Свойства алюминиевых сплавов – aluminium-guide.com
За какие свойства алюминия и алюминиевых сплавов их так охотно применяют во всех отраслях промышленности и строительстве?
Коррозионная стойкость
Тонкая естественная оксидная пленка, которая прочно «сцеплена» с основным металлом, обеспечивает многим алюминиевым сплавам значительное сопротивление коррозии во многих атмосферных и химических средах. Особенно отличаются в этом сплавы серий 1ххх, 3ххх, 5ххх и 6ххх.
Рисунок 1 – Влияние легирующих элементов алюминиевых сплавов
на их коррозионную стойкость и усталостную прочность [3]
Теплопроводность
Алюминий и алюминиевые сплавы являются хорошими проводниками тепла. Теплопроводность алюминиевых сплавов более чем в четыре раза выше, чем у углеродистых сталей. Они начинают плавиться при значительно более низкой температуре, чем стали. Температура плавления чистого алюминия составляет около 660 °С, а алюминиевые сплавы в зависимости от степени легирования начинают плавиться при более низких температурах, например, при 515 °С для сплава 2017 (Д1).
Рисунок 2 – Теплопроводность алюминия в сравнении с другими металлами [3]
Электропроводность
Чистый алюминий и некоторые его сплавы имеют очень высокую электропроводность (низкое электрическое сопротивление), уступая только меди среди металлов, которые применяют в качестве проводников электричества. Вместе с тем, на высоковольтных линиях электропередач, если это позволяет степень загрязненности воздушной атмосферы, применяют именно алюминиевые провода. Они имеют большее поперечное сечение, чем эквивалентные медные провода, однако и вдвое меньший вес, что позволяет, в частности, реже ставить опоры и уменьшать их высоту.
Рисунок 3 – Электрические свойства алюминия [3]
Отношение прочности к весу
Высокое отношение прочность/вес – относительно высокая прочность при низкой плотности – определяет высокую эффективность алюминиевых сплавов и открывает много возможностей для замены более тяжелых металлов без потери (а может быть и с увеличением) несущей способности изделия или детали. Эта особенность алюминиевых сплавов в сочетании с хорошей коррозионной стойкостью, а также возможности полной переработки после окончания срока службы, обеспечивает им широкое применение производстве контейнеров и в транспортном машиностроении (самолеты, автомобили, пассажирские вагоны).
Рисунок 4 – Объем на единицу веса алюминия в сравнении с другими металлами [3]
Алюминий при низких температурах
Алюминиевые сплавы, особенно сплавы серий 3ххх, 5ххх и 6ххх идеально подходят для работы при низких температурах. Многочисленные данные подтверждают, что их пластичность и вязкость, также как и прочность, выше при отрицательных температурах, вплоть до абсолютного нуля, чем при «комнатной» температуре.
Рисунок 5 – Прочностные свойства алюминиевого сплава 6061 (АД33),
термически обработанного, искусственно состаренного [3]
Технологическая обработка
Алюминиевые сплавы легко обрабатываются большинством известных технологий обработки металлов и особенно легко поддаются прессованию. Прессованием называется процесс продавливания нагретого металла через матрицу, формирующую профили со сложным поперечным сечением. Иногда, это процесс называют более подходящим именем – экструзия. Это свойство алюминиевых сплавов дает возможность изготавливать из них профили с практически неограниченным разнообразием форм поперечного сечения. Это позволяет располагать металл в тех местах и таким образом, чтобы обеспечивать профилю максимальную несущую способность под воздействием заданных нагрузок.
Методы соединения алюминия
Детали из алюминиевых сплавов соединяют с помощью большого количества способов, включая, сварку, пайку, клепку, винтовые соединения, не говоря о большом разнообразии механических способов. Сварка алюминия может показаться трудной для тех, кто имеет опыт работы только со сталями и попытается перенести его на алюминий. Сварку алюминиевых сплавов считают довольно легкой, когда применяют такие проверенные методы, как дуговая сварка плавящимся электродом (MIG) и вольфрамовым неплавящимся электродом (TIG) в среде инертного газа.
Переработка лома
Важной характеристикой алюминиевых сплавов является то, что их жизненный цикл практически полностью замкнут – они легко поддаются повторному использованию – рециклингу – и, в отличие от других конструкционных материалов, они перерабатываются почти в такую же высококачественную продукцию.
Рисунок 5 – Линия по переработке использованных алюминиевых банок
в слитки для прокатки тонкого листа для изготовления новых банок [3]
Свойства типичные и нормированные
Данные о свойствах алюминия и алюминиевых сплавов, как и других промышленных материалов, бывают двух основных видов:
- типичные (номинальные) и
- нормированные (предельные).
Типичные физические свойства
Физические свойства, такие как:
- коэффициент термического расширения,
- коэффициент теплопроводности,
- электропроводимость,
- электрическое сопротивление и даже
практически всегда являются типичными величинами. Их получают по результатам лабораторных испытаний репрезентативных промышленных партий изделий.
Типичные физические свойства алюминиевых сплавов используются как основание для сравнения сплавов и их состояний и не должны применяться для инженерных расчетов.
Типичные физические свойства не являются гарантированными величинами, поскольку в большинстве случаев представляют собой осредненные значения для изделий с различными размерами, формами, и методами изготовления и не могут быть в точности репрезентативными для изделий любых размеров и форм.
Типичные механические свойства
Механические свойства могут быть и типичными, и нормированными.
Типичные значения механических свойств:
- предела прочности,
- предела текучести,
- удлинения,
- твердости,
- усталостной выносливости
– это их средние или медианные значения вблизи пика функций распределения
.Рисунок 6 – Влияние легирующих элементов на прочность при растяжении, твердость,
чувствительность к надрезу и пластичность [3]
Рисунок 7 – Влияние легирующих элементов алюминиевых сплавов
на их плотность и модуль упругости (модуль Юнга) [3]
Рисунок 8 – Различие явления усталости
между низкоуглеродистой сталью и алюминиевыми сплавами [3]
Эти функции распределения получают при обработке результатов стандартных испытаний выборок образцов из многих промышленных партий изделий. Типичные значения являются репрезентативными для изделий со средним поперечным сечением или толщиной. Они наиболее хорошо подходят для демонстрации соотношений между сплавами и их состояниями. Однако эти данные не годятся для прочностных расчетов конструкций и деталей. Так, типичные величины предела прочности на растяжение, например, не включают их более высоких значений (на 5-10 % выше), свойственных тонким прессованным профилям, а также более низких значений, которые характерны для очень толстых, термически упрочненных изделий.
Нормированные механические свойства
Для прочностных расчетов конструкций и деталей применяют нормированные (предельные) значения механических свойств. Нормированное значение – это значение, характеризующее свойства материала или продукта, которое имеет определенную вероятность не превышения при неограниченной серии испытаний. Это числовое значение, обычно соответствует определенной квантили принятого статистического распределения рассматриваемого материала или продукта.
Предельное значение механических свойств обычно устанавливают на базе принципа, согласно которому 99 % материала партии изделий соответствуют ему с вероятностью 0,95. В большинстве случаев эти предельные значения основаны на нормальном распределении данных. Предельные значения механических свойств обычно используют для расчета деталей или конструкций, а также для приемки промышленных партий.
Осредненные механические свойства
Некоторые прочностные параметры материала (например, модуль упругости, коэффициент ползучести, коэффициент термического расширения) используют в прочностных расчетах и в виде типичных, осредненных величин. В некоторых случаях, например, при оценке устойчивости, применяют более низкое или более высокое значение модуля упругости по отношению к его среднему значению .
Источники:
1. Aluminium and Aluminium Alloys. – ASM International, 1993.
2. EN1990:2002 Eurocode 0: Basis of structural design.
3. TALAT 1501
Сплавы алюминия
Алюминий – самый распространенный металл в земной коре и 13-й элемент в таблице Менделеева. Получают его путем электролиза оксида Al2O3.
