Свойства полиэтилена – Полиэтилен — Википедия

Содержание

Свойства и применение полиэтилена

ПЭ — термопластичный насыщенный полимерный углеводород, молекулы которого состоят из этиленовых звеньев -СН2-СН2- и имеют конформацию плоского зигзага с периодом идентичности 0,254 нм, соответствующим повторяющемуся расстоянию в углеродной цепи. Соседние молекулы находятся на расстоянии 0,43 нм друг от друга.

В зависимости от метода получения свойства ПЭ — непрозрачного в толстом слое полимера, без запаха и вкуса — заметно изменяются (табл. 5.2), особенно это проявляется в плотности, температуре плавления, твердости, жесткости и прочно­сти. Эти показатели возрастают в ряду ПЭВ < ПЭНД < ПЭСД (в табл. 5.2 приведены свойства ПЭНД), полученного суспензионным методом). Основная причина различия свойств ПЭ состоит в разветвленности макромолекул: чем больше разветвлений в цепи, тем выше аморфизация и эластичность и тем меньше кристалличность полимера. Разветвления затрудняют образование более плотной упаковки макромолекул и препятствуют процессу кристаллизации. Наряду с кри­сталлической фазой в ПЭ всегда присутствует фаза аморфная, содержащая неупорядоченные участки макромолекул. Соотношение этих фаз зависит от способа получения ПЭ и условий его кристаллизации. Оно определяет и многие свойства полимера.

В табл. 5.3-5.4 приведены свойства некоторых марок ПЭ, выпускаемого разными методами. Марочный ассортимент выпускаемых полимеров ПЭ достаточно широк. С учетом конъюнктуры рынка в разные годы проявляется повышенный интерес к тем или иным маркам. Например, в последние годы из марочного ассортимента ПЭНП стали выделять линейный полиэтилен низкой плотности (ЛПЭНП). Его получают толимеризацией этилена в газовой фазе в присутствии сомономеров (гексен, октен и другие соединения этого типа, содержащие от 3 до 12 атомов углерода). По сути дела это не гомополимер, а сополимер этилена с содержанием сомоиомера до 20 %. Процесс проводят на твердом носителе в присутствии электронодонорных добавок, используя катализаторы Циглера-Натты.

Известен также сверхвысокомолекулярный полиэтилен (СВМПЭ), получаемый в виде порошка при низком давлении суспензионным методом. СВМПЭ отличается от обычных марок ПЭ более высокими прочностными характеристиками, износостойкостью, большей стойкостью к растрескиванию и ударным нагрузкам, к различным агрессивным средам, способен сохранять свойства в широком интервале температур. Однако СВМПЭ не способен при повышении температуры переходить в вязкотекучее состояние, а только в размягченное, что затрудняет переработку СВМПЭ

ПЭ не смачивается водой и другими полярными жидкостями. При комнатной температуре он не растворяется в органических растворителях. Лишь при повышении температуры (70°С и выше) он сначала набухает, а затем растворяется в ароматических и хлорированных углеводородах. Лучшими растворителями являются ксилол, декалин, тетралин. При охлаждении растворов ПЭ выпадает в виде порошка.

Масла, жиры, керосин и другие нефтяные углеводороды практически не действует на ПЭ; полимер высокой плотности проявляет к ним большую стойкость, чем юлимер низкой плотности.

ПЭ устойчив к действию водных растворов кислот, щелочей и солей, но при температурах выше 60 °С серная и азотная кислоты быстро его разрушают. Кратковременная обработка ПЭ окислителем (например, хромовой смесью) приводит к окислению поверхности и смачиванию ее водой, полярными жидкостями и клеями.

В этом случае изделия из ПЭ можно склеивать. Без изменения полярности его поверхности ПЭ только сваривается с помощью горячего воздуха, азота или аргона.

Окисление ПЭ кислородом воздуха под влиянием нагревания и воздействия солнечного света, приводящее к ухудшению физико-механических и диэлектрических свойств, в значительной степени предотвращается введением стабилизаторов.

В виде пленок ПЭ проницаем для многих газов (Н2,02, С02, N2, СО, СН4, С2Н6), но практически непроницаем для паров воды и полярных жидкостей. Проницаемость ПЭНП в 5-10 раз выше проницаемости ПЭВП.

Механические показатели ПЭ возрастают с увеличением плотности (степени кри­сталличности) и молекулярной массы (см. табл. 5.2). В виде тонких пленок толщиной 40-100 мкм ПЭ (особенно полимер низкой плотности) обладает большой гибкостью и некоторой прозрачностью, а в виде листов приобретает большую жесткость и непрозрачность. ПЭ устойчив к ударным нагрузкам. Он эксплуатируется в пределах температур от -80 до 60 °С (ПЭНП) и до 100 °С (ПЭВП). Вязкость расплава ПЭНП выше, чем ПЭВП, поэтому он перерабатывается в изделия легче.

ПЭ обладает низкой теплопроводностью и большим коэффициентом термического расширения (см. табл. 5.2).

По электрическим свойствам ПЭ, как неполярный полимер, относится к высоко­качественным высокочастотным диэлектрикам. Диэлектрическая проницаемость и тангенс угла диэлектрических потерь мало изменяются с изменением частоты электрического поля, температуры в пределах от -80 до 100 °С и влажности. Остатки катализатора в ПЭВП повышают тангенс угла диэлектрических потерь, особенно при изменении температуры, что приводит к некоторому ухудшению изоляционных свойств.

Полиэтилен, наряду с широким комплексом положительных свойств, обладает и рядом недостатков. К ним относится в первую очередь уже ранее отмеченное старение при действии солнечного света, ползучесть (развитие деформации при длительном действии статических нагрузок), образование трещин в изделиях, находящихся длительное время в напряженном состоянии, невысокая рабочая температура (до 70 °С), недостаточная механическая прочность и в ряде случаев химическая стой­кость, горючесть, непрозрачность.

Ползучесть приводит к тому, что при конструировании изделий, подвергающихся длительному действию нагрузок, оперируют не разрушающим напряжением при растяжении, а пределом длительной прочности, который в несколько раз ниже и равен 2,5 МПа для ПЭНП и 0,5 МПа для ПЭВП.

Образование трещин в изделиях определяется действующими напряжениями, температурой и средой. Активно воздействуют на ПЭ растворы моющих средств и полярные жидкости. ПЭНП более устойчив к растрескиванию, чем ПЭВП.

Комплекс физико-механических, химических и диэлектрических свойств ПЭ позволяет широко применять его во многих отраслях промышленности (кабельной, радиотехнической, химической, легкой, медицине, в изделиях бытового назначения и др.).

Изоляция электрических проводов. Высокие диэлектрические свойства полиэтилена и его смесей с полиизобутиленом, малая проницаемость для паров воды позволяют широко использовать его для изоляции электропроводов и изготовления кабелей, применяемых в различных средствах связи, сигнальных устройствах, системах диспетчерского телеуправления, высокочастотных установках, для обмотки проводов двигателей, работающих в воде, а также для изоляции подводных и коаксиальных кабелей.

Кабель с изоляцией из полиэтилена имеет преимущества по сравнению с каучуковой изоляцией. Он легок, более гибок и обладает большей электрической прочностью. Провод, покрытый тонким слоем полиэтилена, может иметь верхний слой из пластифицированного поливинилхлорида, образующего хорошую механическую защиту от повреждений.

В производстве кабелей находит применение ПЭНП, сшитый небольшими количествами (1-3 %) органических перекисей или облученный быстрыми электронами.

Пленки и листы. Пленки и листы могут быть изготовлены из ПЭ любой плотности. При получении тонких и эластичных пленок более широко применяется ПЭНП.

Пленки изготовляются двумя методами: экструзией расплавленного полимера через кольцевую профилирующую головку с последующим раздувом или экструзией через плоскощелевую профилирующую головку с последующей вытяжкой. Они выпускаются толщиной 0,03-0,30 мм, шириной до 1400 мм (в некоторых случаях до 10 м) и длиной до 300 м.

Кроме тонких пленок из ПЭ изготавливают листы толщиной 1-6 мм и шириной до 1400 мм. Их применяют в качестве футеровочного и электроизоляционного материала и перерабатывают в изделия технического и бытового назначения методом пневмо- и вакуум-формования.

Большая часть продукции из ПЭНП служит упаковочным материалом, конкурируя с другими пленками (целлофановой, поливинилхлоридной, поливинилиденхлоридной, полиэтилентерефталатной,поливинилфторидно-полиэтилентерефталатной, из поливинилового спирта и др.), меньшая — используется для изготовления различных изделий (сумок, мешков, облицовки для ящиков, коробок и других видов тары).

Широко применяются пленки для упаковки замороженного мяса и птицы, при изготовлении аэростатов и баллонов для проведения метеорологических и других исследований в верхних слоях атмосферы, защиты от коррозии магистральных нефте- и газопроводов. В сельском хозяйстве прозрачная пленка используется для замены стекла в теплицах и парниках. Черная пленка служит для мульчирования почвы в целях задержания тепла и для защиты от сорняков при выращивании овощей, плодово-ягодных и бобовых культур, а также для выстилания силосных ям, дна водоемов и каналов. Все больше применяется полиэтиленовая пленка в качестве материала для крыш и стен при сооружении помещений для хранения урожая, сельскохозяйственных машин и другого оборудования.

