Температура плавления нержавейка – Температура плавления нержавеющей стали и ее использования + Видео

Содержание

Сталь нержавеющая температура плавления – Состав нержавеющей стали – какие типы антикоррозийных сплавов существуют. Температура плавления нержавеющая сталь

Большая Энциклопедия Нефти и Газа. Сталь нержавеющая температура плавления

Таблица температуры плавления (tпл) металлов и сплавов при нормальном атмосферном давлении

Металл или сплав tпл. С
Алюминий 660,4
Вольфрам 3420
Германий 937
Дуралюмин ~650
Железо 1539
Золото 1064?4
Инвар 1425
Иридий 2447
Калий 63,6
Карбиды гафния 3890
ниобия 3760
титана 3150
циркония 3530
Константин ~1260
Кремний 1415
Латунь ~1000
Легкоплавкий сплав 60,5
Магний 650
Медь 1084,5
Натрий 97,8
Нейзильбер
~1100
Никель 1455
Нихром ~1400
Олово 231,9
Осмий 3030
Платина 17772
Ртуть -38,9
Свинец 327,4
Серебро 961,9
Сталь 1300-1500
Фехраль ~1460
Цезий 28,4
Цинк 419,5
Чугун 1100-1300

Вернуться в раздел аналитики

Запись опубликована автором admin в рубрике Полезные материалы. Добавьте в закладки постоянную ссылку.

zaozmi.ru

Температура – плавление – сталь

Температура – плавление – сталь

Cтраница 1

Температура плавления сталей – 1300 – 1400 С, температура плавления медноникелевого сплава ( Си – 90 %, Ni – 10 %) – 1150 С. Увеличение никеля в сплаве более 10 % делает затруднительным проведение спекания и пропитку твердого сплава в стальной заготовке.  [1]

Температура плавления стали в зависимости от химического состава колеблется в пределах 1420 – 1525 С; температура разливки стали в литейные формы должна быть выше на 100 град для толстостенных отливок и на 150 град для тонкостенных отливок.  [2]

Температура плавления стали и чугуна зависит от содержания углерода.  [3]

Температура плавления стали в зависимости от химического состава колеблется в пределах 1420 – 1525

pellete.ru

Температура плавления стали

Прежде чем говорить о сталях, давайте определимся с физическим смыслом самой категории температура плавления. В научно-производственной сфере это понятие используется еще и как температура отвердевания. Физический смысл данной категории состоит в том, что эта температура показывает, при каком ее значении происходит смена агрегатного состояния вещества, то есть его переход из жидкого в твердое состояние. В самой же точке температурного перехода вещество может быть как в одном, так и в другом состоянии. При подаче дополнительного тепла предмет или вещество приобретает жидкое состояние, а при отведении тепла – отвердевает. Этот показатель считается одним из самых важных в системе физических свойств любого вещества, при этом необходимо учитывать (это особенно важно понимать применительно к сталям), что температура отвердевания численно равна температуре плавления лишь в том случае, когда мы говорим об идеально чистом веществе.

Как известно из школьной программы, температура плавления стали для различных видов сплавов различна. Это определяется структурой сплава, входящими в него компонентами, характером технологического производства стали и другими факторами.

Так, например, температура плавления стали, состоящей из медноникелевого сплава равна примерно 1150 °С. Если мы будем в таком сплаве увеличивать содержание никеля, то температура будет повышаться, так как температура плавления самого никеля гораздо выше, чем у меди. Как правило, в зависимости от химического состава сплава и соотношения присутствующих в нем компонентов температура плавления стали может находиться в границах 1420-1525 °С, если такая сталь подлежит разливке в формы в процессе металлургического производства, то температуру необходимо поддерживать еще на 100-150 градусов выше. Важным фактором, который влияет на температуру плавления, является уровень содержания в сплаве углерода. Если его содержание высоко, то температура будет ниже, и, соответственно, наоборот – при понижении количества углерода температура повышается.

Более сложным с точки зрения определения величины является процесс измерения температуры плавления в нержавеющих сталях. Причиной этого является их сложный химический состав. Например, стали марки 1X18H9, широко используемые в стоматологии и электротехнике, имеют в своем составе, кроме собственно железа, еще углерод, никель, хром, марганец, титан и кремний. Естественно, температура плавления нержавеющей стали такого состава будет определяться свойствами каждого компонента, входящего в нее. Из такой стали изготавливаются литые зубы, коронки, различного типа зубные протезы, электродетали и другое. Можно привести перечень некоторых свойств, которыми обладает эта нержавеющая сталь, температура плавления ее составляет 1460-1500 °С, поэтому, исходя из данного параметра и химического состава сплава, для его пайки применяются специальные серебряные припои.

Одними из самых высокотехнологичных в современном производстве видов сплавов являются различные стали с включением в их состав элементов титана. Это обусловлено тем, что эти стали имеют практически стопроцентную биологическую инертность, а температура плавления стали на основе титана – одна их самых высоких.