Алюминий мягкий и легкий, устойчив к коррозии, плавится при 660 °С, имеет высокую тепло- и электропроводность, серебристо-белый цвет, малую плотность и хорошие прочностные характеристики. Алюминий и сплавы на его основе хорошо поддаются обработке, холодной и горячей деформации.
Какие бывают сплавы алюминия
По принципу использования сплавы алюминия делятся на 2 группы:
- Деформируемые – при нагреве они приобретают высокую пластичность, хорошо поддаются обработке давлением. Получают их путем добавления в алюминий растворимых в нем легирующих компонентов. Основные из них – Cu, Mn, Mg, Zn, в небольших количествах вводятся Si, Fe, Ni и другие элементы.
- Литейные – отличаются жидкотекучестью, применяются для фасонного литья заготовок. Для усиления литейных характеристик легируются кремнием.
В зависимости от использования термообработки различают термически упрочняемые и не упрочняемые сплавы. Кроме технически чистого алюминия, для получения сплавов на его основе используются силумины – двойные сплавы с кремнием (10–13% Si) и дополнительными примесями Fe, Ca, Ti, Mn (общее содержание 0,5–1,7%).
В зависимости от используемых легирующих элементов различают:
Сплавы | Свойства |
---|---|
Al-магниевые | Пластичность, хорошая свариваемость, устойчивость к коррозии, высокая усталостная прочность. Содержат до 6% Mg – чем больше, тем прочнее материал. |
Al-марганцевые | Прочность, пластичность, стойкость к коррозии, хорошая свариваемость. Легируются Ti, Fe, Si. |
Алькусины – Al-Cu-Si | Твердость, отличные технические характеристики. Используются для производства блоков цилиндров и втулочных подшипников. |
Al-медные | В термоупрочненном состоянии имеют превосходные механические свойства, но склонны к коррозии, нуждаются в защитных покрытиях. Легируются Si для придания способности к искусственному старению, Fe и Ni для усиления жаропрочности, Mn и Mg для повышения прочности и предела текучести. |
Силумины – Al-кремниевые | Легируются Na или Li. Имеют выраженные литейные свойства. Востребованы при декоративном литье, производстве частей бытовых приборов и корпусов механизмов. |
Al-Zn-Mg | Прочность, податливость обработке, подверженность коррозии при механическом напряжении – устраняется добавлением в состав меди. |
Авиаль – Al-Mg-Si с добавлением Mn, Cu, Cr. | Пластичность, устойчивость к коррозии (повышается при снижении содержания меди до 0,1%). Авиаль подвергается искусственному состариванию и термоупрочнению путем выделения Mg2Si. Используется для изготовления корпусов смартфонов, штампованных и кованых изделий сложной геометрии. |
Марки алюминия и его сплавов
Первичный алюминий, используемый для переплавки с целью получения сплавов, бывает:
- Высокой чистоты (˃99,95% Al) – используется для получения спецсплавов авиационного и космического назначения. Включает марки А95, А97, А98, А99, А995. Числовое обозначение в маркировке обозначает сотые доли в процентном содержании алюминия.
- Технической чистоты (99–99,85% Al) – применяется для производства сплавов общего назначения. Включает марки А0, А35, А5, А5Е, А6, А7Э, А7Е, А7, А8, А85.
Альтернативный вариант маркировки первичного алюминия – в виде обозначения Pxxxx, где указано предельное содержание кремния и железа в сотых долях процента. Например, Р0506 – первичный Al с содержанием до 0,05% Si и 0,06% Fe.
Сплавы на основе алюминия маркируются по ГОСТ 4784-97 при помощи условных обозначений:
- А – технический Al;
- АВ – авиаль;
- Д – дюраль;
- АК – ковкий;
- В – высокой прочности;
- АЛ – литейный;
- АМг – с магнием;
- АМц – с марганцем;
- САП и САС – спеченные порошки и сплавы.
Далее в маркировке указывается номер марки и литера, отражающая состояние сплава:
- М – мягкий, отожженный;
- Т – подверженный закалке и естественному состариванию;
- Т1 – подверженный закалке и искусственному состариванию при 135–180 °С;
- П – полунагартованный;
- Н – нагартованный;
- А – плакированный, с нанесением чистого слоя Al;
- ПЧ, Ч – содержащий примеси.
Применение
Алюминиевые сплавы востребованы в автомобилестроении, самолетостроении, машиностроении, судостроении, электротехнике, пищевой промышленности, энергетической и строительной отрасли. Они используются для изготовления зеркал, фольги, проводников, бижутерии, столовых приборов, посуды. Из алюминия производят пистолеты, автоматы и другое стрелковое оружие, а в ракетной технике он используется в составе топлива.
Литейные и деформируемые сплавы Al
Литейные | Деформируемые | |
---|---|---|
Марки | Силумины Al-Si: АЛ2, АЛ4, АЛ9, АЛ34. Хорошо поддаются литью, сварке, анодированию, резке. Дюрали Al-Cu. Сплавы АМг. |
Технический. Дюраль с Cu и Mg – Д1, Д2, Д19, Д21. Сплавы АМц. Высокопрочные сплавы с Mg, Zn, Cu – В92, В95. Авиаль АД 31, АД35, АД38. ВАД23. АМг6 и другие магниевые сплавы. Жаропрочные серии АК. |
Технология производства | Расплавленный металл подается в литейную форму, соответствующую параметрам создаваемого изделия. | Изначально производятся в виде слитков, а в дальнейшем – приобретают необходимую форму при помощи обработки давлением. Для получения листов и фольги выполняется прокатка. Для получения труб, прутков, профилей – прессование. Сложные детали создают формовкой, а для улучшения механических характеристик – ковкой. |
Компания «Металлист» выполняет комплекс услуг по обработке алюминия и его сплавов:
Алюминий и сплавы. Свойства.
Свойства алюминия
Алюминий и его сплавы имеют малую плотность 2,64— 2,89 г/см3. Прочностные же свойства зависят от легирования, термической обработки, степени деформирования и могут достигать высоких значений. По прочности многие алюминиевые сплавы не уступают конструкционным сталям.
Чистый алюминий (суммарное содержание примесей не более 0,05%) имеет гранецентрированную кубическую решетку с параметрами 4,04 А. Температура его плавления 659,8—660,2° С, температура кипения 1800—2500° С.
Для сплавов алюминия электропроводность составляет 30—50% электропроводности меди, а для чистого алюминия 62—65% электропроводности меди.
Алюминий окисляется с образованием окисной пленки Аl203, которая защищает его от дальнейшего окисления,Химический состав деформируемых и литейных алюминиевых сплавов по ГОСТам 4784—65 и 2685—63.
Из алюминиевых сплавов в основном изготовляют конструкции, работающие при сравнительно низких температурах не свыше 350° С. Так дуралюмин используют для работы при температурах не более 200° С, сплавы типа В95 до 125° С, авиали до 80—100° С при длительной работе и до 200° С при кратковременной. Специальные сплавы САП (спеченный алюминиевый порошок) применяют и для работы при более высоких температурах. До температуры 100° С кратковременные механические свойства меняются мало. Обращает внимание высокое относительное удлинение алюминиевых сплавов при низких температурах.
Характеристики длительной прочности термически не упрочняемых сплавов обычно ниже, чем термически упрочняемых.
Длительные выдержки сплавов типа авиаль при температурах свыше 80—100° С приводят к их упрочнению и снижению пластических свойств. Исследованиями, проведенными авторами, установлено, что относительное удлинение снижается при указанных условиях с 20—25% (исходное состояние после закалки и естественного старения) до 1—2%. Подобное ухудшение свойств, при которых возможно хрупкое разрушение конструкций, является существенным препятствием применения сплавов такого типа для работы при температурах выше 80° С.
