жидкие или твердые вещества взвешены в газовой или жидкой, легкоиспаряющейся фазе сжиженного углеводородного газа. Дисперсная фаза — активный компонент, из-за которого и вводят пропеллент в аэрозольные системы, применяющиеся для распыления духов, туалетной воды, полирующих веществ и др.

tehtab.ru

Температура конденсации пропана. Что такое сжиженные углеводородные газы

Сжиженные углеводородные газы (пропан-бутан, в дальнейшем СУГ) - смеси углеводородов, которые при нормальных условиях (атмосферное давление и Т воздуха = 0°С) находятся в газообразном состоянии, а при небольшом повышении давления (при постоянной температуре) или незначительном понижении температуры (при атмосферном давлении) переходят из газообразного состояния в жидкое.

Основными компонентами СУГ являются и .

Пропан-бутан (сжиженный нефтяной газ, СНГ, по-английски - liquified petroleum gas, LPG) - это смесь двух газов. В состав сжиженного газа входят в небольших количествах также: пропилен, бутилен, этан, этилен, метан и жидкий неиспаряющийся остаток (пентан, гексан).

Сырьем для получения СУГ являются в основном нефтяные попутные газы, газоконденсатных месторождений и газы, получаемые в процессе переработки нефти.

С заводов СУГ в железнодорожных цистернах поступает на газонаполнительные станции (ГНС) газовых хозяйств, где хранится в специальных резервуарах до продажи (отпуска) потребителям.

Потребителям СУГ доставляется в баллонах или автоцистернами ().

В сосудах (цистернах, резервуарах, баллонах) для хранения и транспортировки СУГ одновременно находится в 2-х фазах: жидкой и парообразной. СУГ хранят, транспортируют в жидком виде под давлением, которое создаётся собственными парами газа. Это свойство делает СУГ удобными источниками снабжения топливом коммунально-бытовых и промышленных потребителей, т.к. сжиженный газ при хранении и транспортировке в виде жидкости занимает в сотни раз меньший объем, чем газ в естественном (газообразном или парообразном) состоянии, а распределяется по газопроводам и используется (сжигается) в газообразном виде.

Область применения СУГ

Благодаря своей экологичности (чистота сгорания) и относительно низких затратах на производство и переработку газ пропан-бутан получил широкое применение для производственных и хозяйственных нужд населения. Область применения сжиженного углеводородного газа широка. Так, например, СУГ используется в качестве источника тепла, топлива для а/м, сырья для производства аэрозолей, в качестве топлива для автопрогрузчиков и т.д.

  • Промышленность
    В промышленности сжиженные углеводородные газы (пропан-бутан, изобутан) используется в качестве сырья и топлива. В строительной отрасли СПБТ (смесь пропана и бутана) применяется при переработке металлов, при газосварочных работах.
    Широк спектр применения СУГ на крупных складских предприятиях. Так, например, СПБТ используется для отопления больших складских и торговых площадей (в инфракрасных обогревателях (излучателях). Благодаря своей экологичности, отсутствию запаха газ используется в качестве топлива на автопогрузчиках на продуктовых складах и в пищевой промышленности.
    Широко СУГ применяется в нефтехимической промышленность. В косметической промышленности используется изобутан при производстве спреев, автохимии.
    Также изобутан применяется при производстве вспененных изоляционных материалов.
  • Автотранспорт
    Пропан-бутан – сжиженный углеводородный газ – применяется в качестве моторного топлива как альтернатива традиционному виду топлива – бензину. И успешно конкурирует по ним по цене.
    Сегодня с появлением новых совершенных систем 4 поколения ГБО перевод а/м на газ становится все более популярным. В настоящее время принимается ряд региональных программ перевода автомобилей на газ. Но из-за отсутствия должного финансирования, к сожалению, процесс тормозится.
    В основном перевод автомобилей на газ происходит в частном порядке.
    Но многие автолюбители, кто использует газ вместо бензина, отмечают значительные улучшения работы двигателя и реальную экономию средств.
    Специалисты отмечают неоспоримые преимущества использования сжиженного углеводородного газа вместо бензина. Так, например, увеличивается ресурс двигателя в 10 – 15%, снижается расход моторного масла на 10%. При работе на газу не возникает детонации при любом режиме работы двигателя. Автомобиль, работающий на газу, имеет дополнительную защиту от воровства и слива топлива.
    Автолюбитель, использующий газ, не испытывает неудобств, связанных с заправкой, т.к. внешне процесс заправки машины газом очень походит на заправку бензином. Да и количество газовых заправок растет с каждым днем.
    Перевод автомобилей на газ – это реальная экономия ваших средств.
  • Коммунальный сектор
    Традиционный вариант использования СУГ – это использование в быту: для отопления пропаном дома и приготовления пищи. Объемы потребления газа варьируются в зависимости потребителя: от небольших приусадебных хозяйств до коттеджных поселков и крупных строительных объектов.
    В частных домах, на предприятиях, где нет возможности подвести природный газ, целесообразно использовать сжиженный углеводородный газ в качестве топлива в котельных.