Большинство сталей содержит в своем составе железо в качестве основного компонента. Это объясняется не только тем, что этот металл – один из распространенных в природной среде, а еще и тем, что железо представляет собой практически универсальный элемент для производства сталей различных марок и сплавов, в состав которых он входит. Эта широта применения объясняется тем, что показатель температуры плавления этого металла, равный 1539 градусам, в сочетании с иными уникальными химическими свойствами делает железо подходящим компонентом для широкого перечня марок сталей различного назначения.

fb.ru

Технические характеристики аустенитной нержавеющей стали

Ниже приведена таблица физических свойств аустенитной нержавеющей стали. Эти даные можно использовать для определения нагрузок на нержавеющий крепеж.

Таблица технических характеристик аустенитных сталей

 Сталь хромоникелеваяХромистая никелевая
молибденовая
Тип по DINA2A3
A4A5
Тип по ASTM (AISI)304304L321316316L316 Ti
Удельный вес (гр/см)7,957,957,957,957,957,95
Механические Свойства при 20
градусах (Комнатная температура)
Твердость
по Бринеллю – НВ
отжиг НВ130-150125-145130-185130-185120-170130-190
с деформацией в холодном состоянии
НВ
180-330     
Твердость
По Роквеллу – HRB /
HRC
Отжиг НRВ70-8870-8570-8870-8570-8570-85
с деформацией в холодном состоянии
HRC
10-35     
Rm(N/mm2) –
Сопротивление рястяжению c деформацией Предел прочности
Отжиг500-700500-680520-700540-690520-670540-690
в холодном состоянии700-1180     
Rp(0,2) (N/mm2) –
Предел упругости Предел текучести
Отжиг195-340175-300205-340205-410195-370215-380
с деформацией в холодном состоянии340-900     
Отжиг Rp(1) (N/mm2)
минимальный
235215245245235255
Удлинение 50мм А(%)65-5065-5060-4060-4060-4060-40
Сжатие отжиг Z(%)75-6075-6065-5075-6075-6575-60
Ударная ВязкостьKCUL (Дж/см2)160160120160160120
KVL (Дж/см2)180180130180180130
Механические Свойства при
нагревании
Упругость при различных
температурах
Rp(0,2) (N/mm2)при 300 С125115150140138145
при 400 С9798135125115135
при 500 С938812010595125
Rp(1) (N/mm2)при 300 С147137186166161176
при 400 С127117161147137166
при 500 С107108152127117156
Термическая обработка
Температура образование
окалины
непрерывное обслуживание925925900925925925
прерывистое обслуживание840840810840840840
Другие свойства
Свариваемостьочень хорошаяочень хорошаяхорошаяочень хорошаяочень хорошаяхорошая
Вытяжкаочень хорошаяочень хорошаяхорошаяхорошаяхорошаяхорошая

Сварка аустенитной нержавеющей стали

Температура плавления нержавеющей стали около 1800°С. Это весьма тугоплавкий материал, однако ввиду незначительного содержания углерода нержавейка хорошо поддается сварке без образования неприятной окалины и не воняет, как при сварке оцинковки. Для аустенитных нержавеющих сталей следует применять метод быстрой сварки, исключающий возникновение короблений и межкристаллической коррозии.

Вкратце, при свариваниии аустенитой нержавейки, протекают следующие тепловые процессы:
1. В процессе сварки околошовная зона металла нагревается до высоких температур, и при замедленном охлаждении в интервале 600—700°С происходит выпадение карбидов хрома, связанное с разрушением аустенитной структуры данной стали.

2. В процессе сварки возможно окисление хрома с образованием тугоплавкого окисла Cr2O3, плавящегося при 1900—2000°С и обычно остающегося в металле шва в виде неметаллического включения.
3. Обладая низкой теплопроводностью и высоким коэффициентом линейного расширения, нержавеющая сталь имеет склонность к возникновению в ней (в околошовной зоне) значительных внутренних напряжений. При газовой сварке вследствие относительно малой интенсивности источника тепла — пламени, нагрев металла происходит в большой зоне, в результате чего скорость охлаждения металла в околошовной зоне незначительна и сталь сравнительно долго пребывает при температуре нагрева порядка 600—700°С, вследствие этого наблюдается выпадение карбидов. При газовой сварке также происходит окисление хрома, причем это окисление имеет место с обратной стороны свариваемых кромок, не защищенных от соприкосновения с воздухом.

Образующийся при газовой сварке окисел хрома имеет вид губчатой массы и, залегая в вершине сварного шва, в некоторых случаях является очагом образования трещин. Внутренние остаточные напряжения в нержавеющей стали при газовой сварке вследствие большого разогрева также больше, чем при дуговой сварке. Таким образом,

газовая сварка нержавеющей стали является худшим способом, по сравнению с дуговой сваркой, не гарантирующим сохранения структуры стали и получения качественного соединения.

Тем не менее в некоторых случаях для сталей малых толщин (до 1,5—2 мм) применяют газовую сварку. Процесс газовой сварки ведут нормальным пламенем. Мощность пламени та же, что и при сварке малоуглеродистой стали. В качестве присадочного материала служит проволока того же состава, что и основной металл, в некоторых случаях с небольшой добавкой титана или ниобия, уменьшающего выпадение карбидов хрома.

