Температура горения пропана с кислородом – Температура горения пропана и другие свойства

Содержание

от чего зависит температурный режим пламени баллончика на пропане? – Расходники и комплектующие на Svarka.guru

Газовая горелка позволяет выполнять различный спектр работ посредством контролируемого пламени повышенной температуры. Устройство применяется для выполнения паяльных, сварочных, бытовых задач. Специальные модели используются в туристических целях для приготовления пищи и розжига костра. Температура газовой горелки зависит от разновидности и особенностей конструкции изделия.

Принцип работы и особенности

Пользователь получает ровный факел, мощность которого контролируется специальным клапаном. За счет чего изменяется температура, на которую он прогревает в зависимости от толщины материала и преследуемых задач.

Устройство экономически более выгодно для проведения сварки и резки, чем массивное дорогостоящее оборудование.

Спектр использования настолько велик, что изделие даже применяется для дезинфекции деревянных ульев, обработки клеток животных, кровле и так далее.

Розжиг горелки производится спичками, зажигалкой или открытым источником огня. Такой вариант дешевле, чем модели с установленным пьезоподжигом. Этот элемент приводит к возгоранию после нажатия кнопки, что провоцирует появление искры, от которой газовая струя поджигается.

По принципу функционирования пьезоэлемент напоминает привычную зажигалку.

Виды

Горелка – востребованный инструмент, поэтому разработчики стремятся к усовершенствованию конструкции и увеличению функциональности. Рынок предлагает несколько разновидностей подобного оборудования:

  • Газовый паяльник.
  • Резак.
  • Горелка для туризма.
  • Паяльная лампа.

Паяльная лампа – одна из разновидностей горелок. Показывает высокую температуру и применяется для обработки металла, пластика и других прочных материалов.

Каждый вид отличается внешним видом (конструкцией, цветом, упаковкой) и предназначением. Данные особенности учитывают перед покупкой, поскольку это напрямую определяет конечный результат обработки и удобство эксплуатации.

От чего зависит?

Температура горелки определяется химическим составом газа и мощностью изделия. В процессе исследований удалось установить, что температурные показатели факела зависимы от теплотворных свойств газовой смеси.

После соединения топлива с воздухом газ расходуется критически, поэтому интенсивность горения увеличивается. За счет дополнительного источника воздуха повысить какую температуру у горелки вы будите получать. Без обдува значение достигает 1500 градусов, доступ вспомогательного воздушного потока выдает рост до 2200 градусов. В разных частях факела температура отличается:

  1. Внутренняя. Это короткая зона с незначительным нагревом.
  2. Средняя. На этом участке температура пламени от газовой горелки достигает предела, но огонь не раскрывается полностью, что связано с нехваткой кислорода и выделением продуктов распада.
  3. Окаймляющая. Визуально характеризуется ярким огнем с высоким КПД.

Дешевые модели горелок конструктивно одинаковые. Дорогие оснащаются дополнительными элементами, которые увеличивают технические характеристики и удобство использования.

Для выполнения сварки и резки предъявляются особые требования к составу газовой смеси, поскольку от неё зависит температурный режим изделия.

Температурный режим разных видов горелок на баллон

Приобрести горелку можно через Интернет либо в строительном магазине. Лучше отдать предпочтение второму варианту, поскольку покупатель может проконсультироваться с опытным продавцом, он подберет целесообразный вариант в зависимости от задач, которые поставил пользователь. В ассортимент продукции входят модели, отличающиеся по температурному режиму:

  • Перезаправляемые. Характеризуются небольшими габаритами и продуманной формой, а также удобством использования и пьезоэлектрическим элементом. К баллонной разновидности горелок на газу этот вид не относится.
  • На цанговом баллончике. Являются источником мощного пламени со средней температурой на выходе 1500 градусов.
  • Резьбовые. В составе топлива львиную долю занимает пропан, благодаря чему в зоне горения температура составляет 1800 градусов. Продвинутые модели оборудованы системами смешивания воздуха с пропановой смесью.

Некоторые горелки оснащаются автономным подогревом горючей смеси, что увеличивает угол использования.

Важно! Средний расход газа – 125 г/час, показатель определяется видом устройства и требуемой температурой.

Наивысшая температура пламени

Этот показатель определяет скорость резки материала, определяется свойствами газовоздушной смеси и разновидностью горючего. Высокое значение гарантирует ацетилен, вещество стремительно нагревает металл для расплавления. На кончике огня температура достигает около 3000 градусов. Чем дальше от этой точки, тем число меньше.

Сварщик высшей категории ООО «Прогресс» Дегтяренко В.О:«Повышенная температура факела имеет и негативные последствия: оплавление какой-то из кромок обрабатываемого изделия. По этой причине ацетилен показывает не такое качество реза, как пары керосина или бензина».

Регулировка

От правильной настройки пламени зависит чистота резки. Кислородная обработка проводится при несколько окисленном или нормальном факеле. Тщательно откорректированное пламя у резаков с расположением мундштуков концентрического типа окружено режущим потоком кислорода. Ядро факела на каждом участке должно быть симметричным и не отличаться яркостью.

Резку горелкой со сдвинутым мундштуком проводить нельзя, поскольку это приведет к нагреву кромки, что негативно отразится на качестве разреза. Использование самоцентрирующихся мундштуков повышает удобство использования подобного оборудования, ведь устройство делает пламя симметричным.

Иногда движение газовой смеси затрудняется из-за засорения канала, что разделяет факел на струйки и приводит к потере стабильности. Такое изделие не только уменьшает качество обработки, но и снижает производительность. Корректировка пламени основана на создании симметричного пламени нужной мощности по отношению к кислородной режущей струе.

Важно! Установленная мощность горения определяется толщиной материала.

Нормальное пламя обеспечивается на приоткрытых вентилях, что дает возможность проводить регулировку в процессе работы. При полностью открытом ацетилене и кислороде наблюдается чрезмерное количество первого. Плавное перекрытие ацетиленового клапана приводит к стабилизации процесса.

Рекомендации в работе

Газовые горелки функционируют в качестве автономного источника большой тепловой энергии. Посредством регуляции мощности и настройки температурного режима существенно расширяется область применения устройства, она включает:

  • обработка легкоплавких металлов (выжигание, прокаливание, прогревание) – использование факела направленного типа с температурой не менее 1500 градусов;
  • работа с древесиной – создание узоров, обжиг готовой продукции;
  • туристические цели – можно отдать предпочтение компактным моделям с незначительными температурными параметрами.

При использовании газовой горелки необходимо учитывать, что нехватка кислорода приводит к тепловым потерям и накоплению продуктов распада от сгорания газовой смеси. Эти явления провоцируют появление сажи и чрезмерное свечение, что оказывает влияние на качество резки, сварки, плавления.

svarka.guru

Сварка пропаном и кислородом, как один из видов газосварки металлов

Широко распространённая сварка пропаном представляет собой соединение металлических заготовок в сварочной ванне, образуемой при их нагревании высокотемпературной струёй горючей смеси из двух газов.

В качестве её компонентов обычно используются ацетилен и кислород, причём последний выполняет функцию катализатора, ускоряющего окислительный процесс и формирующего сварочную струю.

В отдельных случаях в качестве второй составляющей кислородно-горючей смеси выбирается пропан, от которого и произошло название данного метода.

Принципы и особенности процесса

Сварка пропаном начинается с того, что горючий состав поступает в горелку и через специальное калиброванное сопло под давлением выходит наружу. Затем сварщик поджигает газ, и после его воспламенения регулирует напор и качество смеси посредством расположенных на корпусе вентилей.

Исходящая из сопла очень тонкая струя пламени состоит из ядра, зоны восстановления и рабочего факела. Самая высокая температура развивается именно в ядре; при этом сама газовая сварка пропаном происходит в промежутке между ним и зоной восстановления.

Одновременно с этим за счёт воздействия высоких температур на обрабатываемый металл сварочная ванна защищается от нежелательного контакта с воздухом.

Возможность точечной обработки металла тонкой струёй позволяет применять сварку пропаном не только при фигурной резке исходных заготовок, но и при изготовлении целого ряда декоративных изделий и украшений.

Сварка по этой методике требует от исполнителя особых профессиональных навыков, получить которые можно лишь после прохождения курса предварительного обучения и последующей длительной практической работы с пропаном.

Техника сварки

Сварка пропаном предполагает применение следующих двух методик:

  • высокотемпературный нагрев кромок заготовок, последующее их оплавление и окончательное соединение;
  • формирование рабочего шва методом наплавки или напыления.

Во втором случае используется специальная присадочная проволока из мягкого металла, необходимая для того, чтобы сварочная ванна оставалась полностью насыщенной.

При проведении рабочих операций по первой из этих методик расходуется большое количество пропана, поскольку для оплавления металлических кромок требуются высокие температуры. Поэтому чаще всего предпочтение отдаётся второму способу сварки, при котором на нагрев присадочной проволоки из легкоплавких металлов тратится заметно меньше энергии.

Оба этих подхода при работе с пропаном в целом приводят к одному и тому же результату. Однако они принципиально различаются по расходу газовой смеси, затрачиваемому на работу времени и функциональности (другими словами – по своей экономичности).

Сварка посредством наплавки, помимо экономии средств и времени, обеспечивает повышенную прочность шва и выглядит более эстетично. Именно эта методика используется при прокладке и обустройстве магистральных трубопроводов, а также при сварке различных изделий и элементов строительных конструкций.

Достоинства и недостатки

К основным достоинствам любой газосварки (включая сварку пропаном и кислородом) относятся следующие моменты:

  • независимость от стационарного или передвижного источника питающего тока, требующего для своей работы централизованного энергоснабжения. Газосваркой с использованием пропана пользуются обычно при проведении монтажных работ на сельских объектах и удаленных площадках, лишённых постоянного энергообеспечения;
  • грамотное применение методов сварки пропаном и соблюдение всех предписанных нормативами температурных режимов позволяет получать качественный шов и избежать образования прожогов;
  • оборудование для газосварки (сам резак или пропановая горелка, подводящие шланги и баллоны с газом, размещаемые на тележке) достаточно мобильны и удобны для местных перемещений и дальней транспортировки.

Недостатком метода обработки металлических заготовок пропаном является низкая производительность монтажных работ, большие затраты времени на высокоточное сваривание и необходимость в навыках проведения этих операций. К этому следует добавить повышенный расход материала, а также опасность высокотемпературного режима, захватывающего большие участки зоны сварки.

Устройство горелки

Горелка для сварки пропаном состоит из рукоятки с расположенными на ней вентильными устройствами, обеспечивающими регулировку подачи газов и смешивания их в нужной пропорции. Посредством специальных ниппелей к ним подсоединяются подводящие газ рукава, соответствующие действующим стандартам (ГОСТ 9356).

Согласно этому нормативу каждый из шлангов (рукавов) оснащается сменным наконечником со смесительной камерой, которая в свою очередь оборудована встроенным инжектором.

На камере рукавов указывается тип (номер) наконечника и наименование газа, на работу с которым он рассчитан. Удобное и эргономичное расположение вентилей позволяет удерживать рукоятку горелки одной правой рукой, производя при этом второй все необходимые рабочие операции в процессе сварки.

Наконечник типовой газовой горелки состоит из мундштука, инжектора и специальной подающей трубки. Размеры отверстий в мундштуке и в инжекторе (точнее – их соотношение) рассчитаны на применения этих узлов только для конкретного вида газа (пропана или кислорода).

Температура, развиваемая в зоне факела горения пропана с кислородом, может достигать примерно 2300 °C, в связи с чем мундштуки этих сборных конструкций чаще всего делаются из меди.

Объясняется это тем, что медные материалы отличаются большей теплопроводностью (по сравнению с латунными мундштуками, например), и в процессе сварки быстрее охлаждаются.

Меры предосторожности

Поскольку при обращении с газовой горелкой создаются значительные по объёму зоны с высокотемпературным режимом – всегда следует помнить о соблюдении требований техники безопасности при сварке.

Согласно действующим нормативам газосварочные работы с пропаном должны проводиться в специально предназначенных для этих целей рукавицах, надёжно защищающих ладони от возможных ожогов.

Помимо этого, нежелателен длительный визуальный контакт с ядром пламени, поскольку повышенные световые нагрузки способны привести к поражению роговицы глаза.

Категорически воспрещается прикасаться к газовому оборудованию испачканными в масле руками, так как при соединении смазочных веществ с кислородом возможно мгновенное воспламенение и аварийный разрыв баллона.

Особое внимание должно уделяться вопросу хранению баллонов с пропаном и кислородом, которые, как правило, содержатся в специально изготовленных для этих целей металлических шкафах. Предполагается, что доступ к таким хранилищам строго ограничен.

Можно сказать еще несколько слов о достоинствах резки и сварки посредством пропана. Огромный опыт работ, организованных и проводимых по этой методике, свидетельствует о высоких качественных показателях методики, а также о соответствующем уровне её функциональности.

Такие факторы, как удобство и доступность, экономичность и высокое качество шва позволяют оценивать технику сваривания металлических заготовок пропаном как ни в чём не уступающую классической электродуговой сварке.

svaring.com

Пропан взаимодействует с кислородом в реакции горения при сварочных работах

Физико-технические особенности сварочных газов

Нефтеуглеводороды, в частности, пропан, бутан и их смеси, ацетилен, а также водород нашли широкое применение в различных сферах производства в качестве основных и вспомогательных соединений. Различные газы успешно используются как в качестве источников тепловой энергии, так и хладагентов. Одним из направлений их применения является сварочное дело и резка металла. Выбор газа в основном зависит от требуемой температуры сгорания.

Пропан и пропан-бутановые смеси

Углеводородные газы из группы алканов используются в тех случаях, когда нет необходимости в слишком высокой температуре газопламенной обработки: сварка тонкой стали и легкоплавких металлов, кислородная резка, пайка припоями и др. Пропан и бутан – это неядовитые и достаточно инертные газы, получаемые в качестве побочных продуктов при переработке нефти. При определенных условиях они взаимодействуют с кислородом, азотной кислотой и диоксидом азота, галогенами. При низкой температуре (-42 °С для пропана, -0,5 °С для бутана) и высоком давлении переходят в жидкое состояние.

Чаще всего используются пропан-бутановые смеси в соотношении 3:7 соответственно. Они обладают повышенной теплотворной способностью, а тепловая мощь сгорания в кислороде эффективнее, чем у ацетилена, но из-за небольшой скорости, с которой распространяется пламя, температура пламени меньше. В случае утечки газы скапливаются внизу помещения и могут, что может привести к образованию взрывоопасных концентраций.

Ацетилен

Ацетилен относится к ненасыщенным углеводородам, чем обусловлена его химическая активность. Соединение вступает в многочисленные реакции присоединения, цикломеризации, димеризации, окисления. Отличается резким запахом. Температура сжижения около -82 °С. При его сгорании требуется больше кислорода, чем для пропана и бутана. Для ацетилена свойственна высокая интенсивность горения, которая снижается при наличии в нем побочных веществ.

Водород

В промышленности газ получают различными способами: железопаровым, электролизом, конверсией. В зависимости концентрация чистого вещества находится в пределах 95 – 99,8 об. %. Температура сжижения -252 °С. Используется при кислородной разделительной резке в присутствии воды, сварке свинца, безокислительной пайке стали.

Технические характеристики газов: сравнительная таблица

Параметр

Пропан-бутановая смесь

Ацетилен

Водород

Плотность при температуре 20 °С и давлении 0,1 МПа, кг/м3

2,21

1,091

0,084

Температура воспламенения в кислороде, °С

500

240-630

510

Низшая теплотворная способность, кДж/м3

88800

52800

10800

Скорость распространения пламени в смеси с кислородом, м/с

4,5

13,5

-

Меры безопасности

В связи с большой взрывоопасностью сварочных газов предъявляются особые требования к условиям и помещениям проведения работ, хранению газовых баллонов. Особое внимание уделяется отсутствию источников возникновения пламени, искры, легковоспламеняющихся веществ. Помещения оборудуются специальными осветительными приборами, системами вентиляции и кондиционирования. Сварочные работы проводятся в присутствии более двух человек при обязательном оформлении наряда-допуска.

Каталог технических газов от нашей компании

nvph.ru

Ацетилен - газ с самой высокой температурой пламени!

Ацетилен
химическое соединение углерода и водорода. Ацетилен легче воздуха, 1 м3 ацетилена при 20°С и 760 мм рт. ст. плотность ацетилена равна 1,091 кг/м3. Плотность по отношению к воздуху 0,9. Критическая температура 35,9°С и критическое давление 61,6 кгс/см2. При сгорании с кислородом он дает пламя с наиболее высокой температурой, которая достигает 3200°С, что объясняется его эндотермичностью (другие углеводороды экзотермичны, т. е. при распаде поглощают тепло). Химическая формула - C2H2, структурная формула Н-С=С-Н.

При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) ацетилен переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает, образуя кристаллы плотностью 0,76 кг/м3. Жидкий и твердый ацетилен легко взрывается от трения, механического или гидравлического удара и действия детонатора. Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом из-за содержащихся в нем примесей в виде сернистого водорода, аммиака, фосфористого водорода и др.

В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:

... При попытке получить калий, сильно нагревая смесь прокаленного винного камня с древесным углем в большом железном сосуде, я получил черное вещество, которое легко разлагалось водой и образовывало газ, оказавшийся новым соединением углерода и водорода. Этот газ горит на воздухе ярким пламенем, более густым и светящимся даже сильнее, чем пламя маслородного газа (этилена). Если подача воздуха ограничена, горение сопровождается обильным отложением сажи. В контакте с хлором газ мгновенно взрывается, причем взрыв сопровождается большим красным пламенем и значительными отложениями сажи... Дистиллированная вода поглощает около одного объема нового газа, однако при нагревании раствора газ выделяется, по-видимому, не изменяясь... Для полного сгорания нового газа необходимо 2,5 объема кислорода. При этом образуются два объема углекислого газа и вода, которые являются единственными продуктами горения... Газ содержит столько же углерода, что и маслородный газ, но вдвое меньше водорода... Он удивительно подойдет для целей искусственного освещения, если только его удастся дешево получать.

Дэви получил карбид калия К2С2 и обработал его водой.

В статье «Карбид кальция и ацетилен - друзья не разлей вода!» мы писали о том, что его «двууглеродистый водород» впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.

Для полного сгорания 1 м3 ацетилена по реакции: С2Н2 + 2,5O2=2СO2 + Н2O + Q1

требуется теоретически 2,5 м3 кислорода или = 11,905 м3 воздуха. При этом выделяется тепло Q1 ≈ 312 ккал/моль. Высшая теплотворная способность 1 м3 ацетилена при 0°C и 760 мм рт. ст., определенная в газовом калориметре, составляет QВ = 14000 ккал/м3 (58660 кДж/м3), что соответствует расчетной:

312×1,1709×1000/26,036 = 14000 ккал/м3

Низшая теплотворная способность при тех же условиях может быть принята QH = 13500 ккал/м3 (55890 кДж/м3).

Практически при сжигании - ацетилена в горелках при восстановительном пламени в горелку подается не 2,5 м3 кислорода на 1 м3 ацетилена, а всего лишь от 1 до 1,2 м3у что примерно соответствует неполному сгоранию по реакции:

С2H2 + О2 = 2СО + H2 + Q2

где Q2 ≈ 60 ккал/моль или 2300 ккал/кг ацетилена. Остальные 1,5-1,3 м3 кислорода поступают в пламя из окруающего воздуха, в результате чего в наружной оболочке пламени протекает реакция:

2СО + H2 + 1,5О2 = 2СO2 + H2O + Q3

Реакция неполного горения протекает на внешней оболочке светящегося внутреннего конуса пламени, причем под влиянием высокой температуры на внутренней поверхности конуса происходит распад ацетилена на его составляющие по реакции:

С2H2 = 2С + H2 + Q4

где Q4≈54 ккал/моль или 2070 ккал/кг ацетилена.

Таким образом, общая полезная теплопроизводительность пламени ацетилена применительно к сварочным процессам представляет собой сумму тепла, выделяемого при распаде ацетилена, и тепла, выделяемого при неполном сгорании, что составляет Q4 + Q2 = 2070 + 2300 = 4370 ккал/кг или 4370×1,1709 ≈ 5120 ккал/м3.

При содержании ацетилена в смеси около 45% (т. е. при отношении кислорода к ацетилену, примерно равном 1,25) достигается максимальная температура ацетилено-кислородного пламени, которая составляет 3200°С. Следовательно температура пламени изменяется в зависимости от состава смеси.

При содержании 27% ацетилена достигается максимальная скорость воспламенения ацетилено-кислородной смеси, которая равна 13,5 м/сек. Следовательно, в зависимости от состава смеси также изменяется и скорость воспламенения.

Данные зависимостей скорости воспламенения и температуры пламени и от содержания в ней ацетилена представлены ниже в таблице.

Содержание ацетилена в смеси в объемных процентах

12

15

20

25

27

30

32

35

40

45

50

55

Максимальная температура пламени, °С

-

2920

2940

2960

2970

2990

3010

3060

3140

3200

3070

2840

Скорость воспламенения смеси, м/сек

8,0

10,0

11,8

13,3

13,5

13,1

12,5

11,3

9,3

7,8

6,7

-

Необходимо понимать, что полное сгорание ацетилено-воздушной смеси достигается при наличии в ней не более 1×100/(1+11,905)=7,75% ацетилена (так называемая стехиометрическая смесь). При этом продуктами реакции являются только углекислый газ (СО2) и вода (H2О). При содержании ацетилена более 17,37% в виде сажи выделяется свободный углерод.

С увеличение процентного содержание ацетила выделение сажи также возрастает (коптящее пламя), а при 81% ацетилена - процесс горения прекращается или не возникает.

Ацетилен выпускают по ГОСТ 5457 растворенным и газообразным. Хранят и транспортируют его в растворенном состоянии в специальных стальных баллонах по ГОСТ 949, заполненных пористой, пропитанной ацетоном массой (см. статью «Полимеризация и растворение ацетилена». Баллоны окрашены в серый цвет и надписью красными буквами «АЦЕТИЛЕН» на верхней цилиндрической части.

Максимальное давление ацетилена при заполнении баллона составляет 2,5 МПа (25 кгс/см2), при отстое и охлаждении баллона до 20°С оно снижается до 1,9 МПа (19 кгс/см2). При этом давлении в 40-литровый баллон вмещается 5-5,8 кг ацетилена по массе (4,6-5,3 м3 газа при 20°С и 760 мм рт. ст.).

Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры следующим образом:

Температура, °С

-5

0

5

10

15

20

30

40

Давление, МПа

1,3

1,4

14

1,7

1,8

12

2,4

3,0

Коэффициенты перевода объема и массы ацетилена при Т=15°С и Р=0,1 МПа

Масса, кг

Объем газа, м3

1,109

1

1

0,909

Коэффициенты перевода объема и массы ацетилена при Т=0°С и Р=0,1 МПа

Масса, кг

Объем газа, м3

1,176

1

1

0,850

Газ в баллоне

Наименование

Объем баллона, л

Масса газа в баллоне, кг

Объем газа (м3) при Т=15°С, Р=0,1 МПа

Ацетилен

40

5

4,545

weldering.com

говорят, что пропан+кислород это только резка и пайка. а варить нельзя. тогда почему ГСП-4 -горелка СВАРОЧНАЯ пропановая

Зависит от режима горения. Можно и резать, и варить (паять, точнее)

если просто пропан+кислород горит то можно резать, если выставить температуру и дать припой (не припой а стержень с флюсом, забыл как называется), то можно варить.

посмотрите на ютубе, например, как сантехники именно пропановыми горелками паяют медные водо- и продуктопроводы.

Можно варить, температура пропана с кислородом 2800 цельсия, но ацетиленом лучше, у него с кислородом 3150 по цельсию.

Температура пламени пропана на воздухе примерно 800–850 ºС, в струе чистого технического кислорода (газовые горелки) – до 2800 ºС. Чистый пропан практически применяется крайне редко, гораздо шире применяется его смесь с бутаном (так называемый «пропан» -это как раз такая смесь), температура горения пропан бутана выше–до 3000ºС. Большей частью такие смеси применяют при газовой резке и пайке или при сварке металлов с низкой температурой плавления.

Все дело в молекулах газа. Чем больше в газе атомов углерода и меньше водорода, тем лучше и качественнее сварка (пайка) У ацетилена значительно преобладает углерод. У пропана пополам. У метана (природный газ) вообще 25%. За водород вообще молчу... Атомы углерода раскисляют сталь, делают шов качественным. Можно, конечно, применять дополнительно раскисляющие флюсы, но это сложно и дороговато.

пропановые используются в основном как резаки, в качестве сварочных горелок использовать можно, но только для неответственной сварки, температура горения в них, достигается избытком кислорода и горением металла

Как крайний выход из положения можно - но без матов не бойтись.

Пламя пропана имеет положительный кислородный баланс. То есть в факеле присутствует слишком много кислорода, не участвовавшего в горении. Из за этого шов получается мелкопористый и имеет очень низкую механическую прочность. Хотя снаружи он выглядит так же как и шов из-под ацетилена. Этот шов не выдерживает минимальных механических нагрузок. Так что лучше не заморачивайтесь.

touch.otvet.mail.ru

Наивысшая температура пламени горелки. Регулировка пламени горелки.

Наивысшая температура пламени горелки. Регулировка пламени горелки. 5.00/5 (100.00%) проголосовало 2

 

Длина подогревательного пламени зависит от его мощности, т. е. от количества горючего газа, подводимого к пламени, а также от рода горючего газа.

Наивысшая температура пламени горелки.

 

Температура пламени является одним из важнейших его свойств, от которого зависит скорость резки.

Температура пламени зависит от рода горючего и состава смеси, подаваемой в резак. Она различна для разных зон пламени.

Наиболее высокую температуру пламени дает ацетилен, обеспечивающий быстрый нагрев металла до температуры начала горения. Поэтому ацетилен является наиболее распространенным горючим газом, применяемым при кислородной резке.

Наибольшую температуру (около 3100°С) имеет ацетилено-кислородное пламя на расстоянии 3—4 мм от конца ядра по оси пламени. По мере удаления от ядра температура понижается.

Распределение температуры в нормальном ацетилено-кислородном подогревательном пламени по его длине показано на рис. 1.

Слишком высокая температура, развиваемая ацетилено-кислородным пламенем, часто приводит к оплавлению кромок разрезаемых деталей. Поэтому ацетилен, несмотря на все его преимущества, дает при резке менее чистый рез, чем водород, пары бензина и керосина и другие горючие газы.

Регулировка пламени горелки.

 

От правильной регулировки подогревательного пламени в значительной мере зависит качество резки. Кислородная резка ведется при нормальном или слегка окислительном пламени.

У резаков с концентрическим расположением мундштуков правильно отрегулированное пламя окружает режущую струю кислорода, при этом внутреннее ядро должно быть симметричным и везде одинаковым по яркости.

Если мундштуки резака сдвинуты, сечение кольцевого канала, из которого вытекает горючая смесь, нарушается и пламя получается односторонним. Таким пламенем резку производить нельзя, так как одна кромка разреза будет сильнее нагреваться, оплавляться и рез получится нечистым. Применение разработанных одним из институтов разъемных самоцентрирующихся мундштуков обеспечивает (вследствие самоцентрирования) симметричную форму пламени.

Очень часто происходит засорение канала, по которому проходит горючая смесь, в результате чего пламя разбивается на отдельные струйки и становится неравномерным. Таким пламенем резать нельзя, так как помимо получения некачественного реза заметно снижается производительность.

Регулировка пламени заключается в том, чтобы создать симметричное по отношению к режущей струе кислорода нормальное или слегка окислительное пламя необходимой мощности. Мощность пламени устанавливается в зависимости от толщины разрезаемого металла.

Обычно при правильно установленном давлении и полностью открытых кислородном и ацетиленовом вентилях (на резаке) в зажженном подогревательном пламени есть некоторый избыток ацетилена. Постепенным перекрыванием ацетиленового вентиля достигается нормальное пламя.

Нормальное пламя должно быть создано при не полностью открытых вентилях для возможности дальнейшей регулировки.

Регулировку на слегка окислительное пламя начинают с установления нормального пламени, а затем прибавляют кислород или убавляют ацетилен до тех нор, пока пламя не приобретет требуемой величины.

В правильно отрегулированном пламени (если регулировка производилась при закрытой режущей струе кислорода) после пуска струи давление кислорода подогревательного пламени несколько понижается и пламя становится ацетиленистым. Поэтому окончательную регулировку подогревательного пламени следует вести при открытом вентиле режущего кислорода, а после регулировки вентиль следует закрыть.

Если режущий кислород подается в резак по отдельному от подогревательного кислорода шлангу, дополнительная регулировка пламени не требуется.

 

Статья оказалась полезной?! Поделись с друзьями в социальных сетях!!!

 

mechanicinfo.ru

Пропан, горение - Справочник химика 21


    Пятый способ. Аналогично третьему и четвертому способам можно определить, что при сжигании 11,2 л пропан-бутановой смеси образуются 42,56 л диоксида углерода. Из уравнений реакций горения пропана и бутана видно, что при сжигании [c.88]

    Сожгли 4 л газовой смеси, содержащей пропан. Продукты горения пропустили через раствор гидроксида кальция, в результате чего образовалось 16 г карбоната и 25,9 г гидрокарбоната кальция. Определите объемную долю пропана в газовой смеси. [c.236]

    Горючим может служить любой газ с высокой температурой горения наиболее часто используются ацетилен, пропан, бутан, водород, природный или каменноугольный газ. Сжигая эти газы в воздухе или кислороде, получают пламя с температурой от 1700 до 3200 °С. Более высокие температуры достигаются при сжигании циана. Чем выше температура пламени, тем больше число возбужденных элементов. Кроме того, повышение температуры приводит к повышению чувствительности анализа. Вид используемого пламени в некоторой степени зависит от устройства горелки. [c.85]

    В работе [18] рассмотрено два способа нагрева кокса сжигание части нагреваемого кокса сжигание подаваемых извне водорода н углеводородных газов (метан, этан, пропан, бутан). В процессе обессеривания кокса при 1500°С, как нами ранее показано, будет происходить полное восстановление активных составляющих (Н2О, СО2) продуктов сгорания топлива по реакциям (2) и (3). На основе этих реакций, а также их тепловых эффектов рассчитаны удельная энтальпия продуктов сгорания, удельный теоретический угар кокса от вторичных реакций, удельная теплота сгорания и калориметрическая температура горения ( иап) рассматриваемых топлив. [c.234]

    По молекулярной массе и концентрационным пределам воспламенения пары стабилизированных нефтей имеют вполне устойчивые характеристики, занимая промежуточное положение между пропаном и бутаном. При выполнении расчетов, в которых необходимо знать стехиометрическую концентрацию нефтяных паров в воздухе по уравнению реакции горения, нефтяные пары можно приравнять к пропану, химическую формулу которого использовать для расчета характеристик стехиометрической горючей смеси. [c.19]

    Газообразные пропан и бутан, бензины и керосины-все это алканы, ценность которых определяется их способностью к горению. [c.287]

    Сжигание-процесс горения исходных горючих материалов для получения новых продуктов или освобождения хим. энергии. В П. сжигают сероводород, серу, фосфор, ацетилен, уголь, мазут, пропан, бутан, прир. газ и др. [c.505]

    Решение. Природный газ содержит четыре горючих компонента метан СН4, этан СаН , пропан СзН и бутан С4Н9. Записываем уравнения реакций горения газов  [c.159]

    Проведенные исследования в области пожаро- и взрывоопасности изотермических хранилищ показали, что низкие температуры жидкой фазы оказывают как бы тормозящее действие на процесс горения. Опытами было установлено, что интенсивность горения воспламененных пропан-бутановых газов составляет не более 25% интенсивности горения бензина при нормальной температуре. [c.44]

    Только при переходе от метана и этана к пропану имеет место заметное обогащение смеси на НКП, с постоянным значением а = 1,6 для группы от пропана до пентана и а = 1,5 — от гексана до октана. Причины этих различий Опред и Гад для пламен с весьма близкими скоростями горения и термическими свойствами смеси не получили рационального объяснения. [c.227]

    Воздействие электрического поля на пламя изучают с целью осуществления направленного химического синтеза. В работе [51] измеряли выход ацетилена, этилена и окиси азота при наложении на пропан-воздушное пламя с добавкой щелочных металлов высоковольтного низкочастотного разряда. Было обнаружено [52], что даже электрическое поле малой напряженности, когда не возникает разряд, может влиять на кинетику горения, изменяя концентрационные градиенты, либо, как полагают авторы, способствуя образованию новых активных частиц при электрон-молекулярных столкновениях. [c.52]

    Продуктами разложения органических соединений в диффузионных пламенах и пламенах гомогенных смесей являются водород и простейшие углеводороды. Общим простейшим углеводородом при разложении исследованных органических (соединений является метан. В пламенах кислородсодержащих соединений кроме этого образуются простейшие кислородсодержащие соединения типа СН2О, а в пламенах азотсодержащих соединений, вероятно, образуется азот, В процессе разложения некоторых соединений образуется этан, максимальное содержание которого составляет доли %. В качестве продукта разложения высокомолекулярных предельных углеводородов (парафина) обнаружен в незначительном количестве пропан. Наличие бутана в пламенах исследованных соединений не установлено. Продуктом разложения некоторых органических соединений является этилен. При горении высокомолекулярных предельных углеводородов (парафина) образуются кроме этилена другие непредельные соединения пропилен и в не

www.chem21.info

Отправить ответ

avatar
  Подписаться  
Уведомление о