Циклическая прочность
Циклическая прочность деформируемых сплавов при симметричном изгибе на базе 5*108циклов составляет 3,5 кГ/мм2 для сплава А ДМ, 4,2—6,3 кГ/мм2 для сплава АДН, 5—6,5 кГ/мм2 для сплава АМцАМ, 15 кГ/мм2 для сплава В95.
Области применения литейных сплавов различны. Сплавы группы I рекомендуют для литья в песчаные формы, кокиль и для литья под давлением. Сплав АЛ22 обычно применяют в закаленном состоянии, а сплав АЛ23 и АЛ29 — в литом. Сплавы группы II имеют высокие литейные свойства благодаря наличию в сплавах двойной эвтектики, которая уменьшает также литейную усадку и склонность к образованию горячих трещин. Сплавы AЛ2, АЛ4 и АЛ9 обладают повышенной коррозионной стойкостью, поэтому их применяют для изделий, работающих во влажной и морской средах. С целью получения заданных механических свойств отливки подвергают термической обработке по различным режимам.
Сплавы группы III обладают высокими механическими свойствами, особенно пределом текучести и повышенной жаропрочностью. У этих сплавов пониженные литейные свойства и коррозионная стойкость, кроме того, они склонны к образованию горячих трещин. Для выполнения отливок сложной формы такие сплавы не рекомендуют. Сплав АЛ7 применяют для деталей, испытывающих средние нагрузки и температуры не свыше 200° С. Сплав АЛ 19 по сравнению с АЛ 17 имеет более высокую жаропрочность (в 2 раза), и применяют его для силовых деталей в условиях статических и ударных нагрузок при температурах до 300° С.
Сплавы группы IV применяют для всех способов литья. По литейным свойствам они менее технологичны, чем сплавы II.
Сплавы группы V применяют для самых разнообразных деталей, работающих при высоких температурах. К этой группе относятся также самозакаливающиеся сплавы.
Механические свойства
Механические свойства всех вышеуказанных, литейных сплавов зависят от режимов термической обработки, определяющей структурное и фазовое состояние сплавов.
Высокая коррозионная стойкость алюминия объясняется образованием окисиой пленки Аl203. Коррозионная стойкость алюминия зависит от влияния агрессивной среды на растворимость защитной окисной пленки, от чистоты обработки поверхности и режима термической обработки. Чистый алюминий обладает высокой стойкостью в сухом и влажном воздухе. В азотной кислоте концентрации 30—50% при увеличении температуры скорость коррозии алюминия возрастает. При концентрации азотной кислоты выше 80% коррозия резко снижается. Алюминий обладает высокой стойкостью в разбавленной серной кислоте и в концентрированной при 20° С. Средние концентрации серной кислоты (более 40%) наиболее опасны для алюминия. При комнатных температурах алюминий устойчив в фосфорной и уксусных кислотах. Такие, как муравьиная, щавелевая, трихлоруксусная и другие хлороорганические кислоты значительно разрушают алюминий. В растворах едких щелочей окисная пленка алюминия растворяется. Растворы углекислых солей калия и натрия оказывают меньшее влияние на скорость коррозии алюминия.
Алюминий при температурах до 300° С обладает хорошей стойкостью в жидких металлических средах, например, натрии.
Коррозионная стойкость алюминия в воде и водяном паре при повышенных температурах (выше 200° С) зависит от чистоты алюминия. Если происходит движение среды, то скорость коррозии повышается в 10—60 раз.
Основными видами коррозии алюминиевых сплавов является межкристаллитная коррозия и коррозия под напряжением. Для повышения коррозионных свойств применяют защитные покрытия, такие, как плакирование, оксидные пленки, лакокрасочные покрытия, смазки, хромовые или никель-хромовые гальванические покрытия.
Технология производства
Технология производства и термическая обработка могут оказывать существенное влияние на коррозионные свойства сплавов. Сплавы АД, АД1, АМц, АМг2 и АМгЗ мало чувствительны к методам производства. Коррозионная стойкость сплавов АМг5, АМгб во многом зависит от методов производства. У этих сплавов при длительном нагреве на 60—70° С проявляется склонность к межкристаллитной коррозии и коррозии под напряжением.
Сплавы Д1, Д18, Д16 и типа В95 имеют пониженную коррозионную стойкость. Подобные сплавы применяют с соответствующей защитой от коррозии. Сплавы типа авиаль обладают высокой коррозионной стойкостью в воде высокой чистоты с добавлением углекислого газа при температурах до 100° С.
При изучении влияния облучения на некоторые характеристики алюминия установлено, что после облучения интегральным потоком 1,1 х 1019 нейтрон/см2 при 80° С критическое напряжение сдвига увеличивается в 5 раз. При этом электросопротивление алюминия повышается на 30%. Влияние облучения на электрическое и критическое сопротивления сдвигу снимается при температуре около 60° С.
Из разработанных свариваемых, термически обрабатываемых, самозакаливающихся при сварке сплавов, наиболее характерны сплавы системы Аl—Zn—Mg. Однако, обладая удовлетворительными прочностными свойствами, они склонны к коррозии под напряжением и замедленному разрушению. Такая склонность вызвана переходом от зонной к фазовой стадии старения даже при комнатных температурах эксплуатации сварных соединений. Поэтому сплавы системы Аl—Zn-Mg можно применять в условиях низких температур, исключающих переход к фазовому старению при низком уровне сварочных напряжений. Содержание цинка и магния должно быть при этом минимальным.
Высокая стойкость
К самозакаливающимся сплавам относится сплав 01911, по химическому составу он является среднелегированным сплавом системы Аl—Zn-Mg. Высокая стойкость против коррозии под напряжением обеспечивается суммарным содержанием цинка и магния до 6,5% и дополнительным введением марганца, хрома, меди и циркония. Причем медь ухудшает свариваемость сплава, поэтому для его сварки применяют проволоку марки 01557, аналогичную по химическому составу сплаву АМг5, но с добавкой циркония й хрома. Сплавы Д20 и АК8 достаточно прочны, но имеют низкую общую коррозионную стойкость. Они обладают высокой стойкостью против коррозии под напряжением и замедленного разрушения.
Перспективными являются спеченные сплавы. К числу жаростойких относятся сплавы типа САП, которые можно применять для конструкций, работающих при температурах до 400—500° С. САП содержит до 13% тугоплавкой окисной фазы, поэтому температура плавления его очень высокая (2000° С).
Из сплавов САП-1 (6,0—9,0% А1203) и САП-2 (9,1 — 13,0% А1203) изготовляют такие же полуфабрикаты, как из алюминиевых сплавов. Сплав САП-3 применяют только для прессованных полуфабрикатов. Наибольшая масса прессованных полуфабрикатов до 400 кг. Размеры изготовляемых листов 1000 X Х7000 мм при толщине от 0,8 до 10 мм.
Сплавы имеют высокие прочностные свойства. Так у сплава САП-1 при 20° С ов = 35 кГ/мм2, а у САП-3 40 кГ/мм2. Подобными свойствами обладает сплав САС-1 (25—30% Si и 7% Nі), получаемый из распыленного порошка. Он износостоек, достаточно прочен (<та = 25,0-28,0 кГ/мм2), имеет коэффициент линейного расширения, близкий к стали, и высокий модуль упругости.
Сплавы САС-1 и САП не склонны к коррозии под напряжением и замедленным разрушениям. Сплав САП можно применять при сравнительно высоких температурах эксплуатации. При сварке этих сплавов обычно применяют присадочную проволоку марки АМг6.
Материалы с сатйа: http://ruswelding.com
Алюминий: опыт применения
В последние годы алюминий получил широкое применение в промышленности благодаря своему низкому весу и ряду других качеств, которые делают его привлекательной альтернативной стали. Более того, по прогнозам рынок сварки алюминия будет продолжать расти со скоростью 5,5% в год, в частности, из-за продолжающегося распространения алюминия в автомобильной области.