Сварку ведут с применением флюса, содержащего по одной весовой части буры, борной кислоты и кремнекислой соды, наносимого на присадочный металл и на свариваемые кромки с обратной стороны шва. Весьма радикальным средством для уничтожения выпавших в процессе сварки карбидов хрома является термическая обработка сварного изделия, заключающаяся в нагреве до 1100°С, выдержке при этой температуре и быстром охлаждении.

Еще про сварку нержавейки читаем тут (покороче), тут (много букв) и тут (12Х18Н10Т=A2=AISI 304) …

Износостойкость нержавейки

           износостойкие пиктограмки стащены тут>Добрый день.
>Просим вас нам помочь
>нам нужна
>Шайба плоская DIN 125(ISO 7089) M16 из теплоустойчивой стали (рабочая температура до 400-500 >градусов)- в количестве 800 штук или мин.партию, какую вы сможете.
>!!!Из материала 21 Cr Mo V 5 7(DIN – Deutsche Industrie Norm 1.7709) или из другой стали
>Может ли нам подойти сталь A3?
>A3- схожие свойства со сталью A2. Дополнительная стабилизация титаном, ниобием или танталом >улучшает сопротивление коррозии при температурах до +800 С. Инфо с вашего каталога.
>Сообщите цену/срок поставки и параметры материала (теплоустойчивой стали)

Ответ: Изготовление и поставка шайб из A3 весьма небюджетно. Сделать можно, но будет очень большая партия и длительный срок поставки. С другой стороны, нержавеющая сталь легированная с помощью молибдена, ванадия и вольфрама, сохраняет свои износостойкие характеристики даже при температурах от 500 до 700С. Вам подойдет шайба из молибденосодержащей нержавейки A4.
В наличии на складе.

rostfrei.ru

Нержавеющая сталь. Особенности. Применение. Нержавеющая сталь температура плавления

Температура плавления стали

Прежде чем говорить о сталях, давайте определимся с физическим смыслом самой категории температура плавления. В научно-производственной сфере это понятие используется еще и как температура отвердевания. Физический смысл данной категории состоит в том, что эта температура показывает, при каком ее значении происходит смена агрегатного состояния вещества, то есть его переход из жидкого в твердое состояние. В самой же точке температурного перехода вещество может быть как в одном, так и в другом состоянии. При подаче дополнительного тепла предмет или вещество приобретает жидкое состояние, а при отведении тепла – отвердевает. Этот показатель считается одним из самых важных в системе физических свойств любого вещества, при этом необходимо учитывать (это особенно важно понимать применительно к сталям), что температура отвердевания численно равна температуре плавления лишь в том случае, когда мы говорим об идеально чистом веществе.

Как известно из школьной программы, температура плавления стали для различных видов сплавов различна. Это определяется структурой сплава, входящими в него компонентами, характером технологического производства стали и другими факторами.

Так, например, температура плавления стали, состоящей из медноникелевого сплава равна примерно 1150 °С. Если мы будем в таком сплаве увеличивать содержание никеля, то температура будет повышаться, так как температура плавления самого никеля гораздо выше, чем у меди. Как правило, в зависимости от химического состава сплава и соотношения присутствующих в нем компонентов температура плавления стали может находиться в границах 1420-1525 °С, если такая сталь подлежит разливке в формы в процессе металлургического производства, то температуру необходимо поддерживать еще на 100-150 градусов выше. Важным фактором, который влияет на температуру плавления, является уровень содержания в сплаве углерода. Если его содержание высоко, то температура будет ниже, и, соответственно, наоборот – при понижении количества углерода температура повышается.

Более сложным с точки зрения определения величины является процесс измерения температуры плавления в нержавеющих сталях. Причиной этого

pellete.ru

Температура кипения и плавления металлов, температура плавления стали

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см3, то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

Температура плавления стали — таблица
Стальtпл, °ССтальtпл, °С
Стали для отливок Х28Л и Х34Л1350Коррозионно-стойкая жаропрочная 12Х18Н9Т1425
Сталь конструкционная 12Х18Н10Т1400Жаропрочная высоколегированная 20Х23Н131440
Жаропрочная высоколегированная 20Х20Н14С21400Жаропрочная высоколегированная 40Х10С2М1480
Жаропрочная высоколегированная 20Х25Н20С21400Сталь коррозионно-стойкая Х25С3Н (ЭИ261)1480
Сталь конструкционная 12Х18Н101410Жаропрочная высоколегированная 40Х9С2 (ЭСХ8)1480
Коррозионно-стойкая жаропрочная 12Х18Н91410Коррозионно-стойкие обыкновенные 95Х18…15Х281500
Сталь жаропрочная Х20Н351410Коррозионно-стойкая жаропрочная 15Х25Т (ЭИ439)1500
Жаропрочная высоколегированная 20Х23Н18 (ЭИ417)1415Углеродистые стали1535

Источники:

  1. Волков А.И., Жарский И.М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.
  2. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.
  3. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с.

thermalinfo.ru

характеристики, применение и цены на металлопрокат

Сталь 12х18н10т: характеристики, применение и цены на металлопрокат

Качественные бесшовные трубы общего и специального назначения из стали 12Х18Н10: круглое сечение, диаметр 0,68-325 мм, толщина стенки 0,16-25 мм, от 285 руб/кг, ГОСТ 9940-81, ГОСТ 9941-81, ГОСТ 10498-82.