Из полиэтиленовой пленки изготовляют предметы домашнего обихода: плащи, скатерти, гардины, салфетки, передники, косынки и т. п. Пленка может быть нанесена с одной стороны на различные материалы: бумагу, ткань, целлофан, металлическую фольгу.

Армированная полиэтиленовая пленка отличается существенно большей прочностью, чем обычная пленка такой же толщины. Такой материал состоит из двух пленок, между которыми размещены армирующие нити из синтетических или природных волокон или редкая стеклянная ткань.

Из очень тонких армированных пленок изготовляют скатерти, а также пленки для теплиц; из более толстых пленок — мешки и упаковочный материал. Армированная пленка, упрочненная редкой стеклянной тканью, может быть применена для изготовления защитной одежды и использована в качестве обкладочного материала для различных емкостей.

На основе пленок из ПЭ могут быть изготовлены липкие (клеящие) пленки или ленты, пригодные для ремонта кабельных линий высокочастотной связи и для защиты стальных подземных трубопроводов от коррозии. Полиэтиленовые пленки и ленты с липким слоем содержат на одной стороне слой из иизкомолекулярного полиизобутилена, иногда в смеси с бутилкаучуком. Выпускаются они толщиной 65-96 мкм, шириной 80-150 мм.

ПЭНП и ПЭВП применяют и для защиты металлических изделий от коррозии. Защитный слой наносится методами газопламенного и вихревого напыления.

Трубы. Из всех видов пластмасс ПЭ нашел наибольшее применение для изготов­ления методами экструзии и центробежного литья труб, характеризующихся легкостью, коррозионной стойкостью, незначительным сопротивлением движению жидкости, простотой монтажа, гибкостью, морозостойкостью, легкостью сварки.

Непрерывным экструзионным методом выпускаются трубы любой длины с внутренним диаметром 6-300 мм при толщине стенок 1,5—10 мм. Полиэтиленовые трубы небольшого диаметра наматываются на барабаны. Литьем под давлением изготовляют арматуру к трубам, которая включает коленчатые трубы, согнутые под разными углами, тройники, муфты, крестовины, патрубки. Трубы большого диаметра (до 1600 мм) с толщиной стенок до 25 мм получают методом центробежного литья.

Полиэтиленовые трубы вследствие их химической стойкости и эластичности применяются для транспортировки воды, растворов солей и щелочей, кислот, различных жидкостей и газов в химической промышленности, для сооружения внутренней и внешней водопроводной сети, в ирригационных системах и дождевальных установках.

Трубы из ПЭНП могут работать при температурах до 60 °С, а из ПЭВП — до 100 °С. Такие трубы не разрушаются при низких температурах (до -60 °С) и при замерзании воды; они не подвержены почвенной коррозии.

Литьевые и формованные изделия. Одним из основных методов переработки ПЭ в штучные изделия является литье под давлением. Большое распространение в фармацевтической и химической промышленности получили бутылки из полиэтилена объемом от 25 до 5000 мл, а также посуда, игрушки, электротехнические изделия, решетчатые корзины и ящики. Центробежным формованием получают контейнеры объемом до 10 000 л.

Из полиэтиленовых листов, полученных экструзией, можно изготовить различные изделия штампованием, изгибанием по шаблону или пневмо-, вакуум-формованием. Крупногабаритные изделия (лодки, ванны, баки и т. п.) также могут быть изготовлены из порошка полиэтилена путем его спекания на нагретой форме. Отдельные части изделий могут быть сварены при помощи струи горячего воздуха, нагретого до 250 °С.

Формованием и сваркой можно изготовить вентили, колпаки, контейнеры, части вентиляторов и насосов для кислот, мешалки, фильтры, различные емкости, ведра и т. п.

studfiles.net

Подскажите пожалуйста химические свойства полиэтилена

Химические свойства:
Полиэтилен обладает низкой паро и газопроницаемостью. Химическая стойкость зависит от молекулярной массы и плотности. Полиэтилен не реагирует со щелочами любой концентрации, с растворами любых солей, карбоновыми, концентрированной соляной и плавиковой кислотами. Устойчивый к кислотам, щелокам, растворителям, алкоголю, бензину, воде, овощным сокам, маслу. Он разрушается 50%-ной HNO3, а также жидкими и газообразными Cl2 и F2. Бром и иод через полиэтилен диффундируют. Полиэтилен не растворим в органических растворителях и ограниченно набухает в них.

Физические свойства:
эластичный, жесткий – до мягкого, в зависимости от веса изделия устойчивый к низким температурам до -70°С, ударостойкий, не ломающийся, с хорошими диэлектрическими свойствами, с небольшой поглотительной способностью. физиологически нейтральный, без запаха. Полиэтилен низкой плотности (0,92 – 0,94 г/см3) – мягкий; полиэтилен высокой плотности (0,941 – 0,96 г/см3) — твердый, очень жесткий.

Эксплуатационные свойства:
полиэтилен стоек при нагревании в вакууме и атмосфере инертного газа; деструктируется при нагревании на воздухе уже при 800С. Под действием солнечной радиации, особенно УФ лучей, подвергается фотостарению (в качестве светостабилизаторов используется сажа, производные бензофенонов) . Полиэтилен практически безвреден; из него не выделяются в окружающую среду опасные для здоровья человека вещества.

Полиэтилен (ПЭ) [–Ch3–Ch3–]n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена Ch3=Ch3. В одной из форм мономеры связаны в линейные цепи с СП обычно 5000 и более; в другой – разветвления из 4–6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150° С) и давлениях (до 20 атм) .

Линейные полиэтилены образуют области кристалличности, которые сильно влияют на физические свойства образцов. Этот тип полиэтилена обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.

http://www.plastmassa.net/polyethylene/behaviour/

Химические свойства

Полиэтилен устойчив к органическим и неорганическим кислотам, щелочам, растворами солей, спиртосодержащим продуктам, минеральным и органическим маслам. Как и полипропилен, полиэтилен не стоек при контакте с сильными неорганическими окислителями (HNO3, h3SO4), галогенами. В принципе химическая стойкость полиэтилена в том же температурном диапазоне схожа со стойкостью полипропилена.

ПОДРОБНЕЕ В ССЫЛКАХ
http://www.vkpolymer.ru/materials/polyethylene

http://pvsrt.ru/index.php?option=com_content&view=article&id=14:2011-10-25-15-52-43&catid=4:library&Itemid=17&limitstart=4 Полиэтилен - Химические свойства

otvet.mail.ru

1. Структура и свойства полиэтилена

Полиэтилен — термопластичный полимер с относительно невысокой твердостью, не имеющий запаха и вкуса. Различные методы исследова­ния (микроскопический, рентгено- и электронографический и др.) пока­зывают, что полиэтилен обладает кристаллической структурой, анало­гичной структуре нормальных парафинов (например, С60Н122 и др.). Степень кристалличности полимера, получаемого полимеризацией эти­лена, не достигает 100%: наряду с кристаллической фазой всегда содер­жится аморфная. Соотношение этих фаз зависит от способа получения полимера и температуры. Подобно высокоплавким воскам и парафинам он медленно загорается и горит слабым пламенем без копоти. В отсут­ствие кислорода полиэтилен устойчив до 290° С. В пределах 290 — 350° С он разлагается на низкомолекулярные полимеры типа восков, а выше 350° С продуктами разложения являются низкомолекулярные жидкие вещества и газообразные соединения — бутилен, водород, окись угле­рода, двуокись углерода, этилен, этан и др.

1.1. Молекулярная структура полиэтилена

Молекула полиэтилена представляет собой длинную цепь метиленовых групп, содержащую некоторое количество боковых групп. Чем больше боковых групп в цепочке полимера и чем они длиннее (полимер имеет разветвленную структуру), тем ниже степень кристалличности. Обычно в полиэтилене низкой плотности одна метильная группа при­ходится на 30 атомов углерода, однако можно получить полимеры, содержащие одну метильную группу как на 10 атомов углерода, так и на 1000 и более атомов углерода. Исследования показывают, что метильные группы чаще всего находятся на концах боковых цепей, состоя­щих по крайней мере из четырех атомов углерода:

Недостаточно упорядоченные участки полимерных молекул состав­ляют аморфные области. Тот факт, что величина аморфных областей возрастает пропорционально степени разветвленности молекулы, позво­ляет сделать вывод, что в аморфные области входят части разветвлен­ных молекул.

В расплавленном состоянии полиэтилен находится в аморфном со­стоянии. Независимо от скорости охлаждения расплава полиэтилен не получен полностью в аморфном состоянии даже при моментальном охлаждении тонких пленок жидким воздухом. Быструю кристаллизацию полиэтилена можно объяснить небольшой длиной элементарных звеньев (2, 53 Å), соответствующей одному зигзагу углеродной цепи, высокой симметрией молекул и их расположением в виде пачки. Пачки намного длиннее макромолекул и состоят из многих рядов цепей. Кристаллиза­ция начинается в пачках и проходит последовательно либо через обра­зование «лент», «лепестков» и правильных кристаллов, либо через воз­никновение «лент», «лепестков» и сферолитных структур. Структу­ра молекулы полиэтилена показана на рис.1

Рис.1 Структура молекулы полиэтилена

Скорость охлаждения расплава полиэтилена определяет размеры кристаллических участков и степень кристалличности. Быстрое охла­ждение (закалка) приводит к снижению процента кристаллической фазы и увеличению размеров кристаллических участков.

Между кристалличностью и содержанием метильных групп наблюдается ясно выраженная связью Ниже показана зависимость содержания аморфной фазы от концентрации метильных групп в полиэтилене:

Число Ch4-групп на 100 атомов С Содержание аморфной фазы, %

0 10

1 ~20

2 ~33

3 ~40

4 ~46

Различие в степени кристалличности обусловливает плотность полимера. Так, полиэтилен низкой плотности содержит 55—65% кристаллической фазы, средней 66—73%, а высокой 74—95%.

В образцах полиэтилена с высокой степенью разветвленности весовая доля кристаллической фазы может достигать 40%.

С повышением температуры снижается степень кристалличности полимера: снижение становится все более резким по мере приближения к температуре размягчения (рис. 2).

Рис 2. Изменение доли кристаллической фазы в полиэтилене с повышением температуры

Кристаллические участки в полиэтилене имеют длину до нескольких сот ангстрем и соответствуют не целой молекуле, а небольшой части ее, так что одна полимерная молекула (длина ее достигает 1000 Å) может проходить через несколько кристаллических областей.

Конфигурация и упаковка линейных молекул полиэтилена в кристаллитах такие же, как у молекул нормальных олефинов. Об этом свидетельствуют размеры прямоугольной элементарной кристаллической ячейки: а = 7,40 Å, b =4.93Å, с = 2,534 Å.

Период идентичности в 2,534 Å соответствует повторяющемуся расстоянию зигзагообразной углеродной цепи между атомами углерода С-С 1,54 Å и углу между углеродными связями 109 28'

Соседние молекулы находятся на расстоянии 4,3 Å друг от друга; атомы же водорода соседних молекул так расположены по отношению друг к другу так, что расстояние между их центрами становится почти постоянной величиной 2,5 Å , т. е. равно удвоенной величине эффективного ван-дер-ваальсового радиуса 1,25 Å. Кристалличность полимера при обычных температурах влияет посредственно на многие его свойства: плотность, поверхностную твердость, модуль упругости при изгибе, пределы прочности и текучести, растворимость и набухание в органических растворителях, паро- и газопроницаемость.

В присутствии катализаторов Циглера и Филлипса можно провести сополимеризацию этилена и α-олефинов и тем самым контролировать число ответвлений. Так, например, сополимер этилена и пропилена (6,25% по весу пропилена) содержит 21 метильную группу на 1000 угле­родных атомов и имеет кристалличность на 20% меньше кристаллич­ности полиэтилена. Сополимер этилена и 1-бутена (5,6% по весу 1-бутена) при наличии 14 этильных ответвлении на 1000 углеродных атомов снижает кристалличность на 20%, т. е. 1 этильная группа эквивалентна 1,5 метильным группам по влиянию на снижение степени кристаллич­ности сополимеров.

studfiles.net

Ответы@Mail.Ru: Характеристика полиэтилена

Полиэтилен – общие сведения
Полиэтилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации этилена. Твердое вещество белого цвета. Выпускается в форме полиэтилена низкого давления (полиэтилена высокой плотности) , получаемого суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе, и полиэтилена высокого давления (полиэтилен низкой плотности) , получаемого при высоком давлении полимеризацией этилена в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Кроме того, существует несколько подклассов полиэтилена, отличающиеся от традиционных более высокими эксплуатационными характеристиками. В частности, сверхвысокомолекулярный полиэтилен, линейный полиэтилен низкой плотности, полиэтилен, получаемый на металлоценовых катализаторах, бимодальный полиэтилен.
Как правило, полиэтилен выпускают в виде стабилизированных гранул диаметром 2-5 миллиметров в окрашенном и неокрашенном виде. Но возможен и промышленный выпуск полиэтилена в виде порошка.

Полиэтилен – строение
Полиэтилен является продуктом полимеризации этилена, химическая формула которого С2Н4. В процессе полимеризации происходит разрыв двойной связи этилена и образуется полимерная цепь, элементарное звено которой состоит из двух атомов углерода и четырех атомов водорода.
В процессе полимеризации может происходить разветвление полимерной цепи, когда к растущей главной цепи сбоку присоединяется короткая полимерная группа.
Разветвленность полимерной цепи препятствует плотной упаковке макромолекул и приводит к образованию рыхлой аморфно-кристаллической структуры материала и, как следствие, к уменьшению плотности полимера и понижению температуры размягчения. Различная степень разветвленности полимерной цепи полиэтиленов высокого и низкого давления и определяет различие свойств этих материалов.
Так у полиэтилена высокого давления разветвленность цепи 15-25 ответвлений на 1000 атомов углерода цепи, а у полиэтилена низкого давления – 3-6 на 1000 атомов углерода цепи. Соответственно, плотность, температуры плавления и размягчения, степень кристалличности у ПЭВД, который еще называют «полиэтиленом с разветвленной цепью» , меньше, чем у ПЭНД, способ полимеризации которого обусловливает малую разветвленность.

Свойства полиэтилена
Полиэтилен – пластический материал с хорошими диэлектрическими свойствами. Ударостойкий, не ломающийся, с небольшой поглотительной способностью. Физиологически нейтральный, без запаха. Обладает низкой паро и газопроницаемостью. Полиэтилен не реагирует со щелочами любой концентрации, с растворами любых солей, карбоновыми, концентрированной соляной и плавиковой кислотами. Устойчив к алкоголю, бензину, воде, овощным сокам, маслу. Разрушается 50%-ной азотной кислотой, а также жидкими и газообразными хлором и фтором. Не растворим в органических растворителях и ограниченно набухает в них. Полиэтилен стоек при нагревании в вакууме и атмосфере инертного газа. Но на воздухе деструктируется при нагревании уже при 80 °С. Устойчив к низким температурам до –70 °С. Под действием солнечной радиации, особенно ультрафиолетовых лучей, подвергается фотодеструкции (в качестве светостабилизаторов используется сажа, производные бензофенонов) . Практически безвреден, из него не выделяются в окружающую среду опасные для здоровья человека вещества.
Полиэтилен легко перерабатывается всеми основными способами переработки пластмасс. Легко подвергается модификации. Посредством хлорирования, сульфирования, бромирования, фторирования ему можно придать каучукоподобные свойства, улучшить теплостойкость, химическую стойкость.

otvet.mail.ru

Строение, свойства, получение и применение полиэтилена

Полиэтилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации этилена. Твердое вещество белого цвета. Выпускается в форме полиэтилена низкого давления (полиэтилена высокой плотности), получаемого суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе, и полиэтилена высокого давления (полиэтилен низкой плотности), получаемого при высоком давлении полимеризацией этилена в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Кроме того, существует несколько подклассов полиэтилена, отличающиеся от традиционных более высокими эксплуатационными характеристиками. В частности, сверхвысокомолекулярный полиэтилен, линейный полиэтилен низкой плотности, полиэтилен, получаемый на металлоценовых катализаторах, бимодальный полиэтилен.
Как правило, полиэтилен выпускают в виде стабилизированных гранул диаметром 2-5 миллиметров в окрашенном и неокрашенном виде. Но возможен и промышленный выпуск полиэтилена в виде порошка.

Обычное обозначение полиэтилена на российском рынке – ПЭ, но могут встречаться и другие обозначения: PE (полиэтилен), ПЭНП или ПЭВД или LDPE или PEBD или PELD (полиэтилен низкой плотности, полиэтилен высокого давления), ПЭВП или ПЭНД или HDPE или PEHD (полиэтилен высокой плотности, полиэтилен низкого давления), ПЭСП или MDPE или PEMD (полиэтилен средней плотности), ULDPE (полиэтилен сверхнизкой плотности), VLDPE (полиэтилен очень низкой плотности), ЛПЭНП или LLDPE или PELLD (линейный полиэтилен низкой плотности), LMDPE (линейный полиэтилен средней плотности), HMWPE или PEHMW или VHMWPE (высокомолекулярный полиэтилен). HMWHDPE (высокомолекулярный полиэтилен высокой плотности), PEUHMW или UHMWPE (сверхвысокомолекулярный полиэтилен), UHMWHDPE (ультравысокомолекулярный полиэтилен высокой плотности), PEX или XLPE (сшитый полиэтилен), PEC или CPE (хлорированный полиэтилен), EPE (вспенивающийся полиэтилен), mLLDPE или MPE (металлоценовый линейный полиэтилен низкой плотности).

Условное обозначение отечественного суспензионного полиэтилена низкого давления, состоит из названия материала «полиэтилен», восьми цифр, характеризующих конкретную марку, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Первая цифра 2 указывает на то, что процесс полимеризации этилена протекает на комплексных металлоорганических катализаторах при низком давлении. Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена. Полиэтилен низкого давления подвергается усреднению холодным смешением, которое обозначается цифрой 0. Пятая цифра условно определяет группу плотности полиэтилена:
6 – 0,931-0,939 г/см3;
7 – 0,940-0,947 г/см3;
8 – 0,948-0,959 г/см3;
9 – 0,960-0,970 г/см3.
При определении группы плотности берут среднее значение плотности данной марки. Следующие цифры, написанные через тире, указывают десятикратное среднее значение показателя текучести расплава данной марки.
Пример обозначения базовой марки суспензионного полиэтилена низкого давления порядкового номера марки 10, усредненного холодным смешением, плотностью 0,948-0,959 г/см3 и средним показателем текучести расплава 7,5 г/10 мин:
Полиэтилен 21008-075 ГОСТ 16338-85.
Обозначение композиции полиэтилена низкого давления, не содержащей добавки красителя, состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Пример обозначения композиции суспензионного полиэтилена низкого давления базовой марки 21008-075 с добавками в соответствии с рецептурой 04:
Полиэтилен 210-04 ГОСТ 16338-85.
Пример обозначения композиции газофазного полиэтилена низкого давления марки 271 с добавками в соответствии с рецептурой 70:
Полиэтилен 271-70 ГОСТ 16338-85.
Обозначение композиции полиэтилена низкого давления с добавкой красителя состоит из наименования материала «полиэтилен», трех первых цифр базовой марки, написанного через тире номера рецептуры добавки (при ее наличии), написанного через запятую наименования цвета, трехзначного числа, обозначающего рецептуру окраски, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Пример обозначения базовой марки полиэтилена низкого давления 21008-075 и композиции 210-04 на ее основе, окрашенных в красный цвет по рецептуре 101:
Полиэтилен 210, красный рец. 101 ГОСТ 16338-85,
Полиэтилен 210-04, красный рец. 101 ГОСТ 16338-85.

Базовые марки суспензионного полиэтилена низкого давления: 20108-001; 20208-002; 20308-005; 20408-007; 20508-007; 20608-012; 20708-016; 20808-024; 20908-040; 21008-075.

Базовые марки газофазного полиэтилена низкого давления: 271-70; 271-82; 271-83; 273-71; 273-73; 273-79; 273-80; 273-81; 276-73; 276-75; 276-83; 276-84; 276-85; 276-95; 277-73; 277-75; 277-83; 277-84; 277-85; 277-95.

Условное обозначение отечественного полиэтилена высокого давления состоит из названия «полиэтилен», восьми цифр, сорта и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Первая цифра – 1 указывает на то, что процесс полимеризации этилена протекает при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа.
Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена:
0 — без гомогенизации в расплаве;
1 — гомогенизированный в расплаве.
Пятая цифра условно определяет группу плотности полиэтилена, г/см3.
1 – 0,900-0,909
2 – 0,910-0,916
3 – 0,917-0,921
4 – 0,922-0,926
5 – 0,927-0,930
6 – 0,931-0,939
При определении группы плотности берут её номинальное значение для данной марки.
Следующие цифры, написанные через тире, указывают десятикратное значение показателя текучести расплава.
Пример обозначения полиэтилена высокого давления порядкового номера марки 15, без гомогенизации в расплаве, плотностью 0,917-0,921 г/см3и номинальным значением показателя текучести расплава 7 г/10 мин 1-го сорта:
Полиэтилен 11503-070, сорт 1, ГОСТ 16337-77
Обозначение композиций полиэтилена высокого давления состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, цвета и рецептуры окрашивания, сорта и обозначения стандарта, в соответствии с которым изготовлен полиэтилен.
Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 03, 1-го сорта:
Полиэтилен 102-03, сорт 1, ГОСТ 16337-77
В случае окрашенных композиций полиэтилена высокого давления к обозначению добавляется цвет и трехзначное число, обозначающее рецептуру окраски.
Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003, окрашенной в розовый цвет по рецептуре 104, 1-го сорта:
Полиэтилен 102, розовый 104, сорт 1, ГОСТ 16337-77
В обозначении полиэтилена высокого давления, предназначенного для изготовления пленок различного назначения, изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, а также полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Базовые марки полиэтилена высокого давления, полученного в реакторах с перемешивающим устройством: 10204-003; 10604-007; 10703-020; 10803-020; 11304-040; 11503-070; 12003-200; 12103-200.

Базовые марки полиэтилена высокого давления, полученного в реакторах трубчатого типа: 15003-002; 15303-003; 15503-004; 16305-005; 17603-006; 17504-006; 16005-008; 17703-010; 16603-011; 17803-015; 15803-020; 16204-020; 16405-020; 18003-030; 18103-035; 16904-040; 18203-055; 16803-070; 18303-120; 17403-200; 18404-200.

В кабельной промышленности используются композиции на основе полиэтилена высокого давления (низкой плотности) и низкого давления (высокой плотности) со стабилизаторами и другими добавками, предназначенные для наложения изоляции, оболочек и защитных покровов проводов и кабелей методом экструзии.
Марки композиций полиэтилена для кабельной промышленности устанавливаются на основе базовых марок полиэтилена высокого давления 10204-003, 15303-003, 10703-020, 18003-030, 17803-015 и рецептур добавок 01, 02, 04, 09, 10, 93-97, 99, 100, марки 10703-020 и рецептур 61 и полиэтилена низкого давления (суспензионный метод) 20408-007, 20608-012, 20708-016, 20808-024 и рецептур добавок 07, 11, 12, 19, 57 полиэтилена низкого давления (газофазный метод) на основе марки 271-порошок и рецептур добавок 70, 82, 83, марки 273-порошок и рецептур добавок 71, 81.
Обозначение марок композиций полиэтилена для кабельной промышленности состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки полиэтилена, номера рецептуры добавок, написанного через тире, и буквы «К», обозначающей применение композиций полиэтилена в кабельной промышленности, и обозначения стандарта, в соответствии с которым изготовлен полиэтилен для кабельной промышленности.
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 09:
Полиэтилен 102-09К ГОСТ 16336-77
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена низкого давления базовой марки 20408-007 с добавками в соответствии с рецептурой 07:
Полиэтилен 204-07К ГОСТ 16336-77

При заказе полиэтилена после обозначения марки указывают сорт. Для полиэтилена, предназначенного для изготовления электротехнических изделий и изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, контактирующих и не контактирующих с полостью рта, а также для полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Но на рынке присутствуют и другие марки полиэтилена, поскольку большинство производителей работает в соответствии с собственными ТУ, отражающими развитие индустрии полимерных материалов, за которым система стандартизации не всегда успевает.

Строение: Полиэтилен является продуктом полимеризации этилена, химическая формула которого С2Н4. В процессе полимеризации происходит разрыв двойной связи этилена и образуется полимерная цепь, элементарное звено которой состоит из двух атомов углерода и четырех атомов водорода:

Н Н
| |
– С – С –
| |
Н НВ процессе полимеризации может происходить разветвление полимерной цепи, когда к растущей главной цепи сбоку присоединяется короткая полимерная группа.
Разветвленность полимерной цепи препятствует плотной упаковке макромолекул и приводит к образованию рыхлой аморфно-кристаллической структуры материала и, как следствие, к уменьшению плотности полимера и понижению температуры размягчения. Различная степень разветвленности полимерной цепи полиэтиленов высокого и низкого давления и определяет различие свойств этих материалов.
Так у полиэтилена высокого давления разветвленность цепи 15-25 ответвлений на 1000 атомов углерода цепи, а у полиэтилена низкого давления – 3-6 на 1000 атомов углерода цепи. Соответственно, плотность, температуры плавления и размягчения, степень кристалличности у ПЭВД, который еще называют «полиэтиленом с разветвленной цепью», меньше, чем у ПЭНД, способ полимеризации которого обусловливает малую разветвленность.

Свойства: Полиэтилен – пластический материал с хорошими диэлектрическими свойствами. Ударостойкий, не ломающийся, с небольшой поглотительной способностью. Физиологически нейтральный, без запаха. Обладает низкой паро и газопроницаемостью. Полиэтилен не реагирует со щелочами любой концентрации, с растворами любых солей, карбоновыми, концентрированной соляной и плавиковой кислотами. Устойчив к алкоголю, бензину, воде, овощным сокам, маслу. Разрушается 50%-ной азотной кислотой, а также жидкими и газообразными хлором и фтором. Не растворим в органических растворителях и ограниченно набухает в них. Полиэтилен стоек при нагревании в вакууме и атмосфере инертного газа. Но на воздухе деструктируется при нагревании уже при 80 °С. Устойчив к низким температурам до –70 °С. Под действием солнечной радиации, особенно ультрафиолетовых лучей, подвергается фотодеструкции (в качестве светостабилизаторов используется сажа, производные бензофенонов). Практически безвреден, из него не выделяются в окружающую среду опасные для здоровья человека вещества.
Полиэтилен легко перерабатывается всеми основными способами переработки пластмасс. Легко подвергается модификации. Посредством хлорирования, сульфирования, бромирования, фторирования ему можно придать каучукоподобные свойства, улучшить теплостойкость, химическую стойкость. Сополимеризацией с другими олефинами, полярными мономерами повысить стойкость к растрескиванию, эластичность, прозрачность, адгезионные характеристики. Смешением с другими полимерами или сополимерами улучшить ударную вязкость и другие физические свойства.
Химические, физические и эксплуатационные свойства полиэтилена зависят от плотности и молекулярной массы полимера, а потому различны для различных видов полиэтилена. Так, например, ПЭВД(полиэтилен с разветвленной цепью) мягче, чем ПЭНД, следовательно пленки из полиэтилена низкого давления более жесткие и плотные, чем из полиэтилена высокого давления. Их прочность при растяжении и сжатии выше, сопротивление раздиру и удару ниже, а проницаемость в 5-6 раз ниже, чем у пленок из ПЭВД.
Сверхвысокомолекулярный полиэтилен с молекулярной массой более 1 000 000 имеет повышенные прочностные качества. Температурный интервал его эксплуатации от -260 до +120 °С. Он обладает низким коэффициентом трения, высокой износостойкостью, стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах.

Свойства ПЭНД в соответствии с ГОСТ 16338-85.
1. Плотность – 0,931-0,970 г/см3.
2. Температура плавления – 125-132 °С.
3. Температура размягчения по Вика в воздушной среде – 120-125 °С.
4. Насыпная плотность гранул – 0,5-0,6 г/см3.
5. Насыпная плотность порошка – 0,20-0,25 г/см3.
6. Разрушающее напряжение при изгибе –19,0-35,0 МПа
7. Предел прочности при срезе – 19,0-35,0 МПа.
8. Твердость по вдавливанию шарика под заданной нагрузкой – 48,0-54,0 МПа.
9. Удельное поверхностное электрическое сопротивление – 1014 Ом.
10. Удельное объемное электрическое сопротивление – 1016-1017 Ом·см.
11. Водопоглощение за 30 суток – 0,03-0,04 %.
12. Тангенс угла диэлектрических потерь при частоте 1010 Гц – 0,0002-0,0005.
13. Диэлектрическая проницаемость при частоте 1010 Гц – 2,32-2,36.
14. Удельная теплоемкость при 20-25 °С – 1680-1880 Дж/кг·°С.
15. Теплопроводность – (41,8-44)·10-2 В/(м·°С).
16. Линейный коэффициент термического расширения – (1,7-2,0)·10-41/°С.

Свойства ПЭВД в соответствии с ГОСТ 16337-77.
1. Плотность – 0,900-0,939 г/см3.
2. Температура плавления – 103-110 °С.
3. Насыпная плотность – 0,5-0,6 г/см3.
4. Твердость по вдавливанию шарика под заданной нагрузкой – (1,66-2,25)·105 Па; 1,7-2,3 кгс/см2.
5. Усадка при литье – 1,0-3,5 %.
6. Водопоглощение за 30 суток – 0,020 %.
7. Разрушающее напряжение при изгибе – (117,6-196,07)·105 Па; 120-200 кгс/см2.
8. Предел прочности – (137,2-166,6)·105 Па; 140-170 кгс/см2.
9. Удельное объемное электрическое сопротивление – 1016-1017 Ом·см.
10. Удельное поверхностное электрическое сопротивление – 1015 Ом.
11. Температура хрупкости для полиэтилена с показателем текучести расплава в г/10 мин
0,2-0,3 – не выше минус 120 °С,
0,6-1,0 – не выше минус 110 °С,
1,5-2,2 – не выше минус 100 °С,
3,5 – не выше минус 80 °С,
5,5 – не выше минус 70 °С,
7-8 – не выше минус 60 °С,
12 – не выше минус 55 °С,
20 – не выше минус 45 °С.
12. Модуль упругости (секущий) для полиэтилена плотностью в г/см2
0,917-0,921 – (882,3-1274,5)·105 Па; 900-1300 кгс/см2,
0,922-0,926 – (1372-1764,7)·105 Па; 1400-1800 кгс/см2,
0,928 – 2107,8 ·105 Па; 2150 кгс/см2.
13. Тангенс угла диэлектрических потерь при частоте 10100 Гц – 0,0002-0,0005.
14. Диэлектрическая проницаемость при частоте 1010 Гц – 2,25-2,31.

Сравнительный анализ характеристик ПЭНД и ПЭВД показывает, что ПЭНД, вследствие более высокой плотности, имеет более высокие прочностные показатели: теплостойкость, жесткость и твердость, обладает большей стойкостью к растворителям, чем ПЭВД, но менее морозоустойчив. Несколько хуже, чем у ПЭВД (из-за остатков катализаторов), высокочастотные электрические характеристики, однако это не ограничивает применения ПЭНД в качестве электроизоляционного материала. Кроме того, наличие остатков катализаторов не позволяет использовать ПЭНД в контакте с пищевыми продуктами (требуется отмывка от катализаторов). Благодаря более плотной упаковке макромолекул проницаемость ПЭНД ниже, чем у ПЭВД примерно в 5-6 раз. По химической стойкости ПЭНД также превосходит ПЭВД (особенно по стойкости к маслам и жирам). Но пленки из ПЭВД более проницаемы для газов, а потому непригодны для упаковки продуктов, чувствительных к окислению.

Получение: В промышленности полиэтилен получают полимеризацией этилена при высоком (ПЭВД, ПЭНП) и низком давлениях (ПЭНД, ПЭВП).

Полиэтилен высокого давления (низкой плотности) получается полимеризацией этилена при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа.
Полиэтилен высокого давления выпускают без добавок – базовые марки, или в виде композиций на их основе со стабилизаторами и другим и добавками в окрашенном и неокрашенном виде.

Полиэтилен низкого давления (высокой плотности), получают суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе или полимеризацией этилена в растворе в присутствии титан-магниевого катализатора или CrO3 на силикагеле.
Полиэтилен, получаемый суспензионным методом (суспензионный полиэтилен), выпускают без добавок (базовые марки) и в виде композиций на их основе со стабилизаторами, красителями и другими добавками.
Полиэтилен, получаемый газофазным методом (газофазный полиэтилен), выпускают в виде композиций со стабилизаторами.

Процесс полимеризации при высоком давлении протекает по радикальному механизму, инициаторами являются кислород, пероксиды, например, лаурила или бензоила, или их смесей.
При производстве ПЭВД в трубчатом реакторе этилен, смешанный с инициатором, сжатый компрессором до 25 МПа и нагретый до 70 °С, поступает сначала в первую зону реактора, где подогревается до 180°С, а затем во вторую, где полимеризуется при 190-300 °С и давлении 130-250 МПа. Среднее время пребывания этилена в реакторе 70-100 с, степень превращения 18-20% в зависимости от количествава и типа инициатора. Из полиэтилена удаляют непрореагировавший этилен, расплав охлаждают до 180-190 °С и гранулируют. Гранулы, охлажденные водой до 60-70 °С, подсушивают теплым воздухом и упаковывают в мешки.
Принципиальная схема производства ПЭВД в автоклаве с перемешивающим устройством отличается от производства в трубчатом реакторе тем, что инициатор в парафиновом масле подается специальным насосом высокого давления непосредственно в реактор. Процесс проводят при 250 °С и давлении 150 МПа. Среднее время пребывания этилена в реакторе – 30 с. Степень превращения – около 20%.
Товарный полиэтилен высокого давления выпускают окрашенным и неокрашенным, в гранулах диаметром 2-5 мм.

Процесс полимеризации при низком давлении протекает по координационно-ионному механизму.
Получения ПЭНД в суспензии включает следующие стадии: приготовление суспензии катализатора и раствора активатора в виде комбинации триэтилалюминия и производных титана; полимеризацию этилена при температуре 70-95 °С и давлении 1,5-3,3 МПа; удаление растворителя, сушку и гранулирование полиэтилена. Степень превращения этилена – 98%. Концентрация полиэтилена в суспензии – 45%. Единичная мощность реакторов с усовершенствованной системой теплосъема – до 60-75 тыс. т/год.
Технологическая схема получения ПЭНД в растворе осуществляется, как правило, в гексане при 160-250 °С и давлении 3,4-5,3 МПа в присутствии титан-магниевого катализатора или CrO3 на силикагеле. Время контакта с катализатором 10-15 мин. Полиэтилен из раствора выделяют удалением растворителя последовательно в испарителе, сепараторе и вакуумной камере гранулятора. Гранулы полиэтилена пропаривают водяным паром при температуре, превышающей температуру плавления полиэтилена, чтобы в воду перешли низкомолекулярные фракции полиэтилена и нейтрализовались остатки катализатора. Преимущества полимеризации в растворе перед полимеризацией в суспензии в том, что исключаются стадии отжима и сушки полимера, появляется возможность утилизации теплоты полимеризации для испарения растворителя, облегчается регулирование молекулярной массы полиэтилена.
Газофазную полимеризацию этилена проводят при 90-100 °С и давлении 2 МПа с хромсодержащими соединениями на силикагеле в качестве катализатора. В нижней части реактор имеет перфорированную решетку для равномерного распределения подаваемого этилена с целью создания кипящего слоя, в верхней – расширенную зону, предназначенную для снижения скорости газа и улавливания частиц образовавшегося полиэтилена.
Товарный полиэтилен низкого давления выпускают окрашенным и неокрашенным, обычно в гранулах диаметром 2-5 мм, реже – в виде порошка.

Применение различных катализаторов позволяет поручать разновидности полиэтилена с улучшенными эксплуатационными качествами.
Так, полимеризацией в растворителе в присутствии оксидов Со, Мо, V при 130-170 °С и давлении 3,5-4 МПа получают полиэтилен среднего давления (ПЭСД), разветвленность цепи которого менее 3 ответвлений на 1000 атомов углерода, что повышает его прочностные качества и термостойкость по сравнению с ПЭНД.
Металлоценовые катализаторы делают возможной управляемую полимеризацию по длине цепи, что позволяет получать полиэтилен с заданными потребительскими характеристиками.
Если процесс полимеризации происходит при низком давлении в присутствии металлоорганических соединений, то получается полиэтилен с высокой молекулярной массой и строголинейной структурой, который в отличие от обычного ПЭНД обладает повышенными прочностными показателями, низким коэффициентом трения и высокой износостойкостью, стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах.
Химической модификацией ПЭВД получен линейный полиэтилен низкой плотности – ЛПЭНП, который представляет собой легкий эластичный кристаллизующийся материал с теплостойкостью по Вика до 118 °С. Более стоек к растрескиванию, имеет большую ударную прочность и теплостойкость, чем ПЭВД.
При наполнении ПЭВД крахмалом может быть получен материал, представляющий интерес в качестве биоразрушаемого материала.

Основные производители полиэтилена низкого давления для российского рынка:
Ставролен – в частности, Ставролен РЕ4FE69, Ставролен РЕ4EC04S, Ставролен РЕ3IM61, Ставролен РЕ0ВМ45, Ставролен РЕ3ОТ49, Ставролен РЕ4ВМ42, Ставролен, РЕ4ВМ50В, Ставролен РЕ4ВМ41, Ставролен РЕЕС05, Ставролен РЕ4РР25В;
Казаньоргсинтез – в частности, ПНД 277-73, ПНД 276-73, ПНД 293-285Д, ПНД 273-83, ПНД ПЭ80Б-275, ПНД ПЭ80Б-285Д, ПНД 273-79;
Шуртанский ГХК – в частности, B-Y456, B-Y460, I-0760, I-1561.

Основные производители полиэтилена высокого давления для российского рынка:
Казаньоргсинтез – в частности, ПВД 15813-020, ПВД 15313-003, ПВД 10803-020;
Томскнефтехим – в частности, ПВД 15803-020, ПВД 15313-003;
Уфаоргсинтез – в частности, ПВД 15803-020.

Основные производители полиэтилена кабельных марок для российского рынка:
Казаньоргсинтез – в частности, ПВД 153-02К, ПВД 153-10К, 271-274К;
Шуртанский ГХК – в частности, WC-Y436.

Полиэтилен трубных марок P-Y337 MDPE, P-Y342 HDPE, P-Y456 HDPE производит Шуртанский ГХК. Это же предприятие выпускает пленочный полиэтилен F-Y346, F-0220S, F-0120S, F0120, F0220.

Применениe: Полиэтилен – наиболее широко использующийся полимер. Он лидирует в мировом выпуске полимерных материалов – 31,5% от общего объема производимых полимеров. Технология изготовления изделий из полиэтилена сравнительно проста. Он может быть подвержен переработке всеми известными методами. Сваривается всеми основными способами: горячим газом, присадочным прутком, трением, контактной сваркой.
Для работы с полиэтиленом не требуется применения узкоспециализированного оборудования, как например, для переработки ПВХ, а современная промышленностью выпускает сотни марок добавок и красителей для придания изделиям из полиэтилена самых разнообразных потребительских качеств.
Применяя литье под давлением, из полиэтилена изготавливают широкий спектр товаров бытового назначения, канцтоваров, игрушек. При использовании экструзии получают полиэтиленовые трубы (существует специальные марки – трубный PE63, PE80, PE100), полиэтиленовые кабели (весьма перспективен сшитый полиэтилен), листовой полиэтилен для упаковки и строительства, а также самые разнообразные полиэтиленовые пленки для нужд всех отраслей промышленности. Экструзионно-выдувным и ротационным формованием из полиэтилена создают разного рода емкости, сосуды, тару. Термовакуумным формованием – разнообразные упаковочные материалы. Различные специальные виды полиэтилена, такие как сшитый, вспененный, хлорсульфированный, сверхвысокомолекулярный успешно применяются для создания специальных стройматериалов. Отдельный сегмент современного рынка – рециклинг полиэтилена. Многие компании в России и мире специализируются на покупке полиэтиленовых отходов с дальнейшей переработкой и продажей или использованием вторичного полиэтилена. Как правило, для этого применяется технология экструдирования очищенных отходов и последующим дроблением и получением вторичного гранулированного материала пригодного для изготовления изделий.
Наиболее широко полиэтилен применяют для производства пленок технического и бытового назначения. Преимущества всех типов полиэтилена для упаковочных целей: малая плотность, хорошая химическая стойкость, незначительное водопоглощение, хорошая прозрачность, легкая перерабатываемость, хорошая свариваемость, непроницаемость для водяного пара, высокая вязкость, гибкость, растяжимость и эластичность. Полиэтиленовые пленки используются для производства пакетов для хлеба, овощей, мяса, птицы, мешков для мусора, упаковочных пленок для закрепления грузов. ПЭВД используется для изготовления комбинированных пленок соэкструзией с другими термопластичными полимерами и для нанесения на бумагу, картон, целлофан, алюминиевую фольгу. Во всех этих комбинированных пленках слой ПЭВД придает пленке отличную свариваемость, а другие слои – прочность и непроницаемость для запахов. Для получения определенных свойств осуществляют преобразование полиэтилена винилацетатом. Эти пленки при хорошей прочности более прозрачны и лучше свариваются. Благодаря этому при нагреве и адгезии с другими материалами, они становятся пригодны также для нанесения на картон и другие упаковочные материалы. Отечественный сополимер этилена с винилацетатом, получаемый совместной полимеризацией этилена и винилацетата в массе под высоким давлением, известен под торговой маркой Сэвилен, который широко используется при производстве витых шлангов для воздухоотсосов от различного оборудования.
Полиэтилен используется для производства:
пленок: сельскохозяйственных, упаковочных, термоусадочных, стретч;
труб: газовых, водопроводных, напорных, ненапорных;
емкостей: цистерн, канистр, бутылей;
стройматериалов;
волокон;
предметов домашнего обихода;
санитарно-технических изделий;
деталей автомашин и другой техники;
изоляции электрокабелей;
пенополиэтилена;
протезов внутренних органов;
И это далеко не предел возможностей использования полиэтилена. Тем более, что на рынок постоянно выходят новые марки этого полимера с новыми потребительскими свойствами.
Например, сверхвысокомолекулярный полиэтилен (СВМПЭ), применяемый для изготовления высокопрочных технических изделий, стойких к удару, растрескиванию и истиранию: шестерен, втулок, муфт, роликов, валиков, звездочек, а также изолирующих деталей аппаратуры, работающей в диапазоне высоких и сверхвысоких частот. Кроме того, СВМПЭ находит широкое применение в изготовлении пористых изделий: фильтров, глушителей шума, прокладок, а в эндопротезировании – при создании суставов, черепных и челюстно-лицевых протезов.

Основные производимые марки полиэтилена:
Композиция полиэтилена высокой плотности ПЭ2НТ26-16
Композиция сэвилена 113-27
Композиция сэвилена 113-31
Линейный полиэтилен низкой плотности F-0120
Линейный полиэтилен низкой плотности F-0220
Линейный полиэтилен низкой плотности F-Y620
Линейный полиэтилен низкой плотности F-Y720
Полиэтилен высокого давления (ПЭВД) 15303-003 ГОСТ 16337-77 высшего сорта
Полиэтилен высокого давления (ПЭВД) 15303-003 ГОСТ 16337-77 первого сорта
Полиэтилен высокого давления (ПЭВД) 15803-020 ГОСТ 16337-77 высшего сорта
Полиэтилен высокого давления (ПЭВД) 15803-020 ГОСТ 16337-77 первого сорта
Полиэтилен высокой плотности B-Y250
Полиэтилен высокой плотности B-Y456
Полиэтилен высокой плотности B-Y460
Полиэтилен высокой плотности F-Y346
Полиэтилен высокой плотности I-0754
Полиэтилен высокой плотности I-0760
Полиэтилен высокой плотности I-1561
Полиэтилен высокой плотности O-Y446
Полиэтилен высокой плотности O-Y750
Полиэтилен высокой плотности O-Y762
Полиэтилен высокой плотности P-Y342
Полиэтилен высокой плотности P-Y456
Полиэтилен высокомолекулярный низкого давления 21606 второго сорта
Полиэтилен высокомолекулярный низкого давления 21606 первого сорта
Полиэтилен для кабельной промышленности 153-01К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-01К ГОСТ 16336-77 первого сорта
Полиэтилен для кабельной промышленности 153-02К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-02К ГОСТ 16336-77 первого сорта
Полиэтилен для кабельной промышленности 153-10К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-10К ГОСТ 16336-77 первого сорта
Полиэтилен марки HFP-4612H
Полиэтилен марки HMI-6582M
Полиэтилен марки HXF 4810H
Полиэтилен марки HXF-4607
Полиэтилен марки HXF-5115
Полиэтилен марки LLI-2420
Полиэтилен марки MXP-3920H
Полиэтилен марки SHF-2680РН
Полиэтилен марки SHF-3080H
Полиэтилен марки SMF 2210
Полиэтилен марки SMF-1810
Полиэтилен марки SMF-1810H
Полиэтилен марки НХВ 5115Н
Полиэтилен марки НХВ 5210Н
Полиэтилен низкого давления марки 271-70 К
Полиэтилен низкого давления марки 271-81 К
Полиэтилен низкого давления марки 273-79
Полиэтилен низкого давления марки 273-83
Полиэтилен низкого давления марки 276-73
Полиэтилен низкого давления марки 277-73
Полиэтилен низкого давления марки F 3802B
Полиэтилен низкого давления марки РЕ 3 OT 49
Полиэтилен низкого давления марки РЕ 4 BM 41
Полиэтилен низкого давления марки РЕ 4 FE 69
Полиэтилен низкого давления марки РЕ 4 ЕС 04S
Полиэтилен низкого давления марки РЕ 4 РР 21 В
Полиэтилен низкого давления марки РЕ 4 РР 25 В
Полиэтилен низкого давления марки РЕ 6 GP 26 B
Полиэтилен низкой плотности I-0525
Полиэтилен низкой плотности I-1625
Полиэтилен низкой плотности WC-Y436
Полиэтилен низкой плотности WC-Y736
Полиэтилен средней плотности F-Y240
Полиэтилен средней плотности F-Y336
Полиэтилен средней плотности P-Y337
Полиэтилен средней плотности R-0333 U
Полиэтилен средней плотности R-0338 U
Сэвилен 11104-030
Сэвилен 11205-040
Сэвилен 11306-075
Сэвилен 11407-027
Сэвилен 11507-070
Сэвилен 11607-040
Сэвилен 11708-210
Сэвилен 11808-340
Сэвилен 11908-125
Сэвилен 12206-007
Сэвилен 12306-020
Сэвилен 12508-150

polymers.com.ua

Полиэтилен - Энциклопедия wiki.MPlast.by

Маркировка изделий из полиэтилена

Полиэтилен [—СН2—СН2—]n представляет собой карбоцепный полимер алифатического непредельного углеводорода олефинового ряда — этилена. Макромолекулы полиэтилена имеют линейное строение с небольшим числом боковых ответвлений. Молекулярная масса его в зависимости от способа полимеризации колеблется от десятков тысяч до нескольких миллионов.

Полиэтилен — кристаллический полимер. При комнатной температуре степень кристалличности полимера достигает 50—90% (в зависимости от способа получения). Макромолекулы полиэтилена в кристаллических областях имеют конформацию плоского зигзага с периодом идентичности 2,53·10-4 мкм

Формула полиэтилена

Полиэтилен отличается от других термопластов весьма ценным комплексом свойств. Изделия из полиэтилена имеют высокую прочность, стойкость к действию агрессивных сред и радиации, нетоксичность, хорошие диэлектрические свойства. Перерабатывается полиэтилен всеми известными для термопластов методами.

Благодаря доступности сырья, сочетанию ценных свойств со сравнительно низкими затратами на его получение полиэтилен по объему производства занимает среди пластмасс первое место.

Полиэтилен получают радикальной полимеризацией этилена при высоком давлении и ионной полимеризацией при низком или среднем давлении.

В зависимости от способа полимеризации свойства полиэтилена значительно изменяются. Полиэтилен, получаемый при высоком давлении (радикальная полимеризация), характеризуется более низкой температурой плавления и плотностью чем полиэтилен, получаемый ионной полимеризацией. При радикальном механизме полимеризации образуется продукт, содержащий значительное число разветвленных звеньев в цепи, в то время как при ионном механизме полимер имеет линейное строение и высокую степень кристалличности.

Получаемые полимеры несколько различаются и по свойствам, и, как следствие, по режимам переработки в изделия и качеству изделий. Это объясняется особенностями строения полимерной цепи, которое, в свою очередь, зависит от условий протекания полимеризации.


 Краткий исторический очерк

Полимеризацию этилена исследовал А. М. Бутлеров. Низкомолекулярный полимер этилена впервые был синтезирован Густавсоном в России в 1884 г. Однако долгое время удавалось получать только полимеры низкой молекулярной массы (не более 500), представлявшие собой вязкие жидкости и применявшиеся в технике лишь в качестве синтетических смазочных масел.

В 30-х годах 20 века в Англии и Советском Союзе в лабораторных условиях при давлении более 50 МПа и температуре около 180 °С впервые был получен высокомолекулярный твердый полиэтилен.

Промышленный способ получения полиэтилена при высоком давлении был осуществлен в Англии в 1937 г. В 1952 г. Циглером были найдены катализаторы на основе комплекса триэтилалюминия и тетрахлорида титана, которые вызывали полимеризацию этилена с образованием твердого продукта высокой молекулярной массы при низком давлении.

Несколько позже фирма «Филлипс» (США) разработала новый катализатор для полимеризации этилена при среднем давлении на основе оксидов металлов переменной валентности (оксид хрома), нанесенных на алюмосиликат. Полимеризация этилена проводилась при давлении 3,5—7,0 МПа в среде инертного углеводорода (пентана, гексана, октана и др.).

В 1970—75 гг. в Советском Союзе совместно со специалистами ГДР был разработан и внедрен в промышленность новый способ получения полиэтилена при высоком давлении в конденсированной газовой фазе (процесс «Полимир»).

В последние годы разработано несколько высокоэффективных процессов получения полиэтилена в присутствии различных катализаторов. Из этих процессов наиболее интересными являются производство полиэтилена низкого давления в газовой фазе в присутствии катализаторов — органических соединений хрома на силикатном носителе при давлении 2,2 МПа и температуре 85—100°С и производство линейного полиэтилена в газовой фазе в псевдоожиженном слое в присутствии высокоэффективного катализатора на основе соединений хрома при давлении 0,68—2,15 МПа и температуре 100 °С (процесс «Юнипол»). Оба процесса проводятся на одном и том же оборудовании.

В настоящее время в промышленности получили распространение следующие методы производства полиэтилена.

Полимеризация этилена при высоком давлении 150—350 МПа и температуре 200—300 °С в конденсированной газовой фазе в присутствии инициаторов (кислорода, органических пероксидов). Получаемый полиэтилен имеет плотность 916— 930 кг/м3. Такой полиэтилен называется полиэтиленом высокого давления (ПЭВД) или полиэтиленом низкой плотности (ПЭНП).

Полимеризация этилена при низком давлении 0,2—0,5 МПа и температуре около 80°С в суспензии (в среде органического растворителя) в присутствии металлоорганических катализаторов. Получаемый полиэтилен имеет плотность 959—960 кг/м3. В присутствии хроморганических катализаторов полимеризация этилена проводится при давлении 2,2 МПа и температуре 90— 105°С в газовой фазе (без растворителя). Получаемый полиэтилен имеет плотность 950—966 кг/м3. Такой полиэтилен называется полиэтиленом низкого давления (ПЭНД) или полиэтиленом высокой плотности (ПЭВП).

Полимеризация этилена при среднем давлении 3—4 МПа и температуре 150 °С в растворе в присутствии катализаторов — оксидов металлов переменной валентности (полиэтилен имеет плотность 960—970 кг/м3). Получаемый полиэтилен называют полиэтиленом среднего давления (ПЭСД) или высокой плотности.


 Свойства полиэтилена

Полиэтилен представляет собой термопластичный полимер плотностью 910—970 кг/м3и температурой размягчения 110—130 °С. Выпускаемый в промышленности разными методами полиэтилен различается по:

  • плотности,
  • молекулярной массе
  • степени кристалличности.
Таблица 1: Различия между ПЭВД и ПЭНД по плотности, молекулярной массе и степени кристалличности
 Полиэтилен низкой плотности (ВД)Полиэтилен высокой плотности (НД и СД)
Плотность, кг/м3910—930950—970
Молекулярная масса80000—50000080000—800000
Степень кристалличности, %50—6575—90

В зависимости от свойств и назначения полиэтилен выпускается различных марок, отличающихся плотностью, показателем текучести расплава, наличием или отсутствием стабилизаторов.

Таблица 2: Основные физико-механических свойства полиэтиленов:
 Полиэтилен низкой плотности (ВД)Полиэтилен высокой плотности (НД и СД)
Разрушающее напряжение, МПа   
при растяжении9,8—16,721,6—32,4
при изгибе  11,8—16,719,6-39,2
Относительное удлинение при разрыве, %500-600300—800
Модуль упругости при растяжении, МПа 147—245540—981
Модуль упругости при изгибе, МПа118—255636—735
Твердость по Бринеллю, МПа13,7—24,544,2—63,8
Число перегибов пленки на 180 град30001500—2000

При длительном действии статических нагрузок полиэтилен деформируется. Предел длительной прочности для полиэтилена низкой плотности равен 2,45 МПа, для полиэтилена высокой плотности — 4,9 МПа.

Готовые изделия из полиэтилена, находящиеся длительное время в напряженном состоянии, могут растрескиваться. С увеличением молекулярной массы, уменьшением степени кристалличности и полидисперсности стойкость к растрескиванию полиэтилена возрастает.

Таблица 3:Показатели теплофизических свойств полиэтилена:
 Полиэтилен низкой плотности (ВД)Полиэтилен высокой плотности (НД и СД)
Температура плавления, °С 105-108120—130
Теплостойкость по НИИПП, °С108-115120—135
Удельная теплоемкость при 25 °С, кДж/(кг·К)1,9-2,51,9-2,4
Теплопроводность, Вт/(м·К)0,290,42
Термический коэффициент линейного расширения в интервале 0—100 °С, 1/град(2,2-5,5)·10-4(1-6)·10-4
Термический коэффициент объемного расширения в интервале 50—100 °С, 1/град(6,0-16,0)·10-4(5-16,5)·10-4
Температура хрупкости (морозостойкость)°Сот —80 до —120от —70 до —150;

С повышением плотности полиэтилена его температура плавления повышается.

Изделия из полиэтилена низкой плотности могут эксплуатироваться при температурах до 60 °С, из полиэтилена высокой плотности — до 100 °С. Полиэтилен становится хрупким только при -70 °С, поэтому изделия из него могут эксплуатироваться в суровых климатических условиях.

Полиэтилен обладает высокой водостойкостью, водопоглощение полиэтилена низкой плотности за 30 сут при 20 °С составляет 0,04%, полиэтилена высокой плотности 0,01—0,04%.

Полиэтилен обладает хорошими диэлектрическими свойствами.

Таблица 4: Электрические показатели свойств полиэтиленов:
 Полиэтилен низкой плотности (ВД)Полиэтилен высокой плотности (НД и СД)
Диэлектрическая проницаемость при 1 МГц2,2-2,32,1-2,4
Тангенс угла диэлектрических потерь при 1 МГц и 20°C(2-3)·10-4(2-5)·10-4
Удельное электрическое сопротивление  
 поверхностное, Ом<1014<1014
объемное, Ом·м10151015
Электрическая прочность при переменном токе для образца толщиной 1 мм, кВ/мм 45—6045—60

 Плотность полиэтилена существенно не влияет на его электрические свойства. Примеси, содержащиеся в полиэтилене высокой плотности, увеличивают диэлектрические потери. Однако небольшие диэлектрические потери позволяют применять его в качестве ценного диэлектрика в широком диапазоне частот и температур.

Устойчивость полиэтилена к агрессивным средам

Полиэтилен не растворяется при комнатной температуре в органических растворителях. При температуре выше 70 °С он набухает и растворяется в хлорированных и ароматических углеводородах.

Полиэтилен стоек к действию концентрированных кислот, щелочей и водных растворов солей. Концентрированная серная и соляная кислоты практически не действуют на полиэтилен.

Азотная кислота и другие сильные окислители разрушают полиэтилен.

Для увеличения стойкости к термоокислительным процессам и атмосферным воздействиям в полимер вводят различные стабилизаторы.


 Переработка и применение полиэтилена

Полиэтилен перерабатывается всеми методами, применяемыми для переработки термопластов: литьем под давлением, экструзией и прессованием. Около половины всего выпускаемого полиэтилена ВД расходуется на производство пленки, используемой в сельском хозяйстве и для упаковки продуктов. Из полиэтилена изготовляют, главным образом, предметы домашнего обихода, игрушки, конструкционные детали, трубы. Он применяется в качестве электроизоляционного материала в радиотехнике и телевидении, в кабельной промышленности, в строительстве, в качестве антикоррозионных покрытий, для пропитки тканей, бумаги, древесины и т. д.

Полиэтилен всех марок является физиологически безвредным, поэтому он широко применяется в медицине, в жилищном строительстве, а также для получения различных бытовых изделий и товаров народного потребления.


 

Список литературы:
Зубакова Л. Б. Твелика А. С, Даванков А. Б. Синтетические ионообменные материалы. М., Химия, 1978. 183 с.
Салдадзе К М., Валова-Копылова В. Д. Комплексообразующие иониты (комплекситы). М., Химия, 1980. 256 с.
Казанцев Е. Я., Пахолков В. С, Кокошко 3. /О., Чупахин О. Я. Ионообменные материалы, их синтез и свойства. Свердловск. Изд. Уральского политехнического института, 1969. 149 с.
Самсонов Г. В., Тростянская Е. Б., Елькин Г. Э. Ионный обмен. Сорбция органических веществ. Л., Наука, 1969. 335 с.
Тулупов П. Е. Стойкость ионообменных материалов. М., Химия, 1984. 240 с.
Полянский Я. Г. Катализ ионитами. М., Химия, 1973. 213 с.
Кассиди Г. Дж.у Кун К А. Окислительно-восстановительные полимеры. М., Химия, 1967. 214 с.
Херниг Р. Хелатообразующие ионообменники. М., Мир, 1971. 279 с.
Тремийон Б. Разделение на ионообменных смолах. М., Мир, 1967. 431 с.
Ласкорин Б. Я., Смирнова Я. М., Гантман М. Я. Ионообменные мембраны и их применение. М., Госатомиздат, 1961. 162 с.
Егоров Е. В., Новиков П. Д. Действие ионизирующих излучений на ионообменные материалы. М., Атомиздат, 1965. 398 с.
Егоров Е. В., Макарова С. Б. Ионный обмен в радиохимии. М., Атомиздат,
Автор: В.В. Коршак, академик
Источник: В.В. Коршак, Технология пластических масс,1985 год
Дата в источнике: 1985 год

mplast.by

Самое важное о свойствах полиэтилена

Полиэтилен – полимерный материал, нашедший широкое применение в промышленности и в быту. Благодаря относительно простой и малозатратной технологии синтеза и широкому спектру возможных физико-технических свойств, используется для решения многих задач: от изготовления упаковочных материалов до литья детских игрушек и сельскохозяйственного инвентаря. Продается в виде малопрозрачных светлых гранул с гладкой блестящей поверхностью. Перерабатывается методом литья, экструзии и другими методами.

Основные физико-химические свойства полиэтилена

Следует отметить, что термин «полиэтилен» охватывает достаточно большое количество разнообразных веществ, объединяет которые только то, что они получены в ходе реакций полимеризации этилена. Однако в зависимости от параметров реакции, а также дополнительных компонентов, этот материал может приобретать различные свойства. Можно выделить два ключевых вида полиэтилена:

  • Полиэтилен высокого давления (или низкой плотности). Получают в ходе полимеризации под высоким давлением, в результате чего молекула имеет незначительную степень ветвления. Полученный материал отличается мягкостью, пластичностью и высокой эластичностью. Используется преимущественно для изготовления пленок и тары.
  • Полиэтилен низкого давления (или высокой плотности). Получают при низком давлении, в результате чего формируется жесткая молекулярная структура с существенным ветвлением. Этим объясняется высокая прочность материала, его устойчивость к механическим воздействиям.
  • Сополимеры и прочие модификации. Кроме гомополимеров (то есть, материалов, состоящих только из связанных в одной молекуле мономеров этилена) применяются также сополимеры, имеющие различную структуру. К примеру, блок-сополимер пропилена с этиленом является эффективным решением и применяется для изготовления пластмасс.

Базовые химические свойства полиэтиленов

При этом можно выделить общие свойства для всех видов полиэтилена:

  • Нейтральность по отношению к кислотам и щелочам. Полиэтилен не растворяется при комнатной температуре в кислотной и щелочной среде, что позволяет применять его для упаковки пищевых продуктов и некоторых агрессивных веществ.
  • Отсутствие каких-либо выделений. Материал не выделяет в окружающую среду испарений, газов, потому безопасен для здоровья.
  • Является диэлектриком, может применяться для изоляции.
  • Относительно хорошая теплостойкость: выдерживает нагревание до 80—120°С без размягчения, что позволяет применять материал для упаковки горячих продуктов.
  • Устойчив к воздействию влаги, обеспечивает гидроизоляцию.
  • Подвержен фотостарению под воздействием прямых солнечных лучей, со временем деградирует на солнце.

Сегодня полиэтилен преимущественно используется для изготовления упаковочных материалов (пленки), различной тары, электроизоляции, корпусов для различной техники. Некоторые марки полиэтилена низкого давления могут применяться в качестве брони для легких бронежилетов.;


unitreid-group.com

Отправить ответ

avatar
  Подписаться  
Уведомление о