Сжиженные углеводородные газы , подаваемые в населенные пункты, должны соответствовать требованиям

Основным компонентом автономной системы газоснабжения является пропан-бутановая смесь. При этом многие не понимают, зачем смешивают пропан и бутан , ведь каждый газ может использоваться как самостоятельное топливо. Тем не менее, в некоторых регионах России данные углеводороды нельзя применять в чистом виде для газификации объектов, что связано с их физико-химическими свойствами и климатическим фактором.

www.motusvita.ru

Сжиженный газ — ТеплоВики - энциклопедия отопления

Материал из ТеплоВики - энциклопедия отоплении

Макет цистерны для транспортировки сжиженного газа по железной дороге Транспортировка сжиженного газа автомобилем

Сжиженный природный газ (СПГ) - отделенный от природного газа, сжиженный при охлаждении или под давлением для облегчения хранения или транспортировки. Газ обращается в жидкость при температуре окружающей среды ниже 20 градусов и/или при давлении выше 100 кПа. Состоит в основном из тяжелых газов пропана и бутана.

Производство сжиженного газа

Сжиженный природный газ

Сжиженный природный газ или сокращенно СПГ, как принято называть его в энергетической отрасли (англ. соотв. Liquefied Natural Gas, сокр. LNG) представляет собой обыкновенный природный газ, охлажденный до температуры –162°С (так называемая температура сжижения) для хранения и транспортировки в жидком виде. Хранится сжиженный газ в изотермических резервуарах при температуре кипения, которая поддерживается вследствие испарения СПГ. Данный способ хранения СПГ связан с тем, что для метана, основной составляющей СПГ, критическая температура –83°С, что гораздо ниже температуры окружающей среды, и не предоставляет возможным хранить сжиженный природный газ в резервуарах высокого давления (для справки: критическая температура для этана составляет +32°С, для пропана +97°С). Для использования СПГ подвергается испарению до исходного состояния без присутствия воздуха. При регазификации (возвращении газа в исходное парообразное состояние) из одного кубометра сжиженного газа образуется около 600 кубометров обычного природного газа.

Температура сжиженного газа

Чрезвычайно низкая температура СПГ делает его криогенной жидкостью. Как правило, вещества, температура которых составляет –100°С (–48°F) или еще ниже, считаются криогенными и требуют специальных технологий для обработки. Для сравнения, самая низкая зарегистрированная температура на Земле составляет –89,2°С (Антарктика), а в населенном пункте –77,8°С (поселок Оймякон, Якутия). Криогенная температура сжиженного природного газа означает, что контакт с СПГ может вызвать изменение свойств контактирующих материалов, которые впоследствии станут ломкими и потеряют свою прочность и функциональность. Поэтому в отрасли СПГ используют специальные материалы и технологии.

Химический состав СПГ

Сырая нефть и природный газ являются ископаемыми видами топлива, известными как «углеводороды», потому что содержат химические комбинации атомов углерода и водорода. Химический состав природного газа зависит от места добычи газа и его обработки.

Сжиженный природный газ представляет собой смесь

Метан является самым главным компонентом, обычно, хотя и не всегда, более чем на 85% по объему.