Посмотреть предложения…

Нержавеющий лист 12Х18Н10Т идеален для производства сборных и сварных конструкций. Материал отличает устойчивость к коррозии, высоким температурам и нагрузкам, долговечность в эксплуатации.


Посмотреть типоразмеры и цены…

Выгодные условия покупки нержавеющей сетки из стали 12Х18Н10Т:

  • тип производства – сварная и тканная;
  • диаметр проволоки от 0,02 мм;
  • цена от 48 руб/кв.м;
  • ГОСТ 3826-82 и ГОСТ 23279-85.

Посмотреть типоразмеры и цены…

Воспользуйтесь преимуществами сотрудничества с крупными поставщиками:

  • широкая география поставки;
  • опт и розница;
  • востребованные типоразмеры;
  • персональный подход к клиентам;
  • дополнительные услуги по металлообработке.

Ознакомиться на примере компании “МетПромСтар”…

Нержавеющая сталь 12х18н10Т является долговечным и экологически безопасным материалом. Сертифицированный по российским и зарубежным стандартам металлопрокат всегда находит своего покупателя на рынке. Продукция как отечественных, так и импортных производителей представлена разными видами сплавов и обработки.

Характеристики и свойства стали 12х18н10т

Химический состав стали регламентируется ГОСТом 5632-72. Основным элементом сплава 12х18н10т является железо (Fe). Кроме того, в состав хром-никелевой стали входят химические элементы в следующем процентном соотношении: хром (Cr) от 17 до 19%, никель (Ni) от 9 до 11%, титан (Ti) около 0,8%, кремний (Si) не более 0,8%, сера (S) менее 0,02%, марганец (Mn) менее 2%, мед

pellete.ru

Таблица температур плавления металлов. Температура плавления нержавеющей стали таблица

    ГлавнаяСталТемпература плавления нержавеющей стали таблица

    температура при которых плавится металл, таблица плавления металлов

    Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

    Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

    Как происходит процесс

    Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой — плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты. Воздействие при этом примерно одинаковое.

    Когда происходит нагревание, усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

    В зависимости от градуса, при котором плавятся металлы, они разделяются на:
  1. легкоплавкие — до 600 °C: свинец, цинк, олово;
  2. среднеплавкие — от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие — от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный граду

pellete.ru

90zavod.ru

Нержавеющая сталь и спецстали: Основные вопросы сварки

Сварка сопровождается комплексом одновременно протекающих процессов , основными из которых являются : тепловое воздействие на металл в зоне термического влияния , термодеформационные плавления , металлургической обработки и кристаллизации металла в объёме сварочной ванны в зоне сплавления .

Физическая свариваемость характеризует принципиальную возможность получения монолитных сварных соединений и главным образом относится к разнородным металлам .

В процессе сварки имеет место непрерывное охлаждение . Характер структурных превращений при этом отличается от случая распада аустенита при изотермической выдержке . При непрерывном охлаждении значение инкубационного периода в 1.5 раза больше , чем при изотермическом . С увеличением скорости охлаждения получаемая структура в зоне изотермического влияния измельчается , твёрдость её повышается . Если скорость охлаждения превышает критическую скорость , образование структур закалки неизбежно .

Закалённые структуры в аппаратостроении являются крайне нежелательными : отличаются высокой твёрдостью , хрупкостью , плохо обрабатываются , склонны к образованию трещин .

Если скорость охлаждения ниже критической скорости , образование закалочных структур исключается . В зоне термического влияния наиболее желательными являются пластичные , хорошо обрабатываемые структуры типа перлита или сорбита . Поэтому получение качественных соединений непременно связано с достижением желаемых структур в основном регулированием скорости охлаждения .

Подогрев способствует перлитному превращению и является действенным средством исключения закалочных структур . Поэтому он служит в качестве предварительной термической обработки сварных соединений (нагрев до сварки и в процессе её ) . Меняя скорость охлаждения , можно получить желаемую твёрдость в зоне термического влияния .

В некоторых случаях появляется необходимость увеличения скорости охлаждения . Путём ускоренного охлаждения удаётся измельчить зерно , повысить прочностные свойства и ударную вязкость в зоне термического влияния . С этой целью находит применение метод сопутствующего охлаждения . Сварное соединение в процессе сварки с обратной стороны дуги охлаждается водой или воздушной смесью , что способствует получению крутой ветви скорости охлаждения.

Технологическая прочность сварного шва .

Термин “Технологическая прочность” применяется для характеристики прочности конструкции в процессе её изготовления . В сварных конструкциях технологическая прочность лимитируется в основном прочностью сварных швов . Это один из важных показателей свариваемости стали .

Технологическая прочность оценивается образованием горячих и холодных трещин .