В том, что касается сварки, алюминий уникален. Он имеет свои особенности и не стоит надеяться, что для работы с алюминием Вам хватит опыта работы со сталью. Например, алюминий имеет высокую теплопроводимость и низкую температуру плавления, которые при несоблюдении должных процедур сварки легко приводят к прожиганию и деформациям.
В этой статье мы рассмотрим различные легирующие элементы и их влияние на свойства алюминия, затем поговорим о сварочных процедурах и оптимальных параметрах сварки. Наконец, мы рассмотрим несколько технологических инноваций, которые могут сделать сварку алюминия немного проще.
Легирующие элементы
Чтобы понять алюминий, сначала нужно разобраться с металлургией алюминиевых сплавов. Алюминий может иметь множество первичных и вторичных легирующих элементов, которые придают ему улучшенные механические характеристики, коррозионную стойкость и/или упрощают сварку.
Первичные легирующие элементы алюминиевых сплавов — это медь, кремний, марганец, магний и цинк. Перед тем, как начать говорить о них более подробно, нужно отметить, что сплавы делятся на два типа: пригодные к тепловой обработке и не пригодные.
Пригодность к тепловой обработке
Сплавы, пригодные к тепловой обработке, после сварки можно нагреть до определенной температуры, чтобы восстановить утраченные во время сварки механические характеристики. Тепловая обработка сплава подразумевает нагревание до достаточно высокой температуры, чтобы легирующие элементы перешли в состояние твердого раствора, и затем контролируемого охлаждения для образования перенасыщенного раствора. Следующий этап процесса — поддерживание низкой температуры в течение времени, достаточного для отложения нужного объема легирующих элементов.
В случае сплавов, непригодных к тепловой обработке, механические характеристики можно улучшить за счет холодной обработки или упрочнения под механическими нагрузками. Для этого в структуре металла должны произойти механические деформации, которые вызывают повышение сопротивления деформации и снижение жидкотекучести.
Другие различия
Алюминиевые сплавы могут иметь следующие обозначения в зависимости от состояния термообработки: F = после отливки, O = отожженное, H = после механического упрочнения; W = с тепловым растворением и T = после термообработки, которая может подразумевать собственно температурную обработку или старение холодной обработкой. Например, сплав может иметь обозначение 2014 T6. Это значит, что в его состав входит медь (серия 2XXX), а T6 указывает на то, что сплав прошел термообработку и искусственное старение.
В рамках этой статьи мы будем говорить только о пластичных сплавах, то есть алюминиевых сплавах, раскатанных из заготовки или отштампованных по формам заказчика. Учтите, что сплавы также могут быть литыми. Литые сплавы используются для изготовления деталей из расплавленного металла, который заливают в формы. Литые сплавы могут быть дисперсионно-твердеющими, но никогда — твердеющим под механическими нагрузками. Пригодность к сварке таких сплавов зависит от типа литья — в многократную форму, под давлением или в песчаную форму — так как для сварки важна поверхность материала. Литые сплавы обозначаются трехзначным числом с одним десятичным знаком, например, 2xx.x. Для сварки пригодны алюминиевые литые сплавы 319.0, 355.0, 356.0, 443.0, 444.0, 520.0, 535.0, 710.0 и 712.0.
Легирующие элементы
Теперь, когда мы разобрались с основной терминологией, давайте поговорим о различных легирующих элементах.:
Медь (имеет обозначение серии пластичных сплавов 2XXX) обеспечивает алюминию улучшенные механические характеристики. Эта серия сплавов пригодна для тепловой обработки и в основном используется для изготовления деталей авиационных двигателей, заклепок и крепежа. Большинство сплавов серии 2ХХХ плохо подходит для дуговой сварки из-за склонности к горячему растрескиванию. Эти сплавы серий обычно сваривают материалами серий 4043 или 4145, которые имеют низкую температуру плавления и снижают вероятность горячего растрескивания. Исключениями из этого правила являются сплавы 2014, 2219 и 2519, для которых хорошо подходит проволока 2319.
Марганец (серия 3XXX) при добавлении в алюминий образует непригодные к тепловой обработке сплавы для наплавки и производства общего назначения. Сплавы серии 3ХХХ имеют средние механические характеристики и используются для производства формовкой, в том числе листового алюминия для автотрейлеров и бытового применения. С помощью упрочнения под механическими нагрузками этим сплавам можно придать нужную жидкотекучесть и антикоррозионные свойства. Сплавы серии 3ХХХ не склонны к образованию горячих трещин и хорошо поддаются сварке. Для этого обычно используются материалы серий 4043 или 5356. Впрочем, невысокие механические характеристики не позволяют использовать их для изготовления металлоконструкций.
Кремний (серия 4XXX) позволяет снизить температуру плавления алюминия и улучшить жидкотекучесть. В основном эта серия используется в качестве присадочного материала. Сплавы 4ХХХ отличаются высокими сварочно-технологическими характеристиками и считаются не пригодными к термообработке. В частности, сплав 4047 стал предпочтительным выбором в автомобильной промышленности, потому что он обладает очень высокой жидкотекучестью и хорошо подходит для пайки и сварки.
Магний (серия 5XXX) при добавлении в алюминий обеспечивает высокие сварочно-технологические характеристики с минимальным снижением механических свойств и устойчивость к образованию горячих трещин. Более того, серия 5ХХХ имеет самые высокие сварочно-технологические характеристики среди всех алюминиевых сплавов, не пригодных к тепловой обработке. Благодаря коррозионной устойчивости эти сплавы используют для изготовления резервуаров для химикатов и сосудов высокого давления и температуры, а также металлоконструкций, железнодорожных вагонов, самосвалов и мостов. При сварке с присадочными материалами серии 4ХХХ они теряют жидкотекучесть из-за образования Mg2Si.
Кремний и магний (серия 6XXX) — в этой серии сплавов используются оба этих легирующих элемента. В основном они применяются в автомобильной, трубной, железнодорожной и строительной отрасли, а также для штамповки выдавливанием. Серия 6ХХХ несколько склонна к горячему растрескиванию, но эту проблему можно решить, правильно подобрав сварочные материалы. Сплавы этой серии можно сваривать материалами серий 5XXX и 4XXX без риска трещин – однако для этого необходимо обеспечить должное разбавление основного материала присадочным. Чаще всего для этого используют материалы 4043.
Цинк (серия 7XXX) при добавлении в алюминий вместе с магнием и медью образует пригодный к тепловой обработке сплав с самыми высокими механическими характеристиками. В основном используется в авиационной отрасли. Сплавы серии 7ХХХ часто плохо подходят для сварки из-за склонности к образованию трещин (из-за широкого температурного интервала плавления и низкого солидуса). Сплавы 7005 и 7039 пригодны для сварки присадочными материалами серии 5ХХХ.
Другие элементы (серия 8XXX) — в эту серию включены все остальные легирующие элементы алюминиевых сплавов (например, литий). Большинство из этих сплавов редко подвергаются сварке, хотя они отличаются очень высокой жесткостью и в основном используются в аэрокосмической отрасли. В качестве присадочного материала для этих сплавов используется серия 4ХХХ.
Чистый алюминий (серия 1XXX) — алюминий без легирующих элементов считается непригодным к тепловой обработке и в основном используется для изготовления резервуаров и труб для химикатов ввиду его высокой коррозионной устойчивости. Эти материалы также часто используют в электрических шинах благодаря высокой электропроводимости. Для сварки серии 1ХХХ хорошо подходят сплавы 1070, 1100 и 4043.
Помимо основных легирующих элементов, также существует и множество вторичных, куда входят хром, железо, цирконий, ванадий, висмут, никель и титан. Эти элементы могут придать алюминию коррозионную устойчивость, повышенные механические характеристики и пригодность к тепловой обработке.
Физические свойства
После того, как мы разобрались с металлургией алюминиевых сплавов, давайте рассмотрим физические свойства алюминия и того, как они соотносятся с другими металлами, например, сталью.