Плотность сжиженного газа

Поскольку СПГ представляет собой некую смесь, плотность сжиженного природного газа изменяется незначительно с ее фактическим составом. Плотность сжиженного природного газа, как правило, находится в диапазоне 430–470 кг/м3, а его объем составляет примерно 1/600 объема газа в атмосферных условиях. Это делает его примерно на треть легче, чем воздух.

Другим следствием этих фактов является то, что СПГ имеет меньшую плотность, чем вода, что позволяет ему находиться на поверхности в случае разлива и вернуться к парообразному состоянию достаточно быстро.

Другие свойства СПГ

Сжиженный природный газ не имеет запаха, бесцветный, не вызывает коррозии, не горюч и не токсичен. СПГ хранится и транспортируется при сверхнизких температурах при атмосферном давлении (отсутствие высоких давлений). При воздействии на окружающую среду СПГ быстро испаряется, не оставляя следов на воде или почве.

В своей жидкой форме сжиженный природный газ не имеет способность взрываться или воспламеняться. При испарении природный газ может воспламениться в случае контакта с источником горения, и если концентрация испарений в воздухе будет составлять от 5 до 15 %. Если концентрация паров газа менее 5 процентов, то для начала возгорания испарений недостаточно, а если более 15 процентов, то в окружающей среде будет нехватка кислорода.

Сжиженный нефтяной газ

Судно для транспортировки сжиженного газа

Сжиженный нефтяной газ, (СНГ, по-английски – Liquified Petroleum Gas, LPG) – это смесь двух газов. В обиходе ее называют кратко: пропан. Пропан-бутан получают из нефти и сконденсированных нефтяных попутных газов. Чтобы эта смесь оставалась жидкой, ее хранят и перевозят под давлением в 1,6 МПа (16 атмосфер). В топливной смеси бутан выступает как топливо, а пропан создаёт давление. Газовая смесь пропан-бутан в 2 раза тяжелее воздуха. По сути, газ не имеет запаха, поэтому в его состав добавляется специальное пахучее вещество (одорант) – этил-меркоптал. Антидетационное октановое число у газовой смеси пропан-бутан составляет 110 единиц – в этом её преимущество перед бензином, максимальное октановое число у которого – 98 единиц.

Для потребителей пропан-бутан является отличным топливом в местах, где не подведен природный газ (метан).

Свойства сжиженного нефтяного газа

Процентное соотношение пропана и бутана в смеси регулируется государством и зависит от климатических условий. Например, в зимний период количество пропана должно быть не менее 70-80 % , тогда как летом – всего 40%.

Одним из наиболее важных свойств пропана и бутана, является образование (при наличии свободной поверхности над жидкой фазой) двухфазной системы «жидкость-пар». Система «жидкость-пар» образуется вследствие возникновения давления насыщенного пара, т.е. давления пара в присутствии жидкой фазы в баллоне. В процессе наполнения баллона первые порции сжиженного газа быстро испаряются и заполняют весь его объем, создавая в нем определенное давление. При уменьшении давления газ мгновенно испаряется. Испарение сжиженного газа в баллоне продолжается до тех пор, пока образовавшиеся пары сжиженного газа не достигнут насыщения.

Это свойство пропана и бутана позволяет хранить газ в небольших объёмах, что очень важно.

Рассмотрим пример: давление насыщенного пара бутана составляет 0,1 МПа при 0°С и 0,17 МПа при 15°С, а давление насыщенного пара пропана при этих же температурах 0,59 и 0,9 МПа соответственно. Это различие приводит к значительной разнице в давлении смеси при изменении пропорции пропана и бутана. Давление растет при увеличении температуры, что приводит к большим изменениям объема сжиженного газа, находящегося в жидком состоянии. Следовательно, если сжиженный газ в жидком состоянии полностью заполняет баллон и температура продолжает увеличиваться, то давление будет быстро расти, что может привести к разрушению баллона.

Применение

После доставки потребителю сжиженный газ используется в качестве энергоносителя для тех же целей, что и обычный природный газ. Основные области применения СПГ это производство тепла и электричества, использование в качестве топлива для машин и оборудования и в бытовых нуждах. Ниже представлен более широкий список:

  • Газификация коммунальных и промышленных объектов, удаленных от магистральных или распределительных трубопроводов;
  • Создание топливного резерва у потребителя для покрытия нагрузок в пиковый период;
  • Применение сжиженного газа на различных видах транспорта в качестве моторного топлива;
  • Получение тепловой и электроэнергии, а также промышленного холода;
  • Сжиженный газ как сырье для использования в химической промышленности;

Следует отметить, что вышеуказанные области применения сжиженного газа могут совмещаться между собой. Так, доставляемый судами-газовозами на регазификационный терминал сжиженного газа может быть использован для поставки его на удаленные объекты в качестве топлива для транспорта и создания резерва топлива на период больших нагрузок в магистральных и газораспределительных сетях.

На мировых рынках широкое использование сжиженного природного газа прежде всего обусловлено тем, что, по ценам, сжиженного газа либо находится в одной ценовой категории с жидкими видами топлива (углеводородными), либо дешевле их. Вдобавок к этому, топливо СПГ более экологически чистое.

Использование СПГ в качестве энергоносителя решает следующие задачи:

  • Газификация удаленных объектов
  • Сокращение издержек, связанных с газификацией, вследствие отказа от разработки, сооружения и обслуживания некоторой части объектов газоснабжения (межпоселковых распределительных газопроводов, газопроводов-отводов)
  • Снижение количества выбросов загрязняющих веществ в окружающую среду при замене, например, каменного угля или мазута природным газом
  • Снижение затрат на энергоносители
  • Комплексное получение тепловой и электроэнергии;

В настоящее время организация производства и внедрение технологий с использованием сжиженного газа в энергетической отрасли имеет важное перспективное значение.

Сжиженный газ — экологический вид топлива

Использование сжиженного газа для двигателя автомобиля

Имея хорошие энергетические характеристики и высокое октановое число, сжиженный газ используется не для одной лишь газификации населенных пунктов и объектов промышленности, но и как моторное топливо на различных видах транспорта.

Физико-химические, энергетические и экологические свойства природного газа делают его довольно перспективным видом топлива, использование которого может дать ощутимый положительный эффект в некоторых вопросах. Экологическая безопасность и топливная экономичность двигателей, работающих на природном газе, снижение износа деталей газового двигателя, уменьшение расхода масла — вот характерные особенности.

Применение сжиженного газа на транспорте преследует следующие цели:

  • Экономию денежных средств на покупку топлива, так как цена эквивалентного количества сжиженного газа ниже, чем бензина или дизельного топлива
  • Обеспечение в перспективе устойчивого топливоснабжения (учитывая динамику изменения объемов нефтегазодобычи, сравнительный анализ запасов нефти и газа, прогнозы истощения месторождений).

См.также

Литература

Источники

ru.teplowiki.org

Сжиженный газ — ТеплоВики - энциклопедия отопления

Материал из ТеплоВики - энциклопедия отоплении

Макет цистерны для транспортировки сжиженного газа по железной дороге Транспортировка сжиженного газа автомобилем

Сжиженный природный газ (СПГ) - отделенный от природного газа, сжиженный при охлаждении или под давлением для облегчения хранения или транспортировки. Газ обращается в жидкость при температуре окружающей среды ниже 20 градусов и/или при давлении выше 100 кПа. Состоит в основном из тяжелых газов пропана и бутана.

Производство сжиженного газа

Сжиженный природный газ

Сжиженный природный газ или сокращенно СПГ, как принято называть его в энергетической отрасли (англ. соотв. Liquefied Natural Gas, сокр. LNG) представляет собой обыкновенный природный газ, охлажденный до температуры –162°С (так называемая температура сжижения) для хранения и транспортировки в жидком виде. Хранится сжиженный газ в изотермических резервуарах при температуре кипения, которая поддерживается вследствие испарения СПГ. Данный способ хранения СПГ связан с тем, что для метана, основной составляющей СПГ, критическая температура –83°С, что гораздо ниже температуры окружающей среды, и не предоставляет возможным хранить сжиженный природный газ в резервуарах высокого давления (для справки: критическая температура для этана составляет +32°С, для пропана +97°С). Для использования СПГ подвергается испарению до исходного состояния без присутствия воздуха. При регазификации (возвращении газа в исходное парообразное состояние) из одного кубометра сжиженного газа образуется около 600 кубометров обычного природного газа.

Температура сжиженного газа

Чрезвычайно низкая температура СПГ делает его криогенной жидкостью. Как правило, вещества, температура которых составляет –100°С (–48°F) или еще ниже, считаются криогенными и требуют специальных технологий для обработки. Для сравнения, самая низкая зарегистрированная температура на Земле составляет –89,2°С (Антарктика), а в населенном пункте –77,8°С (поселок Оймякон, Якутия). Криогенная температура сжиженного природного газа означает, что контакт с СПГ может вызвать изменение свойств контактирующих материалов, которые впоследствии станут ломкими и потеряют свою прочность и функциональность. Поэтому в отрасли СПГ используют специальные материалы и технологии.

Химический состав СПГ

Сырая нефть и природный газ являются ископаемыми видами топлива, известными как «углеводороды», потому что содержат химические комбинации атомов углерода и водорода. Химический состав природного газа зависит от места добычи газа и его обработки.

Сжиженный природный газ представляет собой смесь

Метан является самым главным компонентом, обычно, хотя и не всегда, более чем на 85% по объему.

Плотность сжиженного газа

Поскольку СПГ представляет собой некую смесь, плотность сжиженного природного газа изменяется незначительно с ее фактическим составом. Плотность сжиженного природного газа, как правило, находится в диапазоне 430–470 кг/м3, а его объем составляет примерно 1/600 объема газа в атмосферных условиях. Это делает его примерно на треть легче, чем воздух.

Другим следствием этих фактов является то, что СПГ имеет меньшую плотность, чем вода, что позволяет ему находиться на поверхности в случае разлива и вернуться к парообразному состоянию достаточно быстро.

Другие свойства СПГ

Сжиженный природный газ не имеет запаха, бесцветный, не вызывает коррозии, не горюч и не токсичен. СПГ хранится и транспортируется при сверхнизких температурах при атмосферном давлении (отсутствие высоких давлений). При воздействии на окружающую среду СПГ быстро испаряется, не оставляя следов на воде или почве.

В своей жидкой форме сжиженный природный газ не имеет способность взрываться или воспламеняться. При испарении природный газ может воспламениться в случае контакта с источником горения, и если концентрация испарений в воздухе будет составлять от 5 до 15 %. Если концентрация паров газа менее 5 процентов, то для начала возгорания испарений недостаточно, а если более 15 процентов, то в окружающей среде будет нехватка кислорода.

Сжиженный нефтяной газ

Судно для транспортировки сжиженного газа

Сжиженный нефтяной газ, (СНГ, по-английски – Liquified Petroleum Gas, LPG) – это смесь двух газов. В обиходе ее называют кратко: пропан. Пропан-бутан получают из нефти и сконденсированных нефтяных попутных газов. Чтобы эта смесь оставалась жидкой, ее хранят и перевозят под давлением в 1,6 МПа (16 атмосфер). В топливной смеси бутан выступает как топливо, а пропан создаёт давление. Газовая смесь пропан-бутан в 2 раза тяжелее воздуха. По сути, газ не имеет запаха, поэтому в его состав добавляется специальное пахучее вещество (одорант) – этил-меркоптал. Антидетационное октановое число у газовой смеси пропан-бутан составляет 110 единиц – в этом её преимущество перед бензином, максимальное октановое число у которого – 98 единиц.

Для потребителей пропан-бутан является отличным топливом в местах, где не подведен природный газ (метан).

Свойства сжиженного нефтяного газа

Процентное соотношение пропана и бутана в смеси регулируется государством и зависит от климатических условий. Например, в зимний период количество пропана должно быть не менее 70-80 % , тогда как летом – всего 40%.

Одним из наиболее важных свойств пропана и бутана, является образование (при наличии свободной поверхности над жидкой фазой) двухфазной системы «жидкость-пар». Система «жидкость-пар» образуется вследствие возникновения давления насыщенного пара, т.е. давления пара в присутствии жидкой фазы в баллоне. В процессе наполнения баллона первые порции сжиженного газа быстро испаряются и заполняют весь его объем, создавая в нем определенное давление. При уменьшении давления газ мгновенно испаряется. Испарение сжиженного газа в баллоне продолжается до тех пор, пока образовавшиеся пары сжиженного газа не достигнут насыщения.

Это свойство пропана и бутана позволяет хранить газ в небольших объёмах, что очень важно.

Рассмотрим пример: давление насыщенного пара бутана составляет 0,1 МПа при 0°С и 0,17 МПа при 15°С, а давление насыщенного пара пропана при этих же температурах 0,59 и 0,9 МПа соответственно. Это различие приводит к значительной разнице в давлении смеси при изменении пропорции пропана и бутана. Давление растет при увеличении температуры, что приводит к большим изменениям объема сжиженного газа, находящегося в жидком состоянии. Следовательно, если сжиженный газ в жидком состоянии полностью заполняет баллон и температура продолжает увеличиваться, то давление будет быстро расти, что может привести к разрушению баллона.

Применение

После доставки потребителю сжиженный газ используется в качестве энергоносителя для тех же целей, что и обычный природный газ. Основные области применения СПГ это производство тепла и электричества, использование в качестве топлива для машин и оборудования и в бытовых нуждах. Ниже представлен более широкий список:

  • Газификация коммунальных и промышленных объектов, удаленных от магистральных или распределительных трубопроводов;
  • Создание топливного резерва у потребителя для покрытия нагрузок в пиковый период;
  • Применение сжиженного газа на различных видах транспорта в качестве моторного топлива;
  • Получение тепловой и электроэнергии, а также промышленного холода;
  • Сжиженный газ как сырье для использования в химической промышленности;

Следует отметить, что вышеуказанные области применения сжиженного газа могут совмещаться между собой. Так, доставляемый судами-газовозами на регазификационный терминал сжиженного газа может быть использован для поставки его на удаленные объекты в качестве топлива для транспорта и создания резерва топлива на период больших нагрузок в магистральных и газораспределительных сетях.

На мировых рынках широкое использование сжиженного природного газа прежде всего обусловлено тем, что, по ценам, сжиженного газа либо находится в одной ценовой категории с жидкими видами топлива (углеводородными), либо дешевле их. Вдобавок к этому, топливо СПГ более экологически чистое.

Использование СПГ в качестве энергоносителя решает следующие задачи:

  • Газификация удаленных объектов
  • Сокращение издержек, связанных с газификацией, вследствие отказа от разработки, сооружения и обслуживания некоторой части объектов газоснабжения (межпоселковых распределительных газопроводов, газопроводов-отводов)
  • Снижение количества выбросов загрязняющих веществ в окружающую среду при замене, например, каменного угля или мазута природным газом
  • Снижение затрат на энергоносители
  • Комплексное получение тепловой и электроэнергии;

В настоящее время организация производства и внедрение технологий с использованием сжиженного газа в энергетической отрасли имеет важное перспективное значение.

Сжиженный газ — экологический вид топлива

Использование сжиженного газа для двигателя автомобиля

Имея хорошие энергетические характеристики и высокое октановое число, сжиженный газ используется не для одной лишь газификации населенных пунктов и объектов промышленности, но и как моторное топливо на различных видах транспорта.

Физико-химические, энергетические и экологические свойства природного газа делают его довольно перспективным видом топлива, использование которого может дать ощутимый положительный эффект в некоторых вопросах. Экологическая безопасность и топливная экономичность двигателей, работающих на природном газе, снижение износа деталей газового двигателя, уменьшение расхода масла — вот характерные особенности.

Применение сжиженного газа на транспорте преследует следующие цели:

  • Экономию денежных средств на покупку топлива, так как цена эквивалентного количества сжиженного газа ниже, чем бензина или дизельного топлива
  • Обеспечение в перспективе устойчивого топливоснабжения (учитывая динамику изменения объемов нефтегазодобычи, сравнительный анализ запасов нефти и газа, прогнозы истощения месторождений).

См.также

Литература

Источники

cs.teplowiki.org

Сжиженный углеводородный газ пропан-бутан

Сжиженный углеводородный газ пропан-бутан

Опубликовано: 31.12.2016 12:01

Сжиженный газ - это смесь углеводородных газов, смешанных в жидкости, находящейся внутри герметичного сосуда под давлением (что накладывает определенные ограничения, связанные с эксплуатацией сосудов с сжиженным газом). Легкие углеводороды, входящие в состав сжиженного углеводородного газа (СУГ), имеют температуру кипения от 0оС до -50оС. Чаще всего в состав сжиженного газа, используемого в газгольдерах и газовых баллонах, входят пропан и бутан (возможно использование пропана и изобутана), а также примеси - метан, этан и сероводороды для придания запаха. Сжиженный углеводородный газ в документах ГОСТ обозначается согласно своим основным компонентам - сжиженный пропан-бутан технический (СПБТ), если смесь используется в качестве топлива для систем бытового газоснабжения.

Пропан – это газ из группы алканов (углеводородов, ряд которых описывается формулой СnН2n+2), имеющий формулу С3Н8. Важная характеристика газа – пропан не имеет цвета и запаха. Что существенно осложняет эксплуатацию этого газа – при высоких концентрациях он способен нанести вред самочувствию и здоровью человека, а при определенных концентрациях пропана в воздухе (от 2,3% до 9,5% от объема) возможен взрыв. Поэтому производство пропана для его безопасного использования сопровождается добавлением реагентов с характерным запахом. Пропан имеет температуру кипения, равную -43оС, поэтому такой газ, как пропан можно сжижать через компрессию (повышение давления), без применения низких температур. Упругость паров пропана составляет 1,4-1,5 МПа, что билзко к тому давлению, которое должен выдерживать резервуар для хранения и транспортировки пропан-бутана (1,6 МПа).

Бутан так же является газом из группы алканов и имеет формулу С4Н10. Бесцветен, и, как газ пропан или метан, не имеет запаха. Производство бутана также сопровождается применением реагентов с запахом. Радикально отличает бутан от упоминаемого ранее газа – это температура кипения, равная -0,5оС (то есть, получение сжиженного газа из бутана в обычном состоянии возможно при переносе емкости с газом по улице зимой). Это накладывает существенные ограничения на его применение в качестве топлива. Поэтому пропан, использующийся при минусовых температурах, идет в дополнение к бутану в составе сжиженного газа.

Разница в физических свойствах газов накладывает следующие ограничения на применение бутана и пропана по отдельности:

  • сжиженный углеводородный газ, состоящий только из бутана, не может использоваться в качестве топлива при отрицательных температурах;
  • характеристики газообразного и жидкого пропана мешают его использованию при высокой температуре (во избежание чрезмерного расширения газа и оказания им повышенного давления на стенки емкости, в которой тот хранится).

В зависимости от содержания обоих газов, сжиженный углеводородный газ делится на зимний (СПБТЗ) и летний (СПБТЛ).

ГОСТ 20448-90 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления» запрещает самостоятельное использование пропана и бутана в системах автономной газификации, а также устанавливает ограничения на то, как пропан и бутан (в процентном соотношении) могут быть использованы в смеси – содержание первого не должно превышать 60%. В зимнее время второй в смеси для севера России допускается в количестве не менее 75% от общего объема смеси.

 

Пропан-бутан можно хранить в жидком виде, что значительно сокращает занимаемый ими объем (в 600 раз) упрощает его применение и транспортировку. Сжижение пропан-бутана происходит с помощью высокого давления – хранение сжиженного газа осуществляется под давлением около 1,6 МПа (16 бар).

Состав и свойства сжиженного газа (сжиженного пропан-бутана технического):

Наименование показателя СПБТ
Сумма бутанов и бутиленов, не более 60
Объемная доля жидкого остатка при 20 °С, %, не более 1,6
Давление насыщенных паров, избыточное, МПа, при температуре плюс 45 °С, не более 1,6
Массовая доля сероводорода, %, не более 0,003
Интенсивность запаха, баллы, не менее 3

gazekoset.ru

Основные характеристики компонентов (фракций) сжиженных углеводородных газов

Показатель Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Химическая формула С2Н6 С2Н4 С3Н8 С3Н6 С4Н10 С4Н10 С4Н8 С4Н8 С5Н12
Молекулярная масса M 30,068 28,054 44,097 42,081 58,124 58,124 56,108 56,104 72,146
Молярный объем VМ, м³/кмоль 22,174 22,263 21,997 21,974 21,50 21,743 22,442 22,442 20,87
Плотность газовой фазы, кг/м³:
при 0 °С и 101,3 кПа рu0 1,356 1,260 2,0037 1,9149 2,7023 2,685 2,55 2,5022 3,457
при 20 °С и 101,3 кПа pu20 1,263 1,174 1,872 1,784 2,519 2,486 2,329 2,329 3,221
Плотность жидкой фазы, кг/м³, при 0 °С и 101,3 кПа, рж 0,546 0,566 0,528 0,609 0,601 0,582 0,646 0,646 0,6455
Относительная плотность dn 1,0487 0,9753 1,5545 1,4811 2,0995 2,0634 1,9336 1,9336 2,6736
Удельная газовая постоянная R, Дж/(кг×К) 271,18 261,26 184,92 193,77 140,3 140,3 145,33 145,33 113,014
Температура, °С, при 101,3 кПа:
кипения tкип –88,6 –104 –42,1 –47,7 –0,5 –11,73 –6,9 –3,72 –36,07
плавления tпл –183,3 –169 –187,7 –185,3 –138,3 –193,6 –140,4 –138,9 –129,7
Температура критическая tкр, °С +32,3 +9,9 +96,84 +91,94 +152,01 +134,98 +144,4 +155,0 +196,6
Давление критическое ркр, МПа 4,82 5,033 4,21 4,54 3,747 3,60 3,945 4,10 3,331
Теплота плавления Qпл, кДж/кг 122,6 119,7 10,64
Теплота сгорания, МДж/м³:
высшая Qвр 69,69 63,04 99,17 91,95 128,5 128,28 121,4 121,4 130,0
низшая Qнр 63,65 59,53 91,14 86,49 118,53 118,23 113,83 113,83 146,18
Теплота сгорания, МДж/кг:
высшая Qвр 51,92 51,24 50,37 49,95 49,57 49,45 49,31 49,31 49,20
низшая Qнр 47,42 47,23 46,3 46,04 45,76 45,68 45,45 45,45 45,38
Число Воббе, МДж/м³:
высшее W 68,12 64,03 79,8 75,72 89,18 93,53 87,64 87,64 93,73
низшее W 62,45 60,03 73,41 70,92 82,41 86,43 81,94 81,94 86,56
Удельная теплоемкость газа cГ, кДж/(кг°С), при 0 °С и:
постоянном давлении ср 1,6506 1,4658 1,554 1,4322 1,596 1,5690 1,4868 1,6044 1,6002
постоянном объеме сv 1,3734 1,1634 1,365 1,222 1,4574 1,4574 1,3398 1,445 1,424
То же, жидкой фазы сж, кДж/(кг °С), при 0 °С и 101,3 кПа 3,01 2,415 2,23 2,239 2,239 2,668
Показатель адиабаты, К, при 0 °С и 101,3 кПа 1,202 1,26 1,138 1,172 1,095 1,095 1,11 1,11 1,124
Теоретически необходимое количество воздуха для горения Lт.в., м³/м³ 16,66 14,28 23,8 22,42 30,94 30,94 28,46 28,56 38,08
То же, кислорода Lт.к., м³/м³ 3,5 3,0 5,0 4,5 6,5 6,5 6,0 6,0 8,0
Объем влажных продуктов сгорания, м³/м³, при а = 1:
CO2 2,0 2,0 3,0 3,0 4,0 4,0 4,0 4,0 5,0
H2O 3,0 2,0 4,0 3,0 5,0 5,0 4,0 4,0 6,0
N2 13,16 11,28 18,8 16,92 24,44 24,44 20,68 20,68 30,08
Всего 18,16 15,28 25,80 22,92 33,44 33,44 28,68 28,68 41,08
Скрытая теплота испарения при 101,3 кПа:
кДж/кг 487,2 483,0 428,4 441,0 390,6 383,2 411,6 299,0 361,2
кДж/л 230,2 221,8 220,1 241,1 229,7 215,0 255,4 239,4
Объем паров с 1 кг сжиженных газов при нормальных условиях Vп, м³ 0,745 0,8 0,51 0,52 0,386 0,386 0,4 0,4 0,312
То же, с 1 л 0,31 0,34 0,269 0,287 0,235 0,229 0,254 0,254 0,198

gazovik-gaz.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о