1. Горячие трещины. Это хрупкие межкристаллические разрушения металла шва и зоны термического влияния . Возникают в твёрдо-жидком состоянии на завершающей стадии первичной кристаллизации , а так же в твёрдом состоянии при высоких температурах на этапе преимущественного развития межзернистой деформации .
Наличие температурно- временного интервала хрупкости является первой причиной образования горячих трещин . Температурно- временной интервал обуславливается образованием жидких и полужидких прослоек , нарушающих металлическую сплошность сварного шва . Эти прослойки образуются при наличии легкоплавких , сернистых соединений (сульфидов ) FeS с температурой плавления 1189 С и NiS с температурой плавления 810 С . В пиковый момент развития сварочных напряжений по этим жидким прослойкам происходит сдвиг металла , перерастающего в хрупкие трещины .
Вторая причина образования горячих трещин - высокотемпературные деформации . Они развиваются вследствие затруднённой усадки металла шва , формоизменения свариваемых заготовок , а так же при релаксации сварочных напряжений в неравновесных условиях сварки и при послесварочной термообработке , структурной и механической концентрации деформации.

2. Холодные трещины.
Холодными считают такие трещины , которые образуются в процессе охлаждения после сварки при температуре 150 С или в течении нескольких последующих суток . Имеют блестящий кристаллический излом без следов высокотемпературного окисления .
Основные факторы , обуславливающие появление холодных трещин следующие: а) Образование структур закалки ( мартенсита и бейнита ) приводит к появлению дополнительных напряжений , обусловленных объёмным эффектом .
б) Воздействие сварочных растягивающих напряжений .
в) Концентрация диффузионного водорода . Водород легко перемещается в незакалённых структурах . В мартенсите диффузионная способность водорода снижается : он скапливается в микропустотах мартенсита , переходит в молекулярную форму и постепенно развивает высокое давление , способствующее образованию холодных трещин . кроме того , водород , адсорбированный на поверхности металла и в микропустотах , вызывает охрупчивание металла .

Углеродистые стали : сварка и сопутствующие ей процессы .

Сплавы Fe и С , где процентное содержание углерода не превышает 2,14 % , называют углеродистыми сталями . Углерод оказывает сильное влияние на свойства сталей . Наличие других элементов обусловлено :

1. Технологическими особенностями производства - Mn , Si - для устранения вредных включений закиси железа , FeO и FeS . Вокруг оторочки сернистого железа , начиная с 985 С , происходит оплавление , что ведёт к снижению технологической прочности сварного шва . Температура плавления MnS составляет 1620 С , кроме того , он пластичен .
2. Невозможностью полного удаления из металла ( S, P, N , H )
3. Случайными причинами ( Cr , Ni , Cu и другие редкоземельные металлы ) Углеродистые стали составляют основную массу сплава Fe-C , до 95 % аппаратуры и оборудования изготавливают из этих сталей .
В отечественной промышленности наиболее широко применяют стали с содержанием углерода до 0,22 % , редко от 0,22 до 0,3 % .
Структурно -фазовые превращения углеродистых сталей определяются диаграммой состояния Fe-C . В нормализованном состоянии имеют феррито- перлитную структуру . С точки зрения кинетики распада аустенита , у углеродистых сталей происходит превращение аустенита в перлит ( второе основное превращение).
В зависимости от температуры охлаждения , степени переохлаждения , скорости охлаждения феррито- цементитной смеси получается различной степени дисперсионный перлит , сорбит , бейнит , троостит .

Низколегированные стали повышенной прочности.

К низколегированным относят стали , содержащие в своём составе до 2 % легирующих элементов каждого в отдельности и до 5 % суммарно ( Mn , Si , Cr , Ni ). Содержание углерода , как и у углеродистых сталей не превышает 0,22 % . Содержание S и P в низколегированных сталях такое же , как в качественных сталях.

При сварке , кинетика распада аустенита такая же , как и углеродистых сталей . При охлаждении на воздухе получается феррито- перлитная структура . Поэтому низколегированные стали повышенной прочности относят к хорошо свариваемым сталям .

Однако легирующие элементы существенно снижают критическую скорость охлаждения . При содержании в верхнем пределе и высоких скоростях охлаждения возможно подавление перлитного превращения и появления промежуточных и закалочных структур .

При уменьшении погонной энергии сварки и увеличении интенсивности охлаждения в металле шва и зоне термического влияния возрастает вероятность распада аустенита с образованием закалочных структур . При этом будет увеличиваться вероятность образования холодных трещин и склонность к хрупкому разрушению .

При повышенных погонных энергиях наблюдается рост зерна аустенита и образуется грубозернистая феррито- перлитная структура видманштетового типа с пониженной ударной вязкостью .

Выбор тепловых режимов в основном преследует цель недопущения холодных трещин . Одним из самых технологичных средств , снижающих вероятность появления трещин , является подогрев . Температура подогрева определяется в зависимости от эквивалента углерода и толщины свариваемого проката . Необходимая температура подогрева возрастает с увеличением легированности стали и толщины свариваемого проката .

Низколегированные стали жаропрочные перлитные .

Хромомолибденовые стали 12МХ , 12ХМ , 15ХМ предназначены для работы в диапазоне температур -40... +560 С . В основном используются при температурах +475...+560 С . Их применение обусловлено низкой стоимостью и достаточно высокой технологичностью при изготовлении сварных конструкций и производстве отливок , поковок .