Главная причина настолько широкого распространения алюминия — это его физические свойства. Например, алюминий в три раза легче стали и в то же время при соответствующем легировании имеет более высокую прочность. Он проводит электричество в шесть раз лучше углеродистой стали и почти в 30 раз лучше нержавеющей стали. Высокая проводимость делает влияние вылета проволоки в режиме MIG менее значительной по сравнению со сталью.
Кроме того, алюминий имеет высокую коррозионную устойчивость, легко меняет форму и соединяется, а также нетоксичен и может использоваться в пищевой отрасли. Так как это немагнитный металл, во время сварки можно не опасаться отклонения дуги. Благодаря в 5 раз более высокой теплопроводимости по сравнению со сталью алюминий легко поддается сварке в сложных пространственных положениях. Впрочем, алюминий имеет свои недостатки, так как он быстро отводит тепло, что затрудняет сплавление и снижает глубину проплавления.
Так как алюминий имеет низкую температуру плавления — 660 градусов Цельсия (в два раза меньше, чем у стали) — при том же диаметре проволоки для его плавления требуется намного меньшая сила тока. Более того, при равной силе сварочного тока скорость расплавления проволоки примерно в два раза выше стали.
Химические свойства
В том, что касается химического состава, алюминий имеет высокую способность к растворению атомов водорода в жидкой форме и низкую — при температуре затвердевания. Это означает, что даже небольшое количество растворенного в жидком наплавленном металле водорода после затвердевания алюминия будет стремиться выйти из металла, что приведет к образованию пористости.
Кроме того, при механической обработке алюминий вступает в реакцию с кислородом и мгновенно образует слой оксида алюминия. Этот слой очень пористый и может легко удерживать в себе влагу, масло и другие материалы. Пленка оксида обеспечивает хорошую коррозионную устойчивость, но перед сваркой ее следует удалить, так как из-за высокой температуры плавления (2050°C) она ограничивает глубину проплавления. Для этого применяются механическая очистка, растворители, химическая очистка и травление.
Механические свойства
Механические свойства алюминия, например, предел текучести, предел прочности и относительное удлинение, зависят от комбинации основного металла и сварочных материалов. При сварке шва с разделкой кромок прочность соединения зависит от зоны теплового воздействия. В случае непригодных к тепловой обработке сплавов зона теплового воздействия окажется полностью отожжена и зона теплового воздействия станет самым слабым местом. Для полного отжига пригодных к тепловой обработке сплавов требуется намного больше времени при температуре отжига в сочетании с медленным охлаждением, поэтому надежность сварного шва в этом случае падает меньше. Такие аспекты, как предварительный подогрев, отсутствие охлаждения меду проходами сварки и лишнее тепло из-за низкой скорости сварки или поперечных колебаний, увеличивают как пиковую температуру, так и длительность воздействия повышенной температуры, что увеличивает риск падения механических характеристик.
При угловой сварке механические характеристики зависят от состава используемых сварочных материалов. При изготовлении металлоконструкций использование 5ХХХ вместо 4ХХХ может обеспечить в два раза более высокую прочность.
Сплавы, непригодные к тепловой обработке, имеют высокую жидкотекучесть при использовании сварочных материалов той же серии, хотя при сварке материалами серии 4ХХХ жидкотекучесть становится меньше. Пригодные к тепловой обработке сплавы обычно имеют из-за нее низкую жидкотекучесть.
О металлургии подробнее
После того, как мы обсудили основные положения о металлургии алюминия, давайте применим эту информацию к практической сварке сплава. Сначала мы рассмотрим технологию, которая позволяет получить наилучшее качество сварки алюминия и решить такие распространенные проблемы, как недостаточное проплавление, высокий уровень разбрызгивания, прожигание и пористость.
Современные инверторные сварочные аппараты с запатентованной технологией управления формой волны сварочного тока компании Линкольн позволяют точно регулировать характеристики формы волны, чтобы оптимальным образом контролировать перенос капель расплавленного металла. Это помогает снизить разбрызгивание из-за низкой плотности алюминия, в то время как импульсы пикового тока обеспечивают должную глубину проплавления.
Кроме того, так как изменение химического состава оказывает большое влияние на физические характеристики сплава, эта возможность позволяет индивидуально подобрать форму волны для каждого конкретного сплава с учетом физических характеристик металла.
Так как алюминий имеет высокую способность к растворению водорода в жидком виде и низкую — при застывании, можно разработать пульсирующую форму волны, которая позволит сократить длину волны за счет снижения силы сварочного тока и риска возникновения пористости.
Недавно компания Линкольн вывела эту технологию на новый уровень благодаря программе Wave Designer Software®. Она позволяет сварочным инженерам и сварщикам в реальном времени корректировать и изменять текущую форму волны сварочного тока подключенного к сети аппарата на собственных персональных компьютерах. При использовании в сочетании с инверторными сварочными аппаратами это позволяет обеспечить высокое качество сварки в любых условиях.
Новые методы сварки
Применение источников питания на падающей ВАХ для сварки алюминия в защитном газе имеет долгую и успешную историю. При сварке алюминия падающая ВАХ позволяет обеспечить высокоэнергетический струйный перенос металла, который стабильно и равномерно реагирует на изменения собственно силы сварочного тока, несмотря на колебания длины дуги. В результате падающая ВАХ обеспечивает равномерную глубину проплавления по всей длине шва.
Совершенствование контроля дуги привело к появлению инверторных источников питания с программным управлением. «Оптимизация» характеристик дуги программными методами при MIG-сварке алюминия вышла на новый уровень благодаря разработанной компанией Линкольн Электрик технологии управления формой волны. В этом импульсном режиме с высокоскоростным синергетическим управлением падающая вольт-амперная характеристика модифицируется так, чтобы обеспечить несколько преимуществ при сварке алюминия. Например, сюда входит повышенный сварочный ток в момент пика импульса. Пики импульсов позволяют обеспечить равномерный профиль проплавления по всей длине шва. Также при этом снижается разбрызгивание, улучшается жидкотекучесть сварочной ванны, что позволяет увеличить скорость сварки, и снижается тепловложение и связанный с ним риск деформаций.
Технология управления формой волны выводит импульсную сварку на новый уровень. Она позволяет пользователю создать индивидуальную, «идеальную» для каждой конкретной задачи форму волны. Эта технология и ее возможности индивидуальной настройки поддерживается высокотехнологичными источниками питания, например, инверторными моделями семейства Power Wave®. Аппараты Power Wave можно использовать двумя способами. Оператор может выбрать предустановленную форму волны для сварки алюминия или же создать собственную с помощью программы Wave Designer™. Индивидуально разработанные формы волны затем переносятся с компьютера на аппарат Power Wave.
Анатомия формы волны
Но что именно представляет собой технология управления программы Wave Designer Pro? Благодаря этой технологии источник питания мгновенно регулирует сварочный ток по заданной программе. Учтите, что «форма волны» позволяет влиять на поведение каждой отдельной капли расплавленного присадочного материала. Область ниже формы волны отражает энергию, прилагаемую к этой капле. При струйном переносе металла сила тока на несколько миллисекунд увеличивается настолько, чтобы расплавить металл. В этот момент формируется и отделяется капля металла, которая затем начинает движение вдоль дуги. Теперь в период спуска капли к ней можно приложить дополнительную энергию, которая позволила бы сохранить или увеличить ее жидкотекучесть. После этого импульс переходит в фазу фонового тока, которая позволяет поддержать дугу, охладить материал и подготовиться к следующему пику.
Давайте рассмотрим форму волны подробнее. Фаза возрастания (А) — это период увеличения силы тока до пиковой (измеряется в амперах в миллисекунду), в течение которого формируется расплавленная капля на кончике электрода. По достижении пикового значения капля отделяется. Процентная доля «превышения» (B) придает дуге дополнительную жесткость и способствует отделению расплавленной капли от электрода. Длительность пиковой фазы (C) влияет на размер капли: чем она меньше, тем больше становится капля. С этого момента отделившаяся капля зависит от энергии, подаваемой на фазе убывания. Эта фаза состоит из периодов снижения пикового тока (D) и финального тока (E). Период снижения пикового тока позволяет при необходимости увеличить энергию расплавленной капли. Это улучшает жидкотекучесть сварочной ванны в период снижения пикового тока. Фаза финального тока начинается после снижения пикового. Она влияет на стабильность анода и регулировка силы финального тока может помочь избавиться от избыточного распыления мелких капель. С этого момента ток переходит к фоновому значению (F), которое позволяет сохранить дугу. Чем меньше длительность фазы фонового тока, тем больше частота пульсации. Чем выше частота пульсации, тем выше становится средняя сила тока. С другой стороны, увеличение частоты приведет к более сфокусированной дуге.
Форма волны также зависит от «адаптивной характеристики» импульсной MIG-сварки с синергетическим управлением. Адаптивность подразумевает способность дуги сохранять заданную длину дуги несмотря на изменения вылета электрода. Это важный аспект для стабильной сварки и надежности соединения.
Оптимизация сварки через регулировку формы волны
Регулировка формы волны сварочного тока позволяет получить необходимую скорость сварки, хороший внешний вид шва, упростить очистку поверхности после сварки и сократить уровень выделения дыма. Настоящая сила этой технология заключается в возможности самому настраивать форму волны в программе Wave Designer Pro и том, насколько легко это сделать. Пользователь может в реальном временем менять дугу простым движением мыши в привычной среде PC Windows™. Пятиканальная панель ArcScope позволяет просматривать сделанные изменения, в том числе пиковые значения тока и напряжения, а также расчетное тепловложение. ArcScope собирает данные с частотой 10 КГц. «то ценное опциональное дополнение к программе Wave Designer. ArcScope дает сварочному инженеру визуальное представление разработанной им формы волны. После проведения оценки он может внести поправки.
Например, при сварке тонколистового алюминия технология управления формы волны поможет уменьшить тепловложение, деформации, разбрызгивание, устранить несплавление и прожигание. Это уже смогли подтвердить на своем опыте многие компании. Пользователь может составить программы сварки для определенного диапазона скорости подачи проволоки и/или силы тока и благодаря этому работать с очень широким диапазоном толщин материалов и скорости подачи проволоки.
Заключение
Алюминий имеет целый ряд отличительных особенностей, которые делают его привлекательным выбором для многих задач несмотря на то, что его сварка может быть связана с определенными сложностями. Тем не менее, хорошее понимание его металлургии и знание доступных на современном рынке инструментов и технологий позволят вам справиться с этой задачей.
Сравнительное исследование характеристик современных алюминиевых сплавов | Нестеренко
1. Фридляндер И. Н. Алюминиевые сплавы в летательных аппаратах в периоды 1970 – 2000 и 2001 – 2015 гг. / Технология легких сплавов. 2002. № 4. С. 12 – 17.
2. Nesterenko B. G., Nesterenko G. I. Analysis of requirements on fatigue and damage tolerance for civil transport airplanes / Proc. of the 26th Symposium of the International Committee on Aeronautical Fatigue (ICAF), 1 – 3 June 2011, Montreal, Canada. P. 39 – 59.
3. Басов В. Н., Нестеренко Б. Г., Нестеренко Г. И. Разрушение высокопрочных алюминиевых сплавов / В сб.: Полет (90 лет ЦАГИ). — Машиностроение, 2008. С. 87 – 92.
4. Нестеренко Б. Г. Трещиностойкость материалов обшивки конструкции гражданских самолетов / Научный вестник МГТУ ГА. 2010. № 153. С. 7 – 14.
5. Басов В. Н., Нестеренко Г. И. Прочность и усталость материалов обшивки конструкций гражданских самолетов / Научный вестник МГТУ ГА. 2010. № 153. С. 15 – 23.
6. Rambabu P., Prasad N. E., Kutumbarao V. V., Wanhill R. J. H. Aluminium Alloys for Aerospace Applications / Aerospace Materials and Material Technologies. Vol. 1 // Prasad N., Wanhill R., eds. — Springerhink, 2017. P. 29 – 52.
7. Giummarra C., Thomas B., Rioja R. J. New Aluminum Lithium Alloys for Aerospace Applications / Proc. of the 3rd International Conference on Light Metals Technology. September 24 – 26, 2007, Saint-Saveur, Quebec, Canada.
8. Антипов В. В. Металлические материалы нового поколения для планера перспективных изделий авиационно-космической техники / Новости материаловедения. Наука и техника. 2013. № 4. С. 2 – 10.
Свойства алюминиевых бронз напрямую зависят от содержания в сплаве легирующих добавок
Алюминиевые бронзы представляют собой сплавы на основе меди, в которых главным легирующим металлом является алюминий. Материал обладает повышенными прочностными свойствами, не поддается коррозии и имеет небольшой коэффициент трения. Содержание алюминия в таких сплавах достигает 11%-12%.
Механические свойства алюминиевых бронз
В зависимости от содержания алюминия, готовые материалы имеют различные механические свойства:
- При увеличении доли алюминия в сплаве до 10-11% механическая прочность материала заметно возрастает вплоть до 600 МПа.
- Если доля легирующей добавки продолжает увеличиваться, прочностные свойства алюминиевых бронз заметно снижаются.
- Однофазные бронзы имеют высокий показатель пластичности, а двухфазные – твердости.
Наиболее качественной бронзой с добавкой алюминия, физические свойства и прочностные характеристики которой обеспечивают ей широкое применение в промышленности, является высоколегированный сплав БрА7.
Физические свойства алюминиевых бронз
Физические свойства алюминия, входящего в состав сплава, обеспечивают готовому материалу следующие характеристики:
- Чем больше в сплаве алюминия, тем меньше его плотность и, соответственно, масса. Данное свойство алюминиевого сплава существенно расширяет сферу его применения, особенно в авиастроении и космической технике.
- При полировке поверхность алюминиевой бронзы имеет высокую светоотражающую способность.
- Увеличение процентного содержания алюминия в сплаве снижает теплопроводность материала. Если к составу добавляются дополнительные легирующие добавки – никель, железо или марганец, то теплопроводность снижается еще больше.
- При повышенном содержании алюминия изменяется такое свойство, как электропроводимость металла. Это достигается за счет снижения процентного содержания меди, которая лучше пропускает электрический ток. При введении же в состав материала марганца сплав будет обладать самым высоким электрическим сопротивлением.
Антикоррозионные свойства алюминия позволяют получить двухкомпонентную деформируемую бронзу с маркировкой БрА5, которая нашла широкое применение при изготовлении деталей для морских судов из-за стойкости металла к воздействию агрессивной водной среды.
Изменение свойств алюминиевых бронз при введении дополнительных легирующих добавок
Чтобы улучшить свойства алюминия и его сплавов, в состав готового материала вводятся дополнительные легирующие добавки:
- При введении железа наблюдается резкое повышение прочности в ущерб пластичности материала и снижения его ударной вязкости.
- При введении марганца в количестве от 3% до 4% значительно повышаются основные антикоррозионные свойства алюминия. Кроме того, возрастают прочностные характеристики и пластичность сплава.
- Оптимальной легирующей добавкой считается никель, который улучшает все качественные характеристики сплава. При добавлении этого элемента повышается жаропрочность материала, снижается коэффициент трения, возрастает пластичность. При экстремально низких температурах кристаллическая решетка не становится хрупкой.
В последние годы ученые начали производить многокомпонентные алюминиевые бронзы. В стандартный сплав подмешиваются одновременно никель и железо в определенных пропорциях, что повышает все качественные характеристики готового изделия.
Механические свойства алюминиевых литейных сплавов
Механические свойства алюминиевых литейных сплавов устанавливаются в соответствии с ГОСТ 1583-93. Далее приводится выдержка из стандарта содержащая значения основных механических свойств для распространенных литейных сплавов.
Изменение механических свойств сплавов производится в ходе термической обработки. Подробнее Вы можете узнать из раздела термическая обработка отливок.
Алюмлит проводит испытания, предусмотренные техническими требованиями чертежей или отраслевыми стандартами для отливок. Проводятся испытания относительного удлинения и временного сопротивления разрыву по ГОСТ 1497-84 «Металлы. Методы испытаний на растяжение» и испытания твердости по ГОСТ 9012-59 «Металлы. Методы измерения твердости по Бринеллю». Полученные свойства указываются в паспорте отливки.
Для проведения испытаний на растяжение изготавливаются отдельно отлитые образцы по ГОСТ 1583-93 (тип 2) либо образцы по ГОСТ 1497-84 (тип III номер 6). Для измерения твердости используются образцы-свидетели изготовленные совместно с отливкой.
Контроль механических свойств проводится в соответствии с требованиями чертежа, как правило изготавливается и испытывается не менее 3-х образцов для плавки или для садки (загрузка печи термической обработки).
ГОСТ 1583-93. Алюминиевые литейные сплавы. Технические требования. Механические свойства сплавов. Свойства указаны для литья в формы из холодно-твердеющих смесей (ХТС).
Марка сплава |
Вид термической обработки |
Временное сопротивление разрыву, МПа (кгс/мм2) |
Относительное удлинение, % |
Твердость по Бринеллю, НВ |
не менее |
||||
АК12(АЛ2) |
— |
147(15,0) |
4,0 |
50,0 |
Т2 |
137(14,0) |
4,0 |
50,0 |
|
АК9(АК9) |
— |
157(16,0) |
1,0 |
60,0 |
Т6 |
235(24,0) |
1,0 |
80,0 |
|
АК9ч(АЛ4) |
— |
147(15,0) |
2,0 |
50,0 |
Т1 |
196(20,0) |
1,5 |
60,0 |
|
Т6 (М) |
225(23,0) |
3,0 |
70,0 |
|
Т6 |
225(23,0) |
2,0 |
70,0 |
|
АК7(АК7) |
— |
127(13,0) |
0,5 |
60,0 |
Т5 |
176(18,0) |
0,5 |
75,0 |
|
АК7ч(АЛ9) |
— |
157(16,0) |
2,0 |
50,0 |
Т2 |
137(14,0) |
2,0 |
45,0 |
|
Т4 |
176(18,0) |
4,0 |
50,0 |
|
Т5 |
196(20,0) |
2,0 |
60,0 |
|
Т5 (М) |
196(20,0) |
2,0 |
60,0 |
|
Т6 |
225(23,0) |
1,0 |
70,0 |
|
Т7 |
196(20,0) |
2,0 |
60,0 |
|
Т8 |
157(16,0) |
3,0 |
55,0 |
|
АК5М(АЛ5) |
Т1 |
157(16,0) |
0,5 |
65,0 |
Т5 |
196(20,0) |
0,5 |
70,0 |
|
Т6 |
225(23,0) |
0,5 |
70,0 |
|
Т7 |
176(18,0) |
1,0 |
65,0 |
|
АК12М2(АК12М2) |
— |
186(19,0) |
1,0 |
70,0 |
Т1 |
260(26,5) |
1,5 |
83,4 |
|
АМ4,5Кд(ВАЛ10) |
Т4 |
294(30,0) |
10,0 |
70,0 |
Т5 |
392(40,0) |
7,0 |
90,0 |
|
Т6 |
421(43,0) |
4,0 |
110,0 |
|
Т7 |
323(33,0) |
5,0 |
90,0 |
Режимы обозначенные (М) применяются для модифицированных сплавов.
Алюмлит проводит термическую обработку отливок для получения заданных механических свойств.
Чтобы узнать больше, звоните +7 (495) 789-01-90
Алюминиевые сплавы 101 | The Aluminium Association
Quick Read
Алюминиевый сплав — это химический состав, в котором к чистому алюминию добавляются другие элементы для улучшения его свойств, в первую очередь для повышения его прочности. Эти другие элементы включают железо, кремний, медь, магний, марганец и цинк в количествах, которые вместе могут составлять до 15 процентов сплава по весу. Легирование требует тщательного смешивания алюминия с этими другими элементами, пока алюминий находится в расплавленной — жидкой — форме.
Заключительные факты
- В области химии
На свойства алюминия, такие как прочность, плотность, обрабатываемость, электропроводность и коррозионная стойкость, влияет добавление других элементов, таких как магний, кремний или цинк. - Боевая машина Bradley
Военная боевая машина Bradley изготовлена из двух различных алюминиевых сплавов: серии 7xxx и серии 5xxx. Алюминий, которому доверяют обеспечивать безопасность и мобильность солдат, также используется во многих других военных транспортных средствах. - Наша любимая тара для напитков
Самая любимая в Америке тара для напитков — алюминиевая банка — изготавливается из различных алюминиевых сплавов. Оболочка банки состоит из 3004, а крышка — из 5182. Иногда для изготовления одного повседневного предмета требуется более одного сплава. - Горячий и холодный
Алюминиевые сплавы можно сделать более прочными путем термической обработки или холодной обработки. Свойства конкретного сплава различны из-за их добавок и обработки.
Алюминиевый сплав 101
Что такое алюминиевый сплав
Алюминиевый сплав — это химический состав, в котором к чистому алюминию добавляются другие элементы для улучшения его свойств, в первую очередь для повышения его прочности. Эти другие элементы включают железо, кремний, медь, магний, марганец и цинк в количествах, которые вместе могут составлять до 15 процентов сплава по весу. Сплавам присваивается четырехзначный номер, в котором первая цифра обозначает общий класс или серию, характеризующуюся его основными легирующими элементами.
Технически чистый алюминий
1xxx Серия
Сплавы серии 1xxx состоят из алюминия чистотой 99% или выше. Эта серия имеет отличную коррозионную стойкость, отличную обрабатываемость, а также высокую тепло- и электропроводность. Вот почему серия 1xxx обычно используется для линий электропередачи или линий электропередач, которые соединяют национальные сети по всей территории Соединенных Штатов. Стандартные обозначения сплавов в этой серии — 1350 для электрических применений и 1100 для лотков для упаковки пищевых продуктов.
Термообрабатываемые сплавы
Некоторые сплавы упрочняются термообработкой на твердый раствор с последующей закалкой или быстрым охлаждением. При термической обработке твердый легированный металл нагревается до определенной точки. Элементы сплава, называемые растворенными веществами, равномерно распределяются с алюминием, превращая их в твердый раствор. Затем металл закаливают или быстро охлаждают, в результате чего растворенные атомы замерзают на месте. Следовательно, растворенные атомы объединяются в мелкодисперсный осадок.Это происходит при комнатной температуре, которая называется естественным старением, или при низкотемпературной работе печи, которая называется искусственным старением.
2xxx Серия
В серии 2xxx в качестве основного легирующего элемента используется медь, которая может быть значительно усилена за счет термообработки на твердый раствор. Эти сплавы обладают хорошим сочетанием высокой прочности и ударной вязкости, но не обладают такой стойкостью к атмосферной коррозии, как многие другие алюминиевые сплавы. Поэтому эти сплавы обычно окрашивают или плакируют для таких воздействий.Обычно они плакированы сплавом высокой чистоты или сплавом серии 6ххх, чтобы значительно противостоять коррозии. Сплав 2024, пожалуй, самый широко известный авиационный сплав.
6xxx Серия
Серия 6xxx универсальна, поддается термообработке, легко поддается формованию, сварке и имеет умеренно высокую прочность в сочетании с отличной коррозионной стойкостью. Сплавы этой серии содержат кремний и магний для образования силицида магния внутри сплава. Экструзионные продукты серии 6xxx — лучший выбор для архитектурных и строительных приложений.Сплав 6061 является наиболее широко используемым сплавом этой серии и часто используется в рамах грузовиков и морских судов. Кроме того, в некоторых версиях iPhone использовались алюминиевые профили серии 6xxx.
7xxx Серия
Цинк является основным легирующим агентом для этой серии, и когда магний добавляется в меньшем количестве, в результате получается термически обрабатываемый высокопрочный сплав. Другие элементы, такие как медь и хром, также могут быть добавлены в небольших количествах. Наиболее широко известны сплавы 7050 и 7075, которые широко используются в авиастроении.Алюминиевые часы Apple®, выпущенные в 2015 году, были изготовлены из специального сплава серии 7xxx.
Сплавы без термической обработки
Сплавы без термической обработки упрочняются холодной обработкой. Холодная обработка происходит во время методов прокатки или ковки и представляет собой действие по «обработке» металла, чтобы сделать его более прочным. Например, при прокатке алюминия до более тонких толщин он становится прочнее. Это связано с тем, что холодная обработка приводит к образованию дислокаций и вакансий в структуре, что затем препятствует перемещению атомов друг относительно друга.Это увеличивает прочность металла. Легирующие элементы, такие как магний, усиливают этот эффект, что приводит к еще большей прочности.
3xxx Серия
Марганец является основным легирующим элементом в этой серии, часто с добавлением меньшего количества магния. Однако только ограниченный процент марганца может быть эффективно добавлен в алюминий. 3003 — популярный сплав общего назначения, поскольку он имеет умеренную прочность и хорошую обрабатываемость и может использоваться в таких устройствах, как теплообменники и кухонная утварь.Сплав 3004 и его модификации используются в корпусах алюминиевых банок для напитков.
4xxx Серия
Сплавы серии4ххх комбинируются с кремнием, который может быть добавлен в достаточных количествах для снижения температуры плавления алюминия без образования хрупкости. Благодаря этому серия 4xxx производит превосходную сварочную проволоку и припои там, где требуется более низкая температура плавления. Сплав 4043 — один из наиболее широко используемых присадочных сплавов для сварки сплавов серии 6ххх в конструкционных и автомобильных приложениях.
5xxx Серия
Магний является основным легирующим агентом серии 5xxx и одним из наиболее эффективных и широко используемых легирующих элементов для алюминия. Сплавы этой серии обладают прочностными характеристиками от умеренных до высоких, а также хорошей свариваемостью и устойчивостью к коррозии в морской среде. Из-за этого алюминиево-магниевые сплавы широко используются в строительстве, резервуарах для хранения, сосудах высокого давления и морских применениях. Примеры распространенных применений сплавов включают: 5052 в электронике, 5083 в судостроении, анодированный лист 5005 для архитектурных применений и 5182 для изготовления алюминиевых крышек банок для напитков.Боевая машина США Брэдли изготовлена из алюминия серий 5083 и 7ххх.
Создание новых сплавов
Более 60 лет назад Алюминиевая ассоциация через свой Технический комитет по стандартам на продукцию (TCPS) установила систему обозначения деформируемых сплавов, которая была принята в США в 1954 году. Три года спустя система была утверждена как американский национальный стандарт h45. 1. Эта система обозначений была официально принята странами, подписавшими Декларацию согласия в 1970 году, и стала международной системой обозначений.В том же году Комитет по стандартам h45 по алюминиевым сплавам был уполномочен Американским национальным институтом стандартов (ANSI), при этом Ассоциация выполняла функции секретариата. С тех пор Ассоциация является основной организацией, устанавливающей стандарты для мировой алюминиевой промышленности.
Система регистрации сплавов в настоящее время управляется TCPS Ассоциации. Весь процесс, от регистрации нового сплава до присвоения нового обозначения, занимает от 60 до 90 дней. Когда нынешняя система была первоначально разработана в 1954 году, список включал 75 уникальных химических составов.На сегодняшний день зарегистрировано более 530 активных композиций, и это число продолжает расти. Это подчеркивает, насколько универсальным и повсеместным стал алюминий в нашем современном мире.
Понимание алюминиевых сплавов
По мере роста производства алюминия в сварочной промышленности и признания его в качестве отличной альтернативы стали для многих областей применения возрастают требования к тем, кто занимается разработкой алюминиевых проектов, поближе познакомиться с этой группой. материалов.Чтобы полностью понять алюминий, рекомендуется начать с ознакомления с системой идентификации / обозначения алюминия, множеством доступных алюминиевых сплавов и их характеристиками.
Система закалки и обозначения алюминиевых сплавов — В Северной Америке Aluminium Association Inc. отвечает за распределение и регистрацию алюминиевых сплавов. В настоящее время в Алюминиевой ассоциации зарегистрировано более 400 деформируемых алюминиевых и деформируемых алюминиевых сплавов и более 200 алюминиевых сплавов в виде отливок и слитков.Пределы химического состава сплавов для всех этих зарегистрированных сплавов содержатся в Бирюзовой книге Алюминиевой ассоциации под названием «Международные обозначения сплавов и предельные значения химического состава для деформируемого алюминия и деформируемых алюминиевых сплавов» и в ее розовой книге под названием «Обозначения и химические Пределы состава алюминиевых сплавов в виде отливок и слитков. Эти публикации могут быть чрезвычайно полезны инженерам-сварщикам при разработке процедур сварки, а также в тех случаях, когда важно учитывать химический состав и его связь с чувствительностью к трещинам.Алюминиевые сплавы можно разделить на несколько групп в зависимости от характеристик конкретного материала, таких как его способность реагировать на термическую и механическую обработку и первичный легирующий элемент, добавляемый в алюминиевый сплав. Когда мы рассматриваем систему нумерации / идентификации, используемую для алюминиевых сплавов, вышеупомянутые характеристики идентифицируются. Кованый и литой алюминий имеют разные системы идентификации. Кованая система представляет собой 4-значную систему, а отливки — 3-значную и 1-значную систему после запятой.
Система обозначения кованого сплава — Сначала мы рассмотрим 4-значную систему идентификации кованого алюминиевого сплава. Первая цифра ( X xxx) указывает на основной легирующий элемент, который был добавлен в алюминиевый сплав и часто используется для описания серии алюминиевых сплавов, то есть серии 1000, серии 2000, серии 3000, до серии 8000 ( см. таблицу 1).
Вторая отдельная цифра (x X xx), если она отличается от 0, указывает на модификацию конкретного сплава, а третья и четвертая цифры (xx XX ) представляют собой произвольные числа, присвоенные для обозначения конкретного сплава в ряд.Пример: В сплаве 5183 цифра 5 указывает на то, что он относится к серии магниевых сплавов, 1 указывает на то, что это модификация 1 st по сравнению с исходным сплавом 5083, а цифра 83 идентифицирует его в серии 5xxx.
Единственное исключение из этой системы нумерации сплавов — это алюминиевые сплавы серии 1ххх (чистые алюминиевые), в этом случае последние 2 цифры обеспечивают минимальное процентное содержание алюминия выше 99%, т. Е. Сплав 13 (50) (99,50%). минимум алюминия).
СИСТЕМА ОБОЗНАЧЕНИЯ ВЫРАБОТАННЫХ АЛЮМИНИЕВЫХ СПЛАВОВ
Серия сплавов | Основной легирующий элемент | ||
1xxx | .000% Минимум Алюминий|||
2xxx | Медь | ||
3xxx | 129121 | Марганец Кремний | |
5xxx | Магний | ||
6xxx | Цинк | ||
8xxx | Другие элементы |
Таблица 1
Литой сплав Обозначение — Система обозначения литого сплава основана на системе обозначения литого сплава -plus десятичное обозначение xxx.x (т.е. 356,0). Первая цифра ( X xx.x) указывает на основной легирующий элемент, который был добавлен в алюминиевый сплав (см. Таблицу 2).
СИСТЕМА ОБОЗНАЧЕНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