На участках , нагретых выше точки Ас(3) , возможно образование мартенсита и троостита . Реакция стали на термический цикл сварки характеризуется разупрочнением в зоне термического влияния в интервале температуры Ас(3) - Т (0), который объясняется процессами отпуска . Протяжённость разупрочненного участка увеличивается про больших значениях погонной энергии сварки .

Мягкая разупрочненная прослойка может явиться причиной локальных разрушений сварных соединений в процессе эксплуатации , особенно при изгибающих нагрузках .

Устранение разупрочнения осуществляется последующей термической обработкой с фазовой перекристаллизацией в печах ( объёмная термическая обработка ) .

Образование обезуглероженной ( ферритной ) прослойки - это специфический показатель свариваемости , присущий этим сталям . В процессе последующей эксплуатации при температурах 450-600 С , происходит миграция углерода из металла шва в основной металл , или наоборот , когда имеет место различие в их легировании карбидообразующими элементами .

Стали системы Fe-C-Cr ( хромистые стали ) .

Хром - основной легирующий элемент . Он придаёт сталям ценные свойства : жаропрочность , жаростойкость ( окалиностойкость , коррозионную стойкость ) .Чем больше содержание хрома , тем более высокой коррозионной стойкостью обладает сталь . Такое влияние хрома объясняется его способностью к самопассивированию даже в естественных условиях и образованию плотных газонепроницаемых оксидных плёнок при высоких температурах .

1. Специфика свариваемости сталей типа 15Х5М .

Склонность к закалке осложняет технологический процесс выполнения сварочных работ . В зоне термического влияния образуются твёрдые прослойки , которые не устраняются даже при сварке с подогревом до 350-400 С . Для полного устранения твёрдых прослоек необходимо применение дополнительных мер . Небольшая скорость распада хромистого аустенита , вызывающая склонность к закалке на воздухе , и фазовые превращения мартенситного характера снижают стойкость сталей к образованию трещине при сварке .Применение закаливающих на воздухе сталей для изготовления сварного оборудования приводит к образованию в сварных соединениях механической неоднородности .

Механическая неоднородность , заключающаяся в различии свойств характерных зон сварного соединения , является следствием , с одной стороны , неоднородности термодеформационных полей при сварке структурно - неравновесных сталей , с другой - применения технологии сварки с отличающимися по свойствам сварочными материалами из-за необходимости обеспечения технологической прочности .

В настоящее время применяется два вида сварки :

1. Сварка однородными перлитными электродами , близкими по составу к основному металлу .При этом металл шва и зона термического влияния приобретают закалённую структуру и образуется широкая твёрдая прослойка .

2. Сварка с применением аустенитных электродов . Поскольку аустенитные материалы не склонны к закалке , твёрдые прослойки образуются только в зоне термического влияния .

Хромистые мартенситно- ферритные стали .

У стали марки 08Х13 с содержанием углерода 0,08 % , термокинетическая диаграмма распада аустенита имеет две области превышения : в интервале 600-930 С, соответствующем образованию феррито- карбидной структуры , и 120-420 С - мартенситной . Количество превращённого аустенита в каждом из указанных температурных интервалов зависит , главным образом , от скорости охлаждения . Например , при охлаждении со средней скоростью 0,025 С/с превращение аустенита происходит преимущественно в верхней области с образованием феррита и карбидов . Лишь 10 % аустенита в этом случае превращается в мартенсит в процессе охлаждения от 420 С . Повышение скорости охлаждения стали до 10 C/c способствует переохлаждению аустенита до температуры начала мартенситного превращения ( 420 С ) и полному его бездиффузионному превращению . Изменения в структуре , обусловленные увеличением скорости охлаждения , сказываются и на механических свойствах сварных соединений . С возрастанием доли мартенсита наблюдается снижение ударной вязкости .

Увеличение содержания углерода приводит к сдвигу в область более низких температур границы превращения мартенсита . У сталей с содержанием углерода 0,1- 0,25 % в результате этого полное мартенситное превращение имеет место после охлаждения со скоростью ~1С/c .

С точки зрения свариваемости , мартенситно- ферритные стали являются “неудобными” в связи с высокой склонностью к подкалке в сварных соединениях этих сталей . Подкалка приводит к образованию холодных трещин . Склонность к образованию трещин при сварке зависит от характера распада аустенита в процессе охлаждения . В случае формирования мартенситной структуры ударная вязкость сварных соединений 13 %-ных хромистых сталей снижается до 0,05-0,1 МДж/м . Последующий отпуск при 650-700 С приводит к распаду структуры закалки , выделению карбидов , в результате чего тетрагональность мартенсита уменьшается . После отпуска ударная вязкость возрастает до 1МДж/м2 . С учётом такой возможности восстановления ударной вязкости большинство марок хромистых сталей имеет повышенное содержание углерода для предотвращения образования значительного количества феррита в структуре . Таким образом удаётся предотвратить охрупчивание стали . Однако при этом наблюдается ухудшение свариваемости вследствие склонности сварных соединений к холодным трещинам из-за высокой хрупкости околошовного металла со структурой пластинчатого мартенсита .

Аустенитные коррозионностойкие стали .

Аустенитные стали содержат в своём составе Cr , Ni , C . По реакции на термический цикл хромоникелевые стали относят к хорошо свариваемым . При охлаждении они претерпевают однофазную аустенитную кристаллизацию неперлитного распада , тем более мартенситного превращения при этом не происходит .

Характерным показателем свариваемости хромоникелевых сталей является межкристаллитная коррозия (МКК) .

МКК развивается в зоне термического влияния , нагретой до температур 500-800 С ( критический интервал температур ) .

При пребывании металла в опасном (критическом) интервале температур по границам зерен аустенита выпадают карбиды хрома Cr(4)C , что приводит к обеднению приграничных участков зерен аустенита хромом .хром определяет коррозионную стойкость стали . В обеднённых хромом межкристаллитных участках развивается коррозия , которая называется межкристаллитной .

Межкристаллитная коррозия имеет опасные последствия - может вызвать хрупкие разрушения конструкций в процессе эксплуатации .

Чтобы добиться стойкости стали против межкристаллитной коррозии , нужно исключить или ослабить эффект выпадения карбидов . т. е. стабилизировать свойства стали .

Аустенитно- ферритные нержавеющие стали.

Аустенитно- ферритные стали относятся к группе хорошо свариваемых сталей . Они стойки к образованию горячих трещин против межкристаллитной коррозии .

Специфичным моментом свариваемости является их повышенная склонность к росту зерна . Наряду с ростом ферритных зерен возрастает общее количество феррита . Последующим быстрым охлаждением фиксируется образовавшаяся структура . Размеры зерна и количество феррита , а также ширина зоны перегрева зависят от погонной энергии сварки , соотношения структурных составляющих в исходном состоянии и чувствительности стали к перегреву .Соотношение количества структурных составляющих ( гамма - и альфа- фаз ) в исходном состоянии в значительной степени зависит от содержания а стали Ti . Количество титана в стали также определяет устойчивость аустенитной фазы против гамма- альфа превращения при сварочном нагреве . Чем выше содержание Ti , тем чувствительней сталь к перегреву . Вследствие роста зерна и уменьшения количества аустенита наблюдается снижение ударной вязкости металла околошовной зоны и угла загиба сварных соединений аустенитно- ферритных сталей . Менее чувствительными к сварочному нагреву являются стали , не содержащие титан , - это стали 03Х23Н6 и 03Х22Н6М2 .

Особенности сварки аппаратуры из разнородных сталей .

Специфическими показателями свариваемости разнородных сталей являются процессы диффузии и разбавления .

Наибольшую опасность представляет диффузия С в сторону высоколегированной стали , где большая концентрация Cr или других карбидообразующих элементов .

Разбавление происходит при перемешивании свариваемых сталей и присадочного материала в объёме сварочной ванны .

Сталь более легированная разбавляется сталью менее легированной . Степень разбавления зависит от доли участия каждого из составляющих разнородное сварное соединение .

Общие сведения о металлургических процессах при сварке в инертных газах .

Сварку сталей осуществляют обычно под флюсом , в среде оксида углерода (IV) , но бывают случаи , когда целесообразно применять аргонно- дуговую сварку ,- например для упрочнения средне и высоколегированных сталей .

Низкоуглеродистые низколегированные стали , особенно кипящие , склонны к пористости вследствие окисления углерода :

Fe(3)C + FeO = 4Fe + CO ;

Этот процесс идёт за счёт кислорода , накопленного в сталях во время их выплавки , но может возникать за счёт примеси к Ar марок В и Г , за счёт влажности газа и содержащегося в нём кислорода .

Для подавления этой реакции в сварочной ванне нужно иметь достаточное раскислителей ( Si , Mn , Ti ) , т. е. использовать сварочные проволоки Св08ГС или Св08Г2С . Можно снизить пористость путём добавки к аргону до 50 % кислорода . который , вызывая интенсивное кипение сварочной ванны , способствует удалению газов до начала кристаллизации . Добавка кислорода к аргону снижает также критическое значение сварочного тока , при котором осуществляется переход от крупнокапельного переноса металла в дуге к струйному , что повышает качество сварки .

Среднелегированные углеродистые стали обычно содержат в своём составе достаточное количество активных легирующих компонентов для подавления пористости , вызываемой окислением углерода . Это обеспечивает плотную структуру шва , а шва состав металла шва соответствует основному металлу , если электродные проволоки имеют так же близкий состав .

Аустенитные коррозионностойкие и жаропрочные стали (12Х18Н10Т и др.) хорошо свариваются в среде аргона как плавящимся , так и неплавящимся электродом . При сварке этих сталей обычно не требуется каких-либо дополнительных мероприятий , но аустенитно- мартенситные стали очень чувствительны к влиянию водорода , который их сильно охрупчивает и даёт замедленное разрушение в виде холодных трещин .

www.stainlesssteel.ru

Металлы и сплавы. Плотность металлов. Температура плавления металлов.

Справочная информация

Плотность металлов и сплавов

Плотность металлов (при 20°C),

т/м3

[тонн в 1 кубическом метре]

Алюминий

2.6889

Графит

1.9 - 2.3

Железо

7.874

Золото

19.32

Кобальт

8.90

Магний

1.738

Медь

8.96

Никель

8.91

Олово (белое)

7.29

Платина

21.45

Свинец

11.336

Серебро

10.50

Титан

4.505

Хром

7.18

Бронза

7.5 - 9.1

Сплав Вуда

9.7

Дюралюминий

2.6 - 2.9

Константан

8.88

Латунь

8.2 - 8.8

Нихром

8.4

Сталь

7.7 - 7.9

Сталь нержавеющая (в среднем)

7.9 - 8.2

марки 08Х18Н10Т, 10Х18Н10Т

7,9

марки 10Х17Н13М2Т, 10Х17Н13М3Т

8

марки 06ХН28МТ, 06ХН28МДТ

7,95

марки 08Х22Н6Т, 12Х21Н5Т

7,6

Чугун белый

7.6 - 7.8

Чугун серый

7.0 - 7.2

 

Температура плавления различных металлов и сплавов

Металл / сплав

Знак

 

Температура С°

Алюминий

Al

660

Свинец

Pb

327

Бронза

-

1000

Хром

Cr

1857

Железо

Fe

1536

Золото

Au

1064

Чугун

-

1200

Кобальт

Co

1495

Медь

Cu

1083

Магний

Mg

650

Марганец

Mn

1245

Латунь

Ms

900

Молибден

Мо

2620

Никель

Ni

1453

Платина

Pt

1772

Серебро

Ag

961

Кремний

Si

1410

Сталь

-

1500

Титан

Ti

1660

Ванадий

V

1890

Висмут

Bi

271

Вольфрам

W

3410

Цинк

Zn

419

Олово

Sn

232

Цирконий

Zr

1852

yaruse.ru

Нержавеющая сталь температура плавления в Санкт-Петербурге (Металлические листы )

Со склада в Спб нержавеющий лист, труба(круглая,проф), уголки,круг, рулоны, Aisi 304, 430, 321 , 316, 12Х18Н10Т, 12Х17, 08Х18Н10, 03Х17Н13М2,89111404349 Тимофей

Лист нержавеющий относится к листовому прокату, который кроме него включает рулоны, полосу и штрипс (узкий лист). Лист может быть изготовлен методом горячей или холодной прокатки, иметь разные типы поверхностей, самыми распространенными среди которых являются матовая и зеркальная поверхность.
Лист из нержавеющей стали устойчив к влиянию агрессивных сред и влажности, именно долгое противостояние коррозии вместе с привлекательным внешним видом являются главными его характеристиками.
Способ производства листового проката делится на горячекатаный и холоднокатаный. Лист холоднокатаный образуется с помощью обработки пластичного металла давлением и применяется для холодной штамповки и изготовления изделий с высоким качеством поверхности. Горячекатаные листы получают путем горячей прокатки — обработкой металла давлением при определенной высокой температуре. В результате получают горячекатаные листы — толщиной то 1,5 мм до 160 мм. При прокатке холодной заготовки получают холоднокатаные листы толщиной от 0,3 мм до 3 мм.
Лист горячекатаный нержавеющий применяется в производстве автомобилей, судов и корпусов всевозможных механизмов и агрегатов. Значительная часть всего производства листовой стали используется для последующего металлургического передела, выпуска холодногнутых профилей. Из листа методом сварки изготавливают трубы, а методом изгиба изготавливают холодногнутый уголок и швеллер.
Наша компания предлагает лист как нержавеющий горячекатаный так и нержавеющий холоднокатаный по выгодным ценам во всех регионах России

Лист EN1.4301 IIIc (AISI 304 /2B) (08Х18Н10 х/к) вес листа р. кг. 0,4х1000х2000 6,4 190 0,5х1,25х2,5 (1,0х2,0) 13/8 180 0,7х1250х2500 11 183 0,8х1000х2000 13 184 0,8х1250х2500 20 184 1,0х1000х2000 16 184 1,0х1250х2500 25 184 1,2х1250х2500 30 184 1,5х1000х2000 24 180 1,5х1250х2500 38 180 1,5х1500х3000 54 180 2,0х1000х2000 32 178 2,0х1250х2500 72 178 2,5х1250х2500 63 178 2,0х1500х3000 72 178 3,0х1000х2000 48 178 3,0х1250х2500 75 178 3,0х1500х3000 108 178 4,0х1000х2000 64 178 4,0х1250х2500 100 178 4,0х1500х6000 288 179 5,0х1000х2000 80 179 5,0х1250х2500 125 179 5,0х1500х6000 360 179 6,0х1х2/1,25х2,5 96/150 179 6,0х1500х3000 216 179 6,0х1500х6000 432 179 8,0х1000х2000 128 179 8,0х1500х6000 576 176 10,0х1,5х3/1х2 360/160 176 12,0х1,5х3/1х2 360/192 176 16,0х1,5х6/1х2 1152/256 176

Характеристики нержавеющей стали температура плавления

  • — Материал листа: Нержавеющая сталь

bizorg.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *