Сталь свойства и применение: виды, свойства, марки, технология производства

Содержание

виды, свойства, марки, технология производства

Сталь: виды, свойства, марки, технология производства

Сталь: виды, свойства, марки, производство

Содержание статьи

Сталь и изделия из неё настолько прочно вошли в жизнь и быт современного человека, что существование без металлических предметов трудно представить. Когда это касается посуды, мелких инструментов, бытовой техники и оборудования совсем не обязательно знать марку, классификацию сплавов, области их применения.

Эти сведения важны, скорее, для тех, кто решился приступить к строительству собственного жилья, и не знает какие металлоизделия подходят для этих целей. Итак, о том, что такое сталь, какие виды стали существуют, и какими свойствами обладает этот популярный на сегодняшнее время сплав, будет рассказано в строительном журнале samastroyka.ru.

Что такое сталь, и её отличие от чугуна

Железоуглеродистый сплав — это и есть всем известная сталь. Обычно доля углерода в сплаве варьируется от 0,1 до 2,14%. Увеличение концентрации углерода делает сталь хрупкой. Кроме основных компонентов в сплаве содержатся и небольшие количества магния, марганца и кремния, а так же вредных серных и фосфорных примесей.


По основным свойствам сталь и чугун очень схожи. Несмотря на это между ними существуют значительные различия:

  • сталь более прочный и твёрдый материал, нежели чугун;
  • чугун, несмотря на обманчивую массивность чугунных изделий, более лёгкий материал;
  • поскольку в составе стали ничтожно малый процент углерода, её легче обрабатывать. Для чугуна более предпочтительна отливка;
  • изделия из чугуна лучше сохраняют тепло, благодаря тому, что его теплопроводность значительно ниже чем у стали;
  • закалка металла, повышающая прочность материала, невозможна в отношении чугуна.

Достоинства и несовершенства стальных сплавов

Поскольку марок стали огромное количество, а изделий из неё ещё больше, то говорить о плюсах и минусах стали бессмысленно. Тем более, что свойства металла во многом зависят от технологий изготовления и обработки.

Что такое сталь

Вследствие этого можно только выделить несколько общих преимущественных особенностей стали, таких как:

  • прочность и твёрдость;
  • вязкость и упругость, то есть способность не деформироваться и выдерживать ударные, статические и динамические нагрузки;
  • доступность для разных способов обработки;
  • долговечность и повышенная износоустойчивость в сравнении с другими металлами;
  • доступность сырьевой базы, экономичность производственных технологий.

К сожалению, стали свойственны и некоторые минусы:

  • неустойчивость к коррозии, в том числе высокий уровень электрохимической коррозии;
  • сталь — тяжёлый металл;
  • изготовление изделий из стали производится в несколько этапов, нарушение технологии на любом из них приводит к снижению качества.

Разновидности и классификации стальных сплавов

Сегодня сложно определить количество производимых и используемых стальных сплавов. Так же не просто их классифицировать, поскольку их свойства зависят от множества параметров, таких как состав, характер и количество добавок, способы изготовления и обработки, назначения и многих других.

По качеству принято различать обычные, качественные, высококачественные и особовысококачественные стали. Доля вредных примесей является основным критерием для определения качества сплава. Для обыкновенных сталей характерны более высокие значения доли примесей, чем для особовысококачественных сплавов.

Химический состав стали. В основу производства сплавов из железа положена его способность формировать различные структурные фазы при разных температурах, так называемый полиморфизм. Благодаря этой способности, растворённые в железе примеси, образуют сплавы различных составов. Принято делить стальные сплавы на

углеродистые и легированные.

Сталь по определению является сплавом железа с углеродом, от концентрации которого зависят его свойства: твёрдость, прочность, пластичность, вязкость. В составе углеродистой стали практически не содержится  дополнительных добавок.

Базовые примеси — марганец, магний, и кремний содержатся в минимальных количествах, и не ухудшают её свойств и качеств. Кремний и марганец оказывают на сплав раскисляющее действие, повышают упругость, износоустойчивость, жаростойкость. Но, в случае увеличения доли  являются легирующими элементами. Стали с большим содержанием марганца теряют магнитные свойства.

Сталь: виды, свойства, область применения

Значительно более вредные для обоих видов сталей примеси серы и фосфора. Сера, соединяясь с железом, способствует повышению хрупкости при обработке высокими температурами (прокат, ковка), увеличению усталости, уменьшению устойчивости к коррозии.

Фосфор, особенно при большой доле углерода в сплаве, повышает его хрупкость в обычных температурных условиях. Кроме этого, существует целая группа скрытых, неудаляющихся во время плавки вредных примесей. Эти неметаллические включения в виде азота, водорода и кислорода при горячей обработке делают металл более рыхлым.

Виды углеродистой стали

Углеродистые стали делятся на виды, которые характеризуются долей содержания углерода:

  • к высокоуглеродистым относятся сплавы с долей более 0,6 %;
  • в среднеуглеродистых сплавах концентрация углерода находится в пределах от 0,25 до 0,6 %;
  • допустимые значения, характерные для низкоуглеродистых сталей — не более 0,25 %  .

Легированные стали подразделяются на:

— низколегированные, с долей легирующих добавок не более 2,5 %;

— среднелегированные, с долей дополнительных элементов до 10%;

— высоколегированные, в которых доля легирующих элементов составляет более 10%.

Легированные стали отличаются низкой концентрацией углерода и наличием различных легирующих добавок.

В соответствии с назначением стали делят на группы конструкционных, инструментальных и сталей особого назначения.

Разновидности и классификации стальных сплавов

Каждая группа делится на подгруппы и виды, которые конкретизируют свойства, особенности и области применения сплавов.

К конструкционным сталям относятся:

  1. Строительные, их основное свойство — хорошая свариваемость, это низколегированные сплавы обычного качества.
  2. Для холодной штамповки используют прокат из низкоуглеродистых сплавов обычного качества.
  3. Цементуемые, применяются в изготовлении деталей с поверхностным истиранием.
  4. Высокопрочные характеризуются двойным порогом прочности относительно других конструктивных видов.
  5. Рессорно-пружинные стали с добавлением ванадия, брома, кремния, хрома и марганца, рассчитаны на длительное сохранение упругости.
  6. Шарикоподшипниковые стали с большой долей углерода и добавлением хрома, которым свойственны особая износоустойчивость, прочность и выносливость.
  7. Автоматные, в их составе присутствуют примеси серы, свинца, теллура и селена, облегчающие обработку металла станками — автоматами, на которых осуществляется производство массовых деталей
  8. Нержавеющие, к ним относятся сплавы с высоким содержанием хрома и никеля. Концентрация углерода в таких сплавах минимальна.

Виды инструментальной стали

Стали инструментального назначения имеют несколько разновидностей:

  • Используемые в производстве режущих инструментов, к ним относятся некоторые виды углеродистой, легированной и быстрорежущей стали.
  • Измерительные инструменты производятся из достаточно твёрдых сплавов, обладающих износоустойчивостью и способностью к сохранению постоянных размеров, чаще всего для этого используют закалённую и цементированную сталь.
  • Для штамповой стали характерны твёрдость, термоустойчивость и прокаливаемость. Этот вид делится на подвиды, к которым относят валковые сплавы и стали для разнотемпературной обработки.

К сталям особого назначения относят марки сталей, которые применяются в конкретных производственных областях:

  • электротехнические стали — из них производят магнитные провода;
  • суперинвары — используют в производстве высокоточных приборов;
  • жаростойкие — работают при температурах более 900 °C;
  • жаропрочные — могут работать при высоких температурах в нагруженных состояниях.

Структура стали

Концентрация углерода в сплаве определяет не только свойства металла, но и его внутреннюю структуру. К примеру, мало- и среднеуглеродистые сплавы имеют структуру, состоящую из феррита и перлита. При увеличении доли углерода начинается формирование вторичного цементита. Легирование стали тоже меняет структуру сплава.

Виды углеродистой стали

По структуре стали могут быть:

  • перлитными — с низким содержанием легирующих добавок;
  • мартенситными — стали, имеющие пониженную критическую скорость закалки и средний уровень содержания легирующих примесей;
  • аустенитными — высоколегированные сплавы, применяемые в агрессивных средах.

Отожженные стали делятся на:

  • доэвтектоидную сталь, с концентрацией углерода менее 0,8%;
  • заэвтектоидную сталь, состоящую из перлита и цементита, применяют как инструментальную;
  • карбидную (ледебуритную) — к ней относятся быстрорежущие стали;
  • ферритную — высоколегированную сталь с низким содержанием углерода.

Способы изготовления стали и технологии

От технологии изготовления стали зависят структура этого сплава, его состав и свойства. Обычные стали производятся в мартеновских печах или конвертерах. Как правило, они насыщены значительным количеством неметаллических примесей.

Высококачественные сплавы производят с использованием электропечей. Особовысококачественные легированные стали, содержащие минимальное количество вредных примесей, производятся в процессе электрошлаковой переплавки.

При производстве сталей используют процесс раскисления, направленный на выведение кислорода из структуры сплава.  От количества удалённого кислорода зависит, какие получаются стали: малораскисленные, совершенно раскисленные или полураскисленные. Их классифицируют, как кипящие, спокойные и полуспокойные.

Марки стали

Несмотря на то, что сталь однозначно признаётся самым востребованным сплавом железа, единая система маркировки её видов по настоящее время не сложилась. Наиболее проста и популярна  буквенно-численная маркировка.

Качественные углеродистые стали маркируют с использованием литеры «У» и двузначным числовым значением (в сотых %) уровня углерода в их составе (У11).В марке обычных углеродистых сталей за буквой следует число, указывающее на количество углерода в десятых %  — У8.

Литеры используются и в маркировке легированных сталей. Они указывают на основной элемент, применяемый для легирования. Идущая следом цифра показывает концентрацию данного элемента в составе стали. Перед литерой ставят цифру, соответствующую доле углерода в металле в сотых %.

Сталь: виды, свойства, марки, технология производства

Например, стоящая в конце марки высококачественного сплава буква «А» указывает на его качество. Эта же литера в середине марки уведомляет об основном  элементе легирования, в данном случае им является азот. Литера в начале марки сообщает о том, что это автоматная сталь.

Литера «Ш» в конце маркировки, прописанная через дефис, говорит о том, что это особовысококачественный сплав. Качественные стали, не имеют в маркировке литер «А» и «Ш». Кроме того, существует дополнительная маркировка, указывающая на особые характеристики сталей. Так, например, магнитные сплавы отмечают литерой «Е», а электротехнические — «Э».

Буквенно-числовая маркировка, пожалуй, одна из самых простых и понятных для потребителя. Другие, более сложные, доступны только для специалистов.

Оценить статью и поделиться ссылкой:

Основные свойства стали

Сталь – это универсальный и удобный в работе металл, который широко применяется для изготовления уголка 63х63, арматуры и других видов металлопроката. Изделия из этого материала используются в машиностроении, строительстве и других сферах. Широкое распространение стали обусловлено ее исключительными свойствами: механическими, физическими, технологическими и химическими.

Механические

  • Прочность. Это свойство обуславливает способность металла выдерживать значительную внешнюю нагрузку, не разрушаясь. Количественно этот показатель характеризуется пределом текучести и пределом прочности.
    • Предел прочности. Максимальное механическое напряжение, при превышении которого сталь разрушается.
    • Предел текучести. Данный параметр показывает механическое напряжение, при превышении которого материал продолжает удлиняться в условиях отсутствия нагрузки.
  • Пластичность. Благодаря этому свойству металл изменяет свою форму под действием внешней нагрузки и сохраняет ее при отсутствии внешнего воздействия. Количественно это свойство оценивается относительным удлинением при растяжении и углом загиба.
  • Ударная вязкость. Обозначает способность металла сопротивляться динамическим нагрузкам. Количественно эта характеристика оценивается работой, которая требуется для разрушения образца, отнесенной к площади его поперечного сечения.
  • Твердость. Это свойство позволяет металлу сопротивляться попаданию в него твердых тел. Количественно характеризуется нагрузкой, отнесенной к площади отпечатка при вдавливании алмазной пирамиды (метод Виккерса) или стального шарика (метод Бринелля).

Физические

  • Плотность. Это масса материала, заключенного в единичном объеме. Именно благодаря высокой плотности арматура а500с и другие изделия из стали широко применяются в строительстве.
  • Теплопроводность. Характеризует способность металла передавать теплоту от более нагретых частей к менее нагретым;
  • Электропроводность. Определяет способность стали пропускать электрический ток.

Химические

  • Окисляемость. Это свойство представляет собой способность металла соединяться с кислородом. Окисляемость усиливается с повышением температуры металла. Стали с низким содержанием углерода окисляются с образованием ржавчины (оксидов железа) под действием воды или влажного воздуха.
  • Коррозионная стойкость. Это способность вещества не вступать в химические реакции и не окисляться.
  • Жаростойкость. Жаростойкость характеризует способность металла не окисляться под воздействием высокой температуры и не образовывать окалины.
  • Жаропрочность. Уровень жаропрочности определяет способность металла сохранять свои прочностные характеристики при воздействии высокой температуры.

Технологические

  • Ковкость. Это свойство говорит о способности металла принимать новую форму в результате воздействия внешних сил.
  • Обрабатываемость резанием. Сталь хорошо поддается механической обработке режущим инструментом, благодаря чему облегчается процесс производства трубы 60х30 и других изделий металлопроката.
  • Жидкотекучесть. Обозначает способность расплавленного металла заполнять пространства и узкие зазоры.
  • Свариваемость. Это свойство позволяет проводить эффективную работу по сварке. В результате образовывается надежное соединение без дефектов.
состав, свойства, виды и применение. Состав нержавеющей стали

Многие знают, что сталь — это продукт, получаемый в процессе плавки других элементов. Но каких? Что входит в состав стали? На сегодняшний день эта субстанция представляет собой деформируемый сплав железа с углеродом (его количество составляет 2,14%), а также малой долей других элементов.

Общие сведения

Стоит отметить, что сталью называют сплав, имеющий именно до 2,14% углерода в своем составе. Сплав же, в котором есть более 2,14% углерода, уже называется чугуном.

сталь состав

Известно, что состав углеродистой стали и обычной неодинаков. Если в обычный субстрат входит углерод и другие легирующие (улучшающие) компоненты, то в углеродистом продукте легирующих элементов нет. Если же говорить о легированной стали, то ее состав намного богаче. Для того чтобы улучшить эксплуатационные характеристики данного материала, в его состав добавляют такие элементы, как Cr, Ni, Mo, Wo, V, Al, B, Ti и др. Важно отметить, что наилучшие свойства этой субстанции обеспечиваются именно за счет добавления легированных комплексов, а не одного или двух веществ.

Классификация

Провести классификацию рассматриваемого нами материала можно по нескольким показателям:

  • Первый показатель — это химический состав стали.
  • Второй — это микроструктура, которая также очень важна.
  • Конечно же, стали отличаются по своему качеству и способу получения.
  • Также каждый вид стали имеет свое применение.
состав нержавеющей стали

Более подробно состав можно рассмотреть на примере химического состава. По этому признаку различают еще два вида — это легированные и углеродистые стали.

Среди углеродистых сталей существуют три разновидности, главное отличие которых заключается в количественном содержании углерода. Если в состав субстанции входит менее 0,3% углерода, то ее относят к малоуглеродистой. Содержание этого вещества в районе от 0,3% до 0,7% переводит конечный продукт в разряд среднеуглеродистых сталей. Если же сплав содержит более 0,7% углерода, то сталь относится к разряду высокоуглеродистых.

С легированными сталями дела обстоят примерно также. Если в составе материала содержится менее 2,5% легирующих элементов, то он считается малолегированным, от 2,5% до 10% — среднелегированным, а от 10% и выше — высоколегированным.

Микроструктура

Микроструктура стали отличается в зависимости от ее состояния. Если сплав является отожженным, то его структура будет делиться на карбидную, ферритную, аустенитную и так далее. При нормализованной микроструктуре субстанции, продукт может быть перлитным, мартенситным или аустенитным.

химический состав стали

Состав и свойства стали определяют принадлежность продукта к одному из этих трех классов. Наименее легированные и углеродистые стали — это перлитный класс, средние относятся к мартенситному, а высокое содержание легирующих элементов или углерода переводит их в разряд аустенитных сталей.

Производство и качество

Важно отметить, что такой сплав, как сталь, может включать и некоторые негативные элементы, большое содержание которых, ухудшает показатели продукта. К таким веществам относят серу и фосфор. В зависимости от содержания этих двух элементов состав и виды стали разделяют на следующие четыре категории:

  • Рядовые стали. Это сплав обыкновенного качества, содержит до 0,06% серы и до 0,07% фосфора.
  • Качественные. Содержание вышеуказанных веществ в этих сталях снижается до 0,04% серы и 0,035% фосфора.
  • Высококачественные. Содержат всего лишь до 0,025% как серы, так и фосфора.
  • Высшее качество сплаву присваивается в том случае, если процентный показатель содержания серы не более чем 0,015, а фосфора — не более 0,025%.
состав и свойства стали

Если говорить о процессе производства рядового сплава, то чаще всего его получают в мартеновских печах или же в бессмеровских, томасовских конвертерах. Разлив данного продукта производится в большие слитки. Важно понимать, что состав стали, ее строение, а также качественные характеристики и свойства определяются именно способом ее изготовления.

Для получения качественной стали также используются мартеновские печи, однако к процессу плавки здесь предъявляют более строгие требования, чтобы получить качественный продукт.

Плавка же высококачественных сталей осуществляется лишь в электропечах. Это объясняется тем, что применение этого типа промышленного оборудования гарантирует практически минимальное содержание неметаллических добавок, то есть снижает процентное соотношение серы и фосфора.

Для того чтобы получить сплав особо высокого качества, прибегают к методу электрошлакового переплава. Производство этого продукта возможно лишь в электропечах. После окончания процесса изготовления эти стали всегда получаются только легированными.

состав и виды стали

Виды сплавов по применению

Естественно, что изменение состава стали сильно влияет на эксплуатационные характеристики этого материала, а значит меняется и сфера его использования. Существуют конструкционные стали, которые могут применяться в строительстве, холодной штамповке, а также могут быть цементируемыми, улучшаемыми, высокопрочными и так далее.

Если говорить о строительных сталях, то к ним чаще всего относят среднеуглеродистые, а также низколегированные сплавы. Так как применяются они в основном для возведения зданий, то наиболее важной характеристикой для них является хорошая свариваемость. Из цементируемой стали чаще всего изготавливаются различные детали, основным предназначением которых являются работа в условиях поверхностного износа и динамическая нагрузка.

что входит в состав стали

Другие стали

К другим типам стали можно отнести улучшаемую. Этот вид сплава используют только после проведения термообработки. Сплав подвергается воздействию высоких температур для закалки, а после этого подвергается отпуску в какой-либо среде.

К типу высокопрочных сталей относят те, у которых после подбора химического состава, а также после прохождения термообработки прочность достигает практически максимума, то есть примерно вдвое больше, чем у обычного типа этого продукта.

Можно выделить также пружинные стали. Это сплав, который в результате своего производства получил наилучшие качества по пределу упругости, сопротивлению нагрузкам, а также усталости.

Состав нержавеющей стали

Нержавеющая сталь относится к типу легированных. Основное ее свойство — это высокое сопротивление коррозии, которое достигается за счет добавления такого элемента, как хром, в состав сплава. В некоторых ситуациях вместо хрома может быть использован никель, ванадий или марганец. Стоит отметить, что при плавке материала и добавлении в него нужных элементов, он может получить свойства одной из трех марок нержавеющей стали.

Состав этих видов сплава, конечно же, отличается. Самыми простыми считаются обычные сплавы с повышенной устойчивостью к коррозии 08 Х 13 и 12 Х 13. Последующие два типа этого коррозионностойкого сплава, должны обладать высоким сопротивлением не только при нормальных, но и при повышенных температурах.

Структура стали. Химические, механические и физические свойства.

«Железо не только основа всего мира, самый главный металл окружающей нас природы,

оно основа культуры и промышленности, оно орудие войны и мирного труда».

 А.Е.Ферсман

Все знаю, что сталь является важнейшим инструментальным и конструкционным материалом для всех отраслей промышленности.

Металлургическая промышленность Украины насчитывает более 50 металлургических заводов и является стратегически важной для страны. В Украине производится широкий ассортимент металлопроката, таких, как: арматура, круги, квадрат, катанка, проволока, полоса, уголок, балка, швеллер, листы, трубы и метизы.

Сталь

Рассматривая данный вопрос, начнем с химического состава.

Сталь – это соединение железо (Fe) + углерод (С) + другие элементы растворенные в железе.

Железо в чистом виде имеет очень низкую прочность, а углерод ее повышает.

Углерод улучшает и некоторые другие показатели:

  • твердость,
  • упругость,
  • устойчивость к износу,
  • выносливость.

Содержание  «Fe» в стали  должно быть — не менее 45%, «С»- не более 2,14% — теоретически,  однако на практике % концентрации углерода имеет следующий диапазон значений:

  • Низкоуглеродистые стали —  0,1-0,13 %
  • Углеродистые стали 0,14-0,5%
  • Высокоуглеродистые – от 0,6%

Чем выше процент содержания углерода в стали , тем выше ее прочность и меньше пластичность. УГЛЕРОД — является неметаллическим элементом. Его плотность равна 2,22 г/см3, а плавится при t -3500 °С.  В природе он присутствует 2х полиморфных модификаций – графит  (стабильная модификация) и алмаз (метастабильная модификация), а  в  сплаве с железом:

  • в свободном  — графит (в серых чугунах),
  • в связанном  — твердое состояние -цементит.

Углерод в соединении с железом находится в состоянии цементита, т.е в химической связи с железом (Fe3C). Структура цементита может быть очень разной, а зависит она от процесса образования, содержания углерода и методов термообработок.

Углерод в свободном состоянии присутствует в сером чугуне  (СЧ), в виде графита. Серый чугун имеет пористую металлическую структуру и является весьма хрупким; на нем легко появляются трещины (особенно в процессе сварки).

Химический состав углеродистых сталей обыкновенного качества (ГОСТ 380-71)

Система железо- углерод

Структура стали изучается по диаграмме состояния системы железо- углерод. Она характеризует структурные превращения стали и выражает зависимость структурного состояния от температурных режимов и химического состава.

Диаграмма состояния системы железо- углерод

Диаграмма состояния содержит критические точи, которые очень важны теоретически и практически для процессов термообработки стали и их анализа. С помощью диаграммы Fe-C — можно определить вид термообработки, температурный интервал изменения структуры и прогнозировать микроструктуру.

Структуры стали

Сплавы железа с углеродом при различных температурах и различном содержании «С» имеют различную структуру, а соответственно и физические и химические свойства. Одним из таких состояний и является описанный выше цементит. А теперь о них:

Аустенит  – твердая структура  углерода в  гамма-железе — содержит «С» до 1,7% (t >  723° С). При снижении температуры аустенит распадается на феррит и цементит и возникает пластинчатая структура — перлит.

Феррит  — твердый раствор «C» в  α-железа- при t> 723-768° С , концентрация «С» составляет — 0,02%, а при t 20°С около 0,006% «С». Он очень пластичен, не тверд и имеет низкие магнитные свойства.

Цементит — карбид железа Fe3C. Концентрация «С»  6,63% . Цементит является хрупким , а его твердость — НВ760-800.

Перлит —  механическая смесь феррита и цементита, образуемая при постепенном охлаждении в процессе распада аустенита. Исходя из размера частиц цементита перлит имеет различные механические свойства. Содержание «С» -0,8%.

Ледебурит (структура чугуна) — смесь образующаяся из кристаллизация жидкого сплава цементита и аустенита. Ледебурит очень твердый, но хрупкий. Концентрация «С»-4,3%

Свойства стали

Конечно, не только углерод  влияет на свойства стали. Состав дополнительных элементов и их количество придают стали определенные свойства. Примеси бывают полезными и вредными. Хорошие примеси влияют исключительно на сами кристаллы, а вредные негативно воздействуют на связь кристаллов между собой. К хорошим примесям относят : марганец (Mn), кремний (Si). К плохим: фосфор (Р), серу (S), азот, кислород и другие.

Физические и механические свойства стали

Основными физическими свойствами стали являются:

  • теплоемкость;
  • теплопроводность;
  • модуль упругости.
  • Понятие модуля упругости стали (Е) заключается в соотношении твердого вещества упруго деформироваться при воздействии силы. Данная характеристика на прямую зависит от напряжения, а точнее, является производной соотношения напряжения к упругой деформации.
  •  модуль сдвига (упругость при сдвиге) (G )– величина измеряемая в Паскалях (Па), определяющая упругие свойства тела или материала и их способность сопротивляться сдвигающим деформациям. Он применяется для расчета на сдвиг, срез, кручение.
  •  коэффициент линейного и коэффициент объемного расширения при изменении температуры – это величина показывающая относительное изменение линейных размеров или объема материала или тела при увеличении температуры при неизменном давлении.

Основными механическими свойствами стали являются:

  • прочность
  • твердость
  • пластичность
  • упругость
  • выносливость
  • вязкость

Показатели механических свойств углеродистых сталей обыкновенного качества ( ГОСТ 380-71)

Основными химическими свойствами стали являются:

  •  степень окисления
  •  устойчивость к коррозии
  •  жаростойкость
  •  жаропрочность

Качество стали определяется различными показателями всех ее свойств и структуры. Учитываются и свойства и изделий из этой стали.

По качеству стали разделяют на:

  • обыкновенного качества,
  • качественная сталь,
  • высококачественная сталь.

В данной статье мы рассматриваем только структуру стали и связанные с ней понятия. Качество стали, состав дополнительных примесей и их свойства будут  рассмотрены в следующей публикации.

Опубликовано: 24.12.2015

определение, классификация, химический состав и применение

Как часто мы слышим слово «сталь». И произносят его не только профессионалы в области металлургического производства, но и обыватели. Без стали не обходится ни одна прочная конструкция. По сути, когда мы говорим о чем-то металлическом, то подразумеваем изделие из стали. Узнаем, из чего она состоит, и как ее классифицируют.

Определение

Сталь – это самый, пожалуй, популярный сплав, основой которого являются железо и углерод. Причем доля последнего колеблется от 0,1 до 2,14 %, а первый не может быть ниже 45 %. Простота производства и доступность сырья имеют определяющее значение при распространении этого металла на все сферы деятельности человека.

Основные характеристики материала меняются в зависимости от его химического состава. Определение стали, как сплава, состоящего из двух компонентов, железа и углерода, нельзя назвать полным. В него может входить, например, хром — для придания жаропрочности, а никель, чтобы обеспечить устойчивость к коррозии.

Обязательные компоненты материала способствуют появлению дополнительных преимуществ. Так, железо делает сплав ковким и легко деформируемым при определенных условиях, а углерод – прочность и твердость одновременно с хрупкостью. Именно поэтому его доля так мала в общей массе стали. Определение способа производства сплава привело к содержанию в нем марганца в количестве 1 % и кремния – 0,4 %. Существует целый ряд примесей, которые появляются при плавлении металла и от которых пытаются избавиться. Наряду с фосфором и серой, кислород и азот также ухудшают свойства материала, делая его менее прочным и изменяя пластичность.

Структура стали

Классификация

Определение стали как металла с определенным набором характеристик, конечно, не вызывает сомнений. Однако именно ее состав позволяет классифицировать материал по нескольким направлениям. Так, например, различают металлы по следующим признакам:

  • по химическому;
  • по структурному;
  • по качеству;
  • по назначению;
  • по степени раскисления;
  • по твердости;
  • по свариваемости стали.

Определение стали, маркировка и все ее характеристики будут описаны далее.

Маркировка

К сожалению, не существует мирового обозначения сталей, что значительно затрудняет торговые операции между странами. В России определена буквенно-цифровая система. Буквами обозначают название элементов и способ раскисления, а цифрами – их количество.

Химический состав

Сталь мелкая

Существует два способа деления стали по химическому составу. Определение, которое дают современные учебники, позволяет различать углеродистый и легированный материал.

Первый признак определяет сталь как малоуглеродистую, среднеуглеродистую и высокоуглеродистую, а второй – низколегированную, среднелегированную и высоколегированную. Малоуглеродистым называют металл, который может включать согласно ГОСТу 3080-2005, помимо железа, следующие составляющие:

  • Углерод – до 0,2 %. Он способствует термическому упрочнению, за счет которого временное сопротивление и твердость повышается в два раза.
  • Марганец в количестве до 0,8 % активно вступает с кислородом в химическую связь и не допускает образование оксида железа. Металл лучше выдерживает динамические нагрузки и более податлив термическому упрочнению.
  • Кремний – до 0,35 %. С помощью него становятся лучше механические характеристики, такие как вязкость, прочность, свариваемость.

По ГОСТу определение стали в качестве малоуглеродистой дают металлу, который содержит, кроме полезных, целый ряд вредных примесей в следующем количестве. Это:

  • Фосфор – до 0,08 % отвечает за появление хладноломкости, ухудшает выносливость и прочность. Снижает ударную вязкость металла.
  • Сера – до 0,06 %. Она усложняет обработку металла давлением, увеличивает отпускную хрупкость.
  • Азот. Снижает технологические и прочностные свойства сплава.
  • Кислород. Снижает прочность и препятствует обработке инструментов при резке.

Следует отметить, что низко- или малоуглеродистые стали отличаются особой мягкостью и пластичностью. Они хорошо деформируются как в горячем, так и в холодном состоянии.

Определение стали среднеуглеродистой так же, как и ее состав, конечно, отличаются от материала, описанного выше. И самым большим различием является количество углерода, которое колеблется от 0,2 до 0,45 %. Такой металл имеет небольшую вязкость и пластичность наряду с отличными свойствами по прочности. Из среднеуглеродистой стали обычно изготавливают детали, применяемые при обычных силовых нагрузках.

Если же содержание углерода составляет свыше 0,5 %, то такая сталь называется высокоуглеродистой. Она имеет повышенную твердость, сниженную вязкость, пластичность, используется при штамповке инструмента и деталей методом горячего и холодного деформирования.

Помимо выявления имеющегося в стали углерода, определение характеристик материала возможно через находящиеся в ней дополнительные примеси. Если в металл, кроме обычных элементов, целенаправленно вводят хром, никель, медь, ванадий, титан, азот в химически связанном состоянии, то его называют легированным. Такие добавки снижают риск хрупкого разрушения, увеличивают коррозионную стойкость и прочность. Их количество и обозначает степень легирования стали:

  • низколегированная – имеет до 2,5 % легирующих добавок;
  • среднелегированная – от 2,5 до 10 %;
  • высоколегированная – до 50 %.

Что это значит? Например, повышение каких-либо свойств стали обеспечиваться следующим образом:

  1. Добавление хрома. Позитивно действует на механические характеристики уже в количестве 2 % от общего объема.
  2. Введение никеля от 1 до 5 % увеличивает температурный запас вязкости. И снижает хладноломкость.
  3. Марганец работает так же, как и никель, хотя значительно дешевле. Однако способствует повышению чувствительности металла к перегреву.
  4. Вольфрам — карбидобразующая добавка, обеспечивающая высокую твердость. Поскольку препятствует росту зерна при нагреве.
  5. Молибден – дорогостоящая добавка. Которая повышает теплостойкость быстрорежущих сталей.
  6. Кремний. Увеличивает кислотостойкость, упругость, окалиностойкость.
  7. Титан. Может способствовать образованию мелкозернистой структуру, если сочетается с хромом и марганцем.
  8. Медь. Повышает антикоррозионные свойства.
  9. Алюминий. Увеличивает жаростойкость, окалийность, ударную вязкость.

Структура

Виды стали

Определение состава стали было бы неполным без изучения ее структуры. Однако этот признак непостоянен, и может зависеть от целого ряда факторов, таких как: режим термообработки, скорость охлаждения, степень легирования. Согласно правилам структуру стали следует определять после отжига или нормализации. После отжига металл разделяют на:

  • доэвтектоидную структуру – с избыточным ферритом;
  • эвтектоидную, которая состоит из перлита;
  • заэвтектоидную – со вторичными карбидами;
  • ледебуритную – с первичными карбидами;
  • аустенитную – с гранецентрированной кристаллической решеткой;
  • ферритную – с кубической объемоцентрированной решеткой.

Определение класса стали возможно после нормализации. Под ней понимают вид термической обработки, включающий в себя нагрев, выдержку и последующее охлаждение. Здесь различают перлитный, аустенитный и ферритный классы.

Качество

Определение типов стало по качеству возможным по четырем направлениям. Это:

  1. Обыкновенного качества – это стали с содержанием углерода до 0,6 %, которые выплавляют в мартеновских печах или в конвертерах с использованием кислорода. Они считаются наиболее дешевыми и уступают по характеристикам металлам других групп. Примером таких сталей являются Ст0, Ст3сп, Ст5кп.
  2. Качественные. Яркими представителями этого типа являются стали Ст08кп, Ст10пс, Ст20. Выплавляются они с применением тех же печей, но с более высокими требованиями к шихте и процессам производства.
  3. Высококачественные стали плавят в электропечах, что гарантирует увеличение чистоты материала по неметаллическим включениям, то есть улучшение механических свойств. К таким материалам относят Ст20А, Ст15Х2МА.
  4. Особовысококачественные — изготавливают по методу специальной металлургии. Их подвергают электрошлаковому переплаву, который обеспечивает очистку от сульфидов и оксидов. К сталям этого типа относят Ст18ХГ-Ш, Ст20ХГНТР-Ш.

Конструкционные стали

Это, пожалуй, самый простой и понятный для обывателя признак. Различают конструкционные, инструментальные и специального назначения стали. Конструкционные принято разделять на:

  1. Строительные – это углеродистые стали обыкновенного качества и представители низколегированного ряда. К ним предъявляется несколько требований, основное из которых – свариваемость на достаточно высоком уровне. Примером служат СтС255, СтС345Т, СтС390К, СтС440Д.
  2. Из цементируемых делают изделия, которые работают в условиях поверхностного износа и параллельно испытывают динамические нагрузки. К ним относят малоуглеродистые стали Ст15, Ст20, Ст25 и некоторые легированные: Ст15Х, Ст20Х, Ст15ХФ, Ст20ХН, Ст12ХНЗА, Ст18Х2Н4ВА, Ст18Х2Н4МА, Ст18ХГТ, Ст20ХГР, Ст30ХГТ.
  3. Для холодной штамповки используют прокат листвой из качественных низкоуглеродистых образцов. Таких как Ст08Ю, Ст08пс, Ст08кп.
  4. Улучшаемые стали, которые подвергаются улучшению в процессе закалки и высокого отпуска. Это среднеуглеродистые (Ст35, Ст40, Ст45, Ст50), хромистые (Ст40Х, Ст45Х, Ст50Х, Ст30ХРА, Ст40ХР) стали, а также хромокремниемарганцевые, хромоникельмолибденовые и хромоникелевые.
  5. Рессорно-пружинные имеют упругие свойства и сохраняют их длительное время, так как имеют высокую степень сопротивляемости к усталости и разрушению. Это углеродистые представители Ст65, Ст70 и стали легированные (Ст60С2, Ст50ХГС, Ст60С2ХФА, Ст55ХГР).
  6. Высокопрочные образцы – те, которые имеют прочность в два раза большую, чем иные конструкционные стали, достигаемую термической обработкой и химическим составом. В основной массе это легированные среднеуглеродистые стали, например, Ст30ХГСН2А, Ст40ХН2МА, Ст30ХГСА, Ст38ХН3МА, СтОЗН18К9М5Т, Ст04ХИН9М2Д2ТЮ.
  7. Шарикоподшипниковые стали отличаются особой выносливостью, высокой степенью износоустойчивости и прочности. К ним обязательно предъявляются требования по отсутствию разного рода включений. К этим образцам относятся высокоуглеродистые стали с содержанием хрома в составе (СтШХ9, СтШХ15).
  8. Автоматные стали определение имеют следующее. Это образцы для использования при изготовлении неответственных изделий, таких как болты, гайки, винты. Такие запасные части обычно обрабатываются резанием. Поэтому основной задачей является повышение обрабатываемости деталей, чего добиваются введением в материал теллура, селена, серы и свинца. Такие добавки способствуют образованию при обработке ломкой и короткой стружки и уменьшению трения. Основные представители автоматных сталей обозначаются так: СтА12, СтА20, СтА30, СтАС11, СтАС40.
  9. К коррозионностойким относят легированные стали с содержанием хрома около 12 %, поскольку он образует оксидную пленку на поверхности, препятствующую возникновению коррозии. Представителями этих сплавов являются Ст12Х13, Ст20Х17Н2, Ст20Х13, Ст30Х13, Ст95Х18, Ст15Х28, Ст12Х18НЮТ,
  10. Износостойкие образцы применяют в изделиях, которые работают при абразивном трении, ударах и сильном давлении. Примером могут служить детали железнодорожных путей, дробильных и гусеничных машин, такая как Ст110Г13Л.
  11. Жаропрочные стали могут работать при высоком нагреве. Их используют при изготовлении труб, газо- и паротурбинных запчастей. Это в основном высоколегированные малоуглеродистые образцы, имеющие обязательно в составе никель, которые могут содержать добавки в виде молибдена, нобия, титана, вольфрама, бора. Примером могут являться Ст15ХМ, Ст25Х2М1Ф, Ст20ХЗМВФ, Ст40ХЮС2М, Ст12Х18Н9Т, СтХН62МВКЮ.
  12. Жаростойкие отличаются особой стойкостью против химических разрушений в воздухе, газовых и печных, окислительных и науглероживающих средах, но проявляют ползучесть при серьезных нагрузках. Представителями этого типа являются Ст15Х5, Ст15Х6СМ, Ст40Х9С2, Ст20Х20Н14С2.
Плавление стали

Стали инструментального назначения

В этой группе сплавы делят на штамповые, для режущих и измерительных инструментов. Стали для штампов бывают двух видов.

  • Материал для холодного деформирования должен иметь высокую степень твердости, прочности, износостойкости, теплостойкости. Но иметь достаточную вязкость (СтХ12Ф1, СтХ12М, СтХ6ВФ, Ст6Х5ВМФС).
  • Материал для горячего деформирования отличается хорошей прочностью и вязкостью. Наряду с износостойкостью и окалиностойкостью (Ст5ХНМ, Ст5ХНВ, Ст4ХЗВМФ, Ст4Х5В2ФС).

Стали для измерительных инструментов, кроме износостойкости и твердости, должны отличаться постоянством размеров и легко шлифоваться. Из этих сплавов изготавливаются калибры, скобы, шаблоны, линейки, шкалы, плитки. Примером могут быть сплавы СтУ8, Ст12Х1, СтХВГ, СтХ12Ф1.

Определение групп сталей для режущих инструментов осуществляется достаточно легко. Такие сплавы должны обладать режущей способностью и высокой твердостью продолжительное время, даже если подвергаются нагреву. К ним относят углеродистые и легированные инструментальные, а также быстрорежущие стали. Здесь можно назвать следующих ярких представителей: СтУ7, СтУ13А, Ст9ХС, СтХВГ, СтР6М5, СтРЮК5Ф5.

Раскисление сплава

Обработка стали

Определение стали по степени раскисления подразумевает три ее вида: спокойная, полуспокойная и кипящая. Само же понятие обозначает удаление кислорода из жидкого сплава.

У спокойной стали при затвердевании газы почти не выделяются. Так происходит из-за полного удаления кислорода и образования сверху слитка усадочной раковины, которую затем обрезают.

У полуспокойной стали газы выделяются частично, то есть больше, чем в спокойных, но меньше, чем в кипящих. Здесь отсутствует раковина, как в предыдущем случае, но вверху образуются пузыри.

Кипящие сплавы выделяют большое количество газа при затвердевании, а в поперечном сечении достаточно просто заметить разницу химического состава между верхним и нижним слоями.

Твердость

Это понятие обозначает способность материала сопротивляться более твердому, проникающему в него. Определение твердости стало возможно с использованием трех методов: Л. Бринеля, М. Роквелла, О. Викерса.

Определение твердости

Согласно способу Бринеля закаленный стальной шарик вдавливают в отшлифованную поверхность образца. Изучая диаметр отпечатка, определяют твердость.

Метод определения твердости стали по Роквеллу. Он основан на подсчете глубины проникновения наконечника в виде алмазного конуса с углом в 120 градусов.

По Викерсу в испытываемый образец вдавливается алмазная четырехгранная пирамида. С углом 136 градусов у противоположных граней.

Можно ли определить марку стали без химического анализа? Специалисты в области металловедения способны узнать марку стали по искре. Определение составляющих металла возможно при его обработке. Так, например:

  • Сталь ХВГ имеет темно-малиновые искры с желто-красными крапинками и пучками. На концах разветвленных нитей появляются ярко-красные звездочки с желтыми крупками в середине.
  • Сталь Р18 также определяется по темно-малиновым искрам с желтыми и красными пучками в начале, однако нити прямые и не имеют разветвлений. На концах пучков имеются искры с одной или двумя светло-желтыми крупинками.
  • Стали марок ХГ, Х, ШХ15, ШХ9 имеют желтые искры со светлыми звездочками. И красными крупинками на разветвлениях.
  • Сталь У12Ф отличается светло-желтыми искрами с густыми и крупными звездами. С несколькими красно-желтыми пучками.
  • Стали 15 и 20 имеют светлые желтые искры, много разветвлений и звезд. Но мало пучков.

Определение стали по искре является достаточно точным методом для специалистов. Однако обыватели не могут дать характеристику металлу, изучив только цвет искры.

Свариваемость

Свариваемость стали

Свойство металлов образовывать соединение при определенном воздействии называется свариваемостью сталей. Определение данного показателя возможно после того, как будет выявлено содержание железа и углерода.

Считается, что хорошо соединяются посредством сварки низкоуглеродистые стали. Когда содержание углерода превышает 0,45 %, свариваемость ухудшается и становится наиболее плохой при большом содержании углерода. Это происходит и потому, что повышается неоднородность материала, а на границах зерен выделяются сульфидные включения, которые приводят к образованию трещин и увеличению внутреннего напряжения.

Также действуют и легирующие компоненты, ухудшая соединение. Самыми неблагоприятными для сварки называют такие химические элементы как хром, молибден, марганец, кремний, ванадий, фосфор.

Однако соблюдение технологии при работе с низколегированными сталями обеспечивает хороший процент свариваемости без применения специальных мероприятий. Определение свариваемости возможно после оценки ряда важных качеств материала, в числе которых:

  • Скорость охлаждения.
  • Химический состав.
  • Вид первичной кристаллизации и структурных изменений при сварке.
  • Возможность металла образовывать трещины.
  • Склонность материала к возникновению закалочных формирований.
Строительные стали. Марки, свойства и виды строительных сталей

Содержание страницы

Строительные стали (СТС) применяются при создании различного вида конструкций, используемых в строительных сооружениях, магистральных трубопроводах, подъемных кранах, мостах, вагонах, резервуарах.

Учитывая условия эксплуатации, материалы должны выдерживать:

  • статические и динамические нагрузки при различных температурах,
  • сопротивляться образованию трещин,
  • сохранять структуру и механические свойства,
  • иметь высокие прочность,
  • свариваемость,
  • сопротивление вязкому разрушению.

Стандартные марки имеют следующие обозначения: впереди буква С (строительная сталь), затем три цифры – предел текучести материала, Н/мм2, далее могут быть буквы и цифры, означающие вариант химического состава, указание на специальную термообработку или повышенную коррозионную стойкость.

Наиболее действенным средством снижения металлоёмкости и стоимости конструкций является повышение прочности сталей. Размеры поперечных сечений многих элементов металлоконструкций, а следовательно, и их масса существенно зависят от предела текучести и временного сопротивления (предела прочности) материалов.

Поэтому в СНГ установлены 7 основных типов прочности, которым соответствуют пределы текучести: не менее 225, 285, 325, 390, 440, 590 и 735 Н/мм2. Стали первого типа условно принято называть сталями нормальной прочности, трёх следующих – повышенной прочности, а трёх остальных – высокой прочности.

СТС, свойства которых описаны далее, входят во все три раздела:

  • С235, С245, С255, С275 относятся к первому типу прочности;
  • С285, С345, С345Т, С345К, С375, С375Т, С390, С390Т, С390К –ко второму;
  • С440, С590, С590К – к третьему.

Рекомендуемый химический состав марок приведён в табл. 1.

Как следует из табл. 1, для СТС в качестве легирующих используются вещества, упрочняющие материал, такие как кремний, марганец, хром, медь, и в меньшей степени элементы, образующие специальные карбиды и нитриды. При этом пределы текучести и временное сопротивление большинства СТС находятся на среднем уровне, более высокое легирование сдерживается ухудшением свариваемости, снижением сопротивления хрупкому разрушению и, главное, удорожанием материалов.

Основные механические характеристики проката из СТС приведены в табл. 2 и 3.

СТС являются весьма распространенными материалами, производимыми в различных промышленных странах, при этом марки имеют зарубежные аналоги как по химическому составу, так и по свойствам, а основным критерием, характеризующим марку, является величина либо предела текучести (как в СНГ, США, Бельгии), либо предела прочности (как в Евронормах и большинстве европейских стран). Эти значения признаны определяющими расчетными и эксплуатационными показателями сталей при производстве строительных конструкций.

В табл. 4 дается перечень иностранных марок материалов, близких по химическому составу к отечественным СТС.

Для сталей с гарантированными механическими свойствами по толщине (с повышенной сопротивляемостью слоистому разрушению) в качестве критерия выбирается величина относительного сужения ψ. Чтобы обеспечить требуемые значения ψ (не менее 15– 30%), материалы подвергаются внепечному рафинированию и модифицированию (направленному воздействию на состав, форму и распределение неметаллических включений). В таких сталях содержание серы снижается до 0,005– 0,010%.

Хладостойкие стали для конструкций, эксплуатирующихся при низких температурах (в основном, для изотермических резервуаров, позволяющих хранить и транспортировать сжиженные газы), имеют повышенное содержание никеля 6 и 9% при углероде не более 0,1%. Оптимальные свойства материалов достигаются после термической обработки, включающей закалку или двойную нормализацию и отпуск. В этом случае обеспечиваются необходимые механические свойства: σв ≥ 630 Н/мм2, σ0,2 ≥ 470 Н/мм2, δ ≥ 15–20%.

Таблица 1. 

1. Химический состав строительных сталей

Марка

стали

Массовая доля элементов, в %
СSiMnSPCrNiCuVдругие
С235≤0,22≤0,05≤0,60≤0,050≤0,040≤0,30≤0,30≤0,30
С245

С275

С345Т

С375Т

≤0,220,05–0,15≤0,65≤0,050≤0,040≤0,30≤0,30≤0,30
С255

С285

С345Т

С375Т

≤0,22

≤0,22

≤0,20

0,15–0,30

0,05–0,15

0,15–0,30

≤0,65

0,80–1,10

0,80–1,10

≤0,050≤0,040≤0,30≤0,30≤0,30
С345

С375

С390Т

≤0,15≤0,801,30–1,70≤0,040≤0,035≤0,30≤0,30≤0,30
С345К≤0,120,17–0,370,30–,60≤0,0400,070–0,1200,50–0,800,30–0,600,30–0,50Al

0,08–0,15

С390≤0,18≤0,601,20–1,60≤0,040≤0,035≤0,40≤0,30≤0,300,07–0,12N

0,015–0,025

С390К≤0,18≤0,171,20–1,60≤0,040≤0,035≤0,30≤0,300,20–0,400,08–0,15N

0,015–0,025

С440≤0,20≤0,601,30–1,70≤0,040≤0,035≤0,30≤0,30≤0,300,08–0,14N

0,015–0,025

С590≤0,150,40–0,701,30–1,70≤0,035≤0,035≤0,30≤0,30≤0,300,07–0,15Mo

0,15–0,25

С590К≤0,140,20–0,500,90–1,40≤0,035≤0,0350,20–0,501,40–1,75≤0,300,05–0,10Mo

0,15–0,25

N

0,02–0,03

Al

0,05–0,10

Примечания :
  1. Буква Т означает, что сталь термоупрочненная.
  2. Один их трех вариантов химического состава сталей С255 и С385 (строка 3 таблицы) выбирает производитель. При этом прокат, имеющий 0,15–0,30% Si и 0,8–1,1% Mn (третий вариант), для стали С255 изготавливают толщиной не менее 30 мм, а для стали С285 – не менее 16 мм.
  3. Массовая доля меди в сталях С345,С375, С390 и С440 может быть установлена в пределах 0,15–0,30%, тогда в обозначении стали добавляется буква Д, например С345Д.
  4. В сталях С245, С255, С275 и С285 допускается увеличение марганца до 0,85%.
  5. В стали С345К допускается по согласованию с потребителем снижение доли никеля до 0,3%.
  6. В стали С590К возможна замена части никеля кобальтом.
  7. Допускается изготовлять прокат стали 390Т с химическим составом сталей С345 и С375.
  8. Допускается изготовлять листовой прокат толщиной до 12 мм сталей С345Т и С375Т с химическим составом сталей С245 и С255.
  9. Там, где азот не указан, его содержание должно быть не более 0,008% (при выплавке в электропечах не более 0,012%).
  10. Массовая доля мышьяка во всех сталях – не более 0,08%.

Таблица 2. 

2. Механические свойства фасонного проката

Марка

стали

Толщина

проката,

мм

σт,

Н/мм2

σв,

Н/мм2

δ,

%

KCU, Дж/см2
При температуре, °CПосле

старения

– 20– 40– 70
не менее
С2354–20

21–40

235

225

360

360

26

25

С2454–20

21–25

26–30

245

235

235

370

370

370

25

24

24

29

29

С2554–10

11–20

21–40

255

245

235

380

370

370

25

25

24

29

29

29

29

29

29

С2754–10

11–20

275

275

390

380

24

23

29

29

С2854–10

11–20

285

275

400

390

24

23

29

29

29

29

С3454–10

11–20

21–40

345

325

305

490

470

460

21

21

21

39

34

34

34

29

29

29

29

С345К4–103454702039
С3754–10

11–20

21–40

375

355

335

510

490

480

20

20

20

39

34

34

34

29

29

29

29

Примечание.

Для сталей С245, С255, С275 и С285 у профиля толщиной 5 мм норма ударной вязкости 49 Дж/см2.

Таблица 3. 

3. Механические свойства листового и широкополосного универсального проката

Марка

стали

Толщина

проката,

мм

σт,

Н/мм2

σв,

Н/мм2

δ,

%

KCU, Дж/см2
При температуре, °CПосле

старения

– 20– 40– 70
не менее
С2352–3,9

4–20

21–40

41–100

Свыше 100

235

235

225

215

195

360

360

360

360

360

20

26

26

24

24

С2452–3,9

4–10

1–20

245

245

245

370

370

370

20

25

25

29

29

С2552–3,9

4–10

11–20

21–40

255

245

245

235

380

380

370

370

20

25

25

25

29

29

29

29

29

29

С2752–3,9

4–10

11–20

275

275

265

380

380

370

18

24

23

29

29

С2852–3,9

4–10

11–20

285

275

265

390

390

380

17

24

23

29

29

29

29

С3452–3,9

4–10

11–20

21–40

41–60

61–80

81–160

345

345

325

305

285

275

265

490

490

470

460

450

440

430

15

21

21

21

21

21

21

39

34

34

34

34

34

34

29

29

29

29

29

29

29

29

29

29

29

С345К4–103454702039
С3752–3,9

4–10

11–20

21–40

375

375

355

335

510

510

490

480

14

20

20

20

39

34

34

34

29

29

29

29

29

С3904–503905402029
С390К4–503905401929
С4404–30

31–50

440

410

590

570

20

20

29

29

С59010–365906851434
С590К10–405906851429
Примечания .
  1. Для сталей С245, С255, С275, С285 у профиля толщиной 5 мм норма ударной вязкости 39 Дж/см2.
  2. Для сталей С390, С390К, С440 у профиля толщиной 5 мм норма ударной вязкости 34 Дж/см2.
  3. Для стали С590 допускается снижение σт и σв на 50 Н/мм2, а δ – на 2% (в абсолютных единицах).
  4. Нормы ударной вязкости приведены для проката толщиной 5 мм и более.

Таблица 4. 

4. Зарубежные строительные стали, аналоги отечественных

МаркаСтранаНД
С235РоссияГОСТ
USt 37-2

S 235 JRG1

Германия

Евронормы

DIN

EN

С245РоссияГОСТ
RSt 37-2

S 235 JRG2

Германия

Евронормы

DIN

EN

С255РоссияГОСТ
St 37-3U 36

S 235 J0

Германия

США

Евронормы

DIN

ASTM

EN

С275РоссияГОСТ
St 44-2

S 275 JR

Германия

Евронормы

DIN

EN

С285РоссияГОСТ
St 44-3U

Grade 70

S 275 J0

Германия

США

Евронормы

DIN

ASTM

EN

С345РоссияГОСТ
St 52-3N

S 355 J2G3

Германия

Евронормы

DIN

EN

С345K

WR 50 A

SPA-H

Россия

Великобритания

Япония

ГОСТ

B.S.

JIS

C375РоссияГОСТ
TStE 380

SLA 325

Германия

Япония

DIN

JIS

C390, C440РоссияГОСТ
55C, 55EE

TStE 420

TStE 460

Grade B

Grade D

Grade 65

Великобритания

Германия

Германия

США

США

США

B.S.

DIN

DIN

ASTM

ASTM

ASTM

C590KРоссияГОСТ
Grade 100 W Type H

Grade F

SHY 685 N

США

США

Япония

ASTM

ASTM

JIS

Просмотров: 1 322

характеристики и расшифовка, применение и свойства стали

Сварка стали 10

Особенности сварки стали 10 состоят в небольшом содержании в её составе углерода, благодаря чему у стали отмечается высокий уровень свариваемости. При использовании сварочного аппарата нет необходимости в предварительном нагреве, можно использовать разнообразные методы сварки. Швы отличаются качеством и прочностью (не нужна дополнительная обработка).

Форма поставки стали 10

Поставляется данная сталь в самых разнообразных формах — в виде прокатных изделий по сортаментам, включая фасонные — по ГОСТу 1050-88, швеллера по ГОСТу 8240-97, уголка по ГОСТам 8509-93, 8510-86, круга по ГОСТу 2590-2006, квадрата по ГОСТу 2591-2006, балки по ГОСТу 8239-89, шестигранника по ГОСТу 2879-2006. Кроме этого, поставляют сталь в виде прутков: калиброванного по ГОСТам 10702-78, 7417-75, 8559-75, 8560-78, а также — шлифованного и серебрянки по ГОСТам 10702-78, 14955-77.

В виде листов: толстого по ГОСТам 1577-93, 19903-74, тонкого по ГОСТу 16523-97, полосы по ГОСТам 1577-93, 103-2006, 82-70, ленты по ГОСТам 6009-74, 10234-77, проволоки по ГОСТам 17305-91, 5663-79, и труб по ГОСТам 8731-74, 8732-78, 8733-74, 8734-75, 10705-80, 10704-91, 1060-83, 5654-76, 550-75.

Область применения

Изготавливают детали и элементы из данной стали для их эксплуатации в температурных режимах: -40 С — 450 С, при условии больших требований к их пластичности – изделия, отличающиеся большой степенью поверхностной твердости при малой прочности в середине .

Необычно широкая сфера использования Ст.10 обусловлена особыми эксплуатационными свойствами и высокими характеристиками.

  • Благодаря высокой пластичности сталь отлично подходит для изготовления штампованных изделий (чаще всего используют штамповку метод холодным способом). Это же свойство позволяет использовать данную сталь при изготовлении валов и пр. изделий, задействованных в процессах вращения, а также при производстве элементов трубопроводов, котлов высокого давления, стальных листов с высокой стойкостью к коррозии.
  • Хороший уровень стойкости Ст. 10 к коррозии также служит отличным фактором при изготовлении лезвий для режущих инструментов.
  • Простая и лёгкая обработка резанием, а значит, все заготовки можно быстро обрабатывать ручными инструментами и на станках. Такая способность данной стали увеличивает её использование в машиностроительной сфере, где распространены работы на токарных и фрезеровальных станках.
  • Высокий уровень предела выносливости и возможность прокаливания обеспечивает использование стали 10 для производства ответственных изделий, предназначенных для длительного срока работы. Однако, из-за низкой степени теплостойкости, Ст. 10 не используют при производстве изделий, подверженных большому износу.

Аналоги 10

Марка – Ст. 10 (основные аналоги 08, 15, 08кп)


свойств стали — наука поражена

Properties of Steel

Сталь, сплав железа, является одним из самых универсальных и полезных металлов, известных человечеству. В этой статье ScienceStruck мы узнаем о некоторых интересных фактах и ​​свойствах этого металла.

Сталь — это сплав, состоящий в основном из железа, с содержанием углерода от 0,2 до 2,1 мас.%. Хотя использование углерода является наиболее распространенным для производства этого металлического сплава, также используются другие легирующие материалы, такие как вольфрам, хром и марганец.Пропорции и формы, в которых используются эти элементы, влияют на свойства производимой стали — например, увеличение содержания углерода увеличивает ее прочность. Этот факт особенно полезен для изготовления различных типов стали для разных целей — прочность стали, необходимой для изготовления банки с напитком, явно отличается от той, которая необходима для изготовления железнодорожных путей. Существуют различные типы стали, и использование этого сплава широко распространено в различных отраслях промышленности и инфраструктуре благодаря его многочисленным полезным свойствам и характеристикам.

Свойства стали

Прочность на растяжение

Хотите написать для нас? Ну, мы ищем хороших писателей, которые хотят распространять информацию. Свяжитесь с нами, и мы поговорим …

Давайте работать вместе!

Прочность на растяжение — это величина напряжения, которое может выдержать вещество, прежде чем оно станет структурно деформированным. Прочность стали на растяжение сравнительно высока, что делает ее очень устойчивой к разрушению или разрушению, что является ключевым моментом при ее использовании в строительстве инфраструктуры.

Пластичность

Одним из полезных механических свойств стали является ее способность изменять форму при приложении к ней силы, не приводя к разрушению. Это свойство известно как пластичность, что позволяет использовать его при изготовлении различных форм и конструкций, начиная от тонких проводов или крупных автомобильных деталей и панелей.

ковкость

Гибкость

тесно связана с пластичностью и позволяет деформироваться стали при сжатии.Это позволяет этому сплаву быть сжатым в листы переменной толщины, часто создаваемой путем ковки или прокатки.

Прочность

Твердость этого сплава высокая, что отражает его способность противостоять деформации. Он долговечен и очень устойчив к внешнему износу. Следовательно, он считается очень прочным материалом.

Проводимость

Сталь является хорошим проводником тепла и электричества. Эти свойства делают его хорошим выбором для изготовления домашней посуды, а также для электропроводки.

Блеск

Одним из физических свойств стали является ее привлекательный внешний вид. Это серебристый цвет с блестящей блестящей внешней поверхностью.

Rust Resistance

Добавление определенных элементов делает некоторые виды стали устойчивыми к ржавчине. Например, нержавеющая сталь содержит никель, молибден и хром, которые улучшают ее способность противостоять ржавчине.

В дополнение к вышесказанному ниже приведена ориентировочная диаграмма свойств, которая иллюстрирует различия в свойствах различных типов стали.Сталь идентифицируется по маркам, которые определяются конкретными организациями, которые устанавливают стандарты для классификации. Мягкая сталь и две марки нержавеющей стали 304 и 430 обсуждаются ниже.

Материал Теплопроводность Btu / (ч-фут-ºF) Плотность (фунты / дюйм 3 ) Удельная теплоемкость (БТЕ / фунт / ºF) Температура плавления ºF Тепловое расширение (в / в / ºFx10 -6
Сталь, Мягкая 26.0 — 37,5 0,284 0,122 2570 6,7
Сталь, нержавеющая сталь 304 8,09 0,286 0,120 2550 9,6
Сталь, нержавеющая 430 8.11 0,275 0,110 2650 6

Интересные факты о стали

  • Сталь является наиболее перерабатываемым материалом в Северной Америке — около 69% его перерабатывается ежегодно, а это больше, чем пластик, бумага, алюминий и стекло вместе взятые.
  • Сталь впервые была использована для небоскребов в 1883 году.
  • Чтобы построить дом с деревянным каркасом, требуется больше, чем дерево из 40 деревьев — в доме со стальным каркасом используется 8 переработанных автомобилей.
  • Первый стальной автомобиль был изготовлен в 1918 году.
  • 600 стальных или жестяных банок перерабатываются каждую секунду.
  • 83 000 тонн стали были использованы для создания моста Золотые Ворота.

Хотите написать для нас? Ну, мы ищем хороших писателей, которые хотят распространять информацию.Свяжитесь с нами, и мы поговорим …

Давайте работать вместе!

Использование стали является исчерпывающим и обширным. С повторной переработкой этого сплава, практика, которой обычно следуют, его воздействие на окружающую среду значительно уменьшено. Он использовался для изготовления практически всего: от орудий для сельского хозяйства до строительства мостов, железнодорожных путей, автомобилей, двигателей и самолетов. На самом деле, вам будет трудно пройти один день, не наткнувшись на этот чрезвычайно универсальный металл.За эти годы производство стали увеличилось до нынешних уровней, близких к 1300 миллионам тонн в год. Будь то нож для нарезки фруктов, электробритва, заколка для волос или целое здание, в жизни каждого есть немного стали!

Gold Barometer Manometer In The Boiler Room ,Нержавеющая сталь

: свойства, примеры и применение

Нержавеющая сталь — это класс сплавов на основе железа с минимальным содержанием хрома 10,5 мас.%. Он отличается превосходной коррозионной стойкостью по сравнению с другими сталями.

Каковы свойства нержавеющей стали?

Коррозионная стойкость

Коррозионная стойкость нержавеющей стали в основном обусловлена ​​содержанием хрома. На поверхности стали образуется стабильный слой оксида хрома, который предотвращает химические реакции с основной массой материала.Этот оксидный слой чрезвычайно тонкий, толщиной 2–3 нм, пассивен (очень устойчив к коррозии), цепкий (хорошо прилипает к массе) и самовосстанавливающийся (реформируется при растрескивании или повреждении).

Тем не менее, нержавеющая сталь может корродировать при определенных обстоятельствах. Равномерная коррозия может возникнуть при воздействии кислых растворов, таких как сильная серная кислота и соляная кислота, а также основных растворов, таких как гидроксид натрия. Локализованная коррозия может возникать в виде точечной коррозии, щелевой коррозии и растрескивания под напряжением, например, при воздействии хлорид-ионов.

Механические свойства

Поскольку термин «нержавеющая сталь» охватывает широкий спектр материалов, механические свойства, конечно, весьма разнообразны. В целом, значения, проверенные для, включают предел текучести, предел прочности, пластичность, твердость, ударную вязкость, сопротивление ползучести и усталостную прочность. Конкретные значения можно найти на Matmatch для тысяч различных нержавеющих сталей.

Электрические и магнитные свойства

Нержавеющая сталь является относительно плохим проводником электричества.Электропроводность 18 мас.% Cr. 8 мас.% Ni из нержавеющей стали при 20 ° С составляет 1,45-106 См / м по сравнению с 5,96-107 См / м для чистой меди.

Ферритные, мартенситные и дуплексные нержавеющие стали классифицируются как магнитные, а аустенитные — немагнитные. Важным значением, часто используемым для количественной оценки этого, является относительная магнитная проницаемость 𝜇r, которая связана с магнитной восприимчивостью 𝜒m через уравнение m = r-1. Магнитные нержавеющие стали обычно имеют значения проницаемости около 14, тогда как немагнитные нержавеющие стали близки к минимальному значению 1.

Переработка

Все нержавеющие стали полностью пригодны для переработки. Поскольку они содержат значительное количество ценных элементов, таких как хром и никель, рециркуляция лома нержавеющей стали на самом деле чрезвычайно рентабельна. Современные нержавеющие стали обычно изготавливаются из 60% лома, включая утилизированный лом, например, из потребительских товаров и промышленного оборудования, и промышленный лом, такой как отходы производственного процесса.

Категории нержавеющей стали

Нержавеющие стали делятся на четыре основные категории в зависимости от их кристаллической структуры: ферритная, аустенитная, мартенситная и дуплексная.

Ferritic

Ферритные нержавеющие стали имеют объемно-центрированную кубическую кристаллическую структуру, подобную структуре из чистого железа. Они обычно имеют высокое содержание хрома от 10,5 до 18 мас.%. Они имеют низкое содержание углерода, что придает им относительно низкую прочность и практически не содержат никеля. Ферритные нержавеющие стали не подвергаются термической обработке. После отжига они имеют предел текучести в диапазоне от 275 до 350 МПа.

Ферритные нержавеющие стали, как известно, имеют низкую пластичность, что приводит к снижению формуемости, они магнитные, имеют ограниченную ударную вязкость и часто более низкую коррозионную стойкость по сравнению с другими нержавеющими сталями.Их отсутствие никеля, однако, дает им более низкую стоимость.

Одним из основных преимуществ ферритных нержавеющих сталей является их высокая стойкость к коррозионному растрескиванию под напряжением.

Примеры и применение ферритных нержавеющих сталей

  • 409, используется в автомобильной промышленности для таких деталей, как выхлопные системы и выхлопные трубы.

  • 410S, используется в нефтегазовой промышленности, при переработке руды и термической обработке.

  • 430, используется для облицовки посудомоечных машин, панелей холодильных шкафов, опор и крепежа элементов, колец для обшивки печей и облицовок дымоходов, а также для обвязки автомобильных проводов и обвязки.

аустенитных

Аустенитная нержавеющая сталь — самая распространенная категория нержавеющей стали. Они обладают гранецентрированной кубической кристаллической структурой. В дополнение к основным легирующим элементам железа и хрома, эти стали также содержат никель, марганец и азот.

Они не закаливаются с помощью термической обработки, а только с помощью холодной обработки (также называемой закалкой). Эти стали имеют относительно низкую прочность по сравнению с другими сталями и более низкую устойчивость к коррозии

Аустенитные нержавеющие стали делятся на две подкатегории: серия 300 и серия 200.Для серии 300 аустенитная структура достигается путем добавления никеля, тогда как для серии 200 это достигается главным образом путем добавления марганца и азота.

Аустенитные нержавеющие стали немагнитные, однако, серия 300 может стать магнитной после холодной обработки. Содержание никеля в серии 300 делает его пригодным для низкотемпературных криогенных применений.

Примеры и применение аустенитных нержавеющих сталей

  • 304, самая распространенная нержавеющая сталь содержит 18 мас.% хрома и 8 мас.% никеля и поэтому часто упоминается как 18/8. Он используется для многих применений, включая столовые приборы, кухонное оборудование, оборудование для пищевой промышленности, автомобильные и аэрокосмические конструктивные элементы и морские крепежные элементы.

  • 316, вторая по распространенности нержавеющая сталь, используется, например, в оборудовании для приготовления пищи, оборудовании для химической обработки, лабораторных столах и оборудовании, лодочных принадлежностях, теплообменниках, фармацевтическом и текстильном оборудовании и хирургическом оборудовании.

  • 317, низкоуглеродистая нержавеющая сталь с повышенным содержанием хрома, никеля и молибдена для большей коррозионной стойкости. Это используется для обработки бумаги, оборудования для химической и нефтехимической обработки, конденсаторов на электростанциях, оборудования для пищевой промышленности и текстильного оборудования.

мартенситный

Мартенситные нержавеющие стали обладают центрированной по центру кристаллической системой. Они могут варьироваться от низкого до высокого содержания углерода, вплоть до 1.2 мас.%, Содержат 12 мас.% — 15 мас.% Хрома и от 0,2 мас.% До 1,0 мас.% Молибдена. Они не содержат никеля. Из-за присутствия углерода они закаливаются путем термической обработки, подобно углеродистым сталям.

Мартенситные нержавеющие стали являются магнитными и обладают относительно высокой пластичностью и вязкостью, что облегчает их формование. Они могут быть умеренно укреплены холодной обработкой. После отжига они обычно имеют предел текучести около 275 МПа.

Это зависит от содержания углерода: более высокое содержание углерода приводит к увеличению прочности и твердости, но снижает пластичность и ударную вязкость.Они проявляют умеренную коррозионную стойкость и плохую свариваемость.

Примеры и применение мартенситных нержавеющих сталей

  • 403, используется в лопатках компрессора и деталях турбины.

  • 410, используется для деталей с высокой нагрузкой, например, для лопаток турбин, кухонной утвари, болтов, гаек и винтов, деталей для насосов и клапанов, стоматологических и хирургических инструментов, насадок и деталей для насосов для нефтяных скважин.

  • 416, который обладает самой высокой обрабатываемостью из нержавеющей стали, используется для электродвигателей, гаек и болтов, насосов, клапанов, деталей автоматических винтовых машин и зубчатых передач.

  • 420, используется для столовых приборов, ножей, хирургических инструментов, игольчатых клапанов, ножей, ножниц и ручных инструментов.

Дуплекс

Дуплексные нержавеющие стали обладают смешанной микроструктурой феррита и аустенита. Они содержат высокое содержание хрома 22 мас.% — 25 мас.%, Содержание молибдена до 5 мас.% И низкое содержание никеля.

Дуплексные нержавеющие стали обладают примерно вдвое большей прочностью аустенитных нержавеющих сталей и обладают большей устойчивостью к коррозионному растрескиванию под воздействием хлоридов по сравнению с аустенитными нержавеющими сталями, хотя и в меньшей степени, чем ферритные.Они демонстрируют прочность между ферритной и аустенитной.

Примеры и применение дуплексных нержавеющих сталей

Благодаря этим свойствам дуплексные нержавеющие стали идеально подходят для сложных условий, где требуются хорошие механические свойства в дополнение к хорошей коррозионной стойкости. Типичные примеры дуплексных нержавеющих сталей:

  • 2205, используется в химическом, нефтегазоперерабатывающем оборудовании, морской и других средах с высоким содержанием хлоридов, системах очистки сточных вод, целлюлозно-бумажной промышленности, грузовых танках для кораблей и грузовиков, оборудовании для пищевой промышленности, заводе по производству биотоплива.

  • 2304, используется в хлорсодержащих средах, сварных трубных системах, транспорте, трубах теплообменников, строительстве, сосудах под давлением, едких растворах и в пищевой промышленности.

  • 2507, используется в оборудовании для нефтяной и газовой промышленности, морских платформах, химической промышленности, опреснительных установках, механических и конструкционных компонентах и ​​системах FGD в энергетике.

Системы сортировки для нержавеющей стали

Существует множество систем сортировки нержавеющей стали, разработанных различными организациями по стандартизации в разных странах.Эти группы нержавеющих сталей в зависимости от их состава и физических свойств. Эквивалентные стандарты могут быть определены из таблиц сравнения или через базы данных материалов, такие как Matmatch. Наиболее распространенными являются:

,
Свойства нержавеющей стали | Технический | Ресурсы

Свойства материала из нержавеющей стали

Что такое нержавеющая сталь?

Обозначение нержавеющая сталь охватывает широкий спектр сплавов с различными свойствами. Общим для всех нержавеющих сталей является то, что они содержат не менее 12% хрома. Нержавеющие стали можно разделить на три основные группы и несколько смешанных типов в зависимости от структуры стали:

  • Аустенитная нержавеющая сталь
  • Ферритная нержавеющая сталь
  • Мартенситная нержавеющая сталь

Аустенитная нержавеющая сталь является наиболее важной, представляя ок.90% от общего потребления нержавеющей стали. Аустенитная сталь также является единственной нержавеющей сталью, подходящей для дренажных установок, и это, конечно, тип, используемый BLÜCHER.

Важность легирующих элементов Аустенитная нержавеющая сталь содержит по меньшей мере 18% хрома и 8% никеля — таким образом, широко известное обозначение »18/8« сталь. Коррозионная стойкость обычно увеличивается с увеличением содержания хрома. В сплавах с 12-13% хрома пассивный слой достаточно прочен, чтобы предотвратить коррозию стали в нормальных или умеренно агрессивных средах.Основное влияние легирующего элемента никеля заключается в структуре стали и ее механических свойствах. Структура стали аустенитная с достаточным содержанием никеля. В отличие от чистых хромистых сталей (ферритная нержавеющая сталь), это приводит к значительным изменениям механических свойств, таких как повышенная обрабатываемость и пластичность, лучшая стойкость к тепловым нагрузкам и улучшенная свариваемость. Аустенитная структура также приводит к изменению физических свойств стали.Например, сталь не является магнитной и имеет более высокую теплопроводность.

Никель также повышает устойчивость к коррозии, вызванной определенными средами. Молибден оказывает такое же влияние на структуру, что и хром, но он также оказывает сильное положительное влияние на коррозионную стойкость. Молибденсодержащая сталь обычно обозначается как «кислотостойкая» из-за устойчивости этих сталей к определенным типам кислот. Но кислотостойкая нержавеющая сталь также будет иметь ограниченную стойкость к некоторым средам, таким как хлорсодержащие среды (см. Таблицу стойкости).


Почему сталь нержавеющая?

Добавление хрома в сталь приводит к образованию пассивирующей оксидной пленки с высоким содержанием оксидов хрома. Эта оксидная пленка защищает поверхность стали от кислорода в воздухе и воде. Выдающимся свойством нержавеющей стали является то, что пленка оксида хрома автоматически восстанавливается, если поверхность стали подвергается воздействию.

Это восстановление оксидной пленки возможно только в том случае, если поверхность стали полностью чистая и не содержит закалочных агентов и шлака от процессов сварки и остатков от инструментов, изготовленных из обычной углеродистой стали.

Если это поверхностное загрязнение не удаляется, сталь может в конечном итоге подвергнуться коррозии. Чтобы предотвратить это, стальные поверхности должны быть очищены после сварки и обработки, например, с помощью так называемого кислотного травления нержавеющей стали.

Травление эффективно удаляет все загрязнения с поверхности стали и позволяет восстановить прочную однородную пленку оксида хрома. Ванна для травления обычно состоит из 0,5-5% по объему HF (плавиковая кислота) и 8-20% по объему HNO3 (азотная кислота) при температуре 25-60 ° C. Эта кислотная ванна удаляет остатки, существующую пленку оксида хрома и следы железа, оставляя чистую стальную поверхность. Восстановление сильной пленки оксида хрома начинается при последующем промывании водой.


Спецификация материалов
Материал AISI 316 L 1.4404 AISI 304 1.4301
Анализ
Углерод (%) Макс.0,03 Макс. 0,07
Хром (% Cr) 16,5 — 18,5 17,0 — 19,0
никель (Ni%) 11.0 — 14,0 8,5 — 10,5
молибден (Мо%) 2,0 — 2,5
Марганец (Mn%) Макс.2.0 Макс. 2.0
Кремний (% Si) Макс. 1,0 Макс. 1,0
Сера (%) Макс.0.030 Макс. 0.030

Физические свойства
Структура Аустенитный (немагнитный) Аустенитный (немагнитный)
Штат неотожженный
Удельный вес (г / см3) 7.98 7,9
Точка плавления (° C) Ca. 1400 Ca. 1400
Температура декортикации в воздухе (° C) 800 — 860 800 — 860
Коэффициент расширения 20 — 100 ° C (м / м.° C) 16,5 х 10-6 16,5 х 10-6
Удельное сопротивление (20 ° C) (Ом. Мм2 / м) 0,75 0,73
Теплопроводность (20 ° C) (Вт / ° C-м) 15 15
Удельная теплоемкость (Дж / г.к) 0,5 0,5

Механические свойства
Предел прочности при растяжении (Rm) (Н / мм2) 490 — 690 500 — 700
Предел текучести (Rpo2) (Н / мм2) 190 195
Модуль упругости (E) (20 ° C) (Н / мм2) 2.0 х 105 2,0 x 105
Твердость по Бринеллю (HB) (Н / мм2) 120 — 180 130 — 180
,

сталь | Состав, свойства, виды, марки и факты.

Металлы недрагоценные: железо

. Изучение производства и структурных форм железа от феррита и аустенита до легированной стали. Железная руда является одним из самых распространенных элементов на Земле, и одно из ее основных применений — производство стали. В сочетании с углеродом железо полностью меняет характер и становится легированной сталью. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьи

Основным компонентом стали является железо, металл, который в чистом виде не намного тверже меди.Пропуская очень крайние случаи, железо в твердом состоянии, как и все другие металлы, является поликристаллическим, то есть состоит из множества кристаллов, которые соединяются друг с другом на своих границах. Кристалл — это упорядоченное расположение атомов, которое лучше всего представить как сферы, соприкасающиеся друг с другом. Они упорядочены в плоскостях, называемых решетками, которые проникают друг в друга особым образом. Для железа расположение решетки может быть лучше всего визуализировано единичным кубом с восемью атомами железа по углам. Для уникальности стали важна аллотропия железа, то есть его существование в двух кристаллических формах.В объемно-центрированном кубическом расположении в центре каждого куба есть дополнительный атом железа. В гранецентрированной кубической (ГЦК) схеме имеется один дополнительный атом железа в центре каждой из шести граней единичного куба. Важно, что стороны гранецентрированного куба или расстояния между соседними решетками в ГЦК-расположении примерно на 25 процентов больше, чем в ОЦК-расположении; это означает, что в ГЦК больше места, чем в структуре ОЦК, для хранения чужих ( i. легирующих) атомов в твердом растворе.

Железо имеет ОЦК-аллотропию ниже 912 ° C (1674 ° F) и от 1394 ° C (2,541 ° F) до температуры плавления 1538 ° C (2800 ° F). Называемый ферритом, железо в его ОЦК-образовании также называют альфа-железом в более низком температурном интервале и дельта-железом в высокотемпературной зоне. Между 912 и 1394 ° С железо находится в своем ГЦК-порядке, который называется аустенит или гамма-железо. Аллотропное поведение железа сохраняется за редким исключением в стали, даже когда сплав содержит значительное количество других элементов.

Существует также термин бета-железо, которое относится не к механическим свойствам, а скорее к сильным магнитным характеристикам железа. Ниже 770 ° C (1420 ° F) железо является ферромагнитным; температура, выше которой он теряет это свойство, часто называется точкой Кюри.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

В чистом виде железо мягкое и, как правило, не используется в качестве инженерного материала; основной метод его укрепления и превращения в сталь заключается в добавлении небольшого количества углерода.В твердой стали углерод обычно встречается в двух формах. Либо он находится в твердом растворе в аустените и феррите, либо в виде карбида. Карбидной формой может быть карбид железа (Fe 3 C, известный как цементит), или он может быть карбидом легирующего элемента, такого как титан. (С другой стороны, в сером железе углерод появляется в виде чешуек или скоплений графита из-за присутствия кремния, который подавляет образование карбидов.)

Влияние углерода лучше всего иллюстрируется диаграммой равновесия железо-углерод.Линия A-B-C представляет точки ликвидуса (, то есть — температуры, при которых расплавленное железо начинает затвердевать), а линия H-J-E-C представляет точки солидуса (в которых завершение затвердевания). Линия A-B-C показывает, что температуры затвердевания снижаются по мере увеличения содержания углерода в расплаве железа. (Это объясняет, почему серое железо, которое содержит более 2 процентов углерода, обрабатывается при гораздо более низких температурах, чем сталь.) Расплавленная сталь, содержащая, например, содержание углерода 0.77 процентов (показано вертикальной пунктирной линией на рисунке) начинает затвердевать при температуре около 1475 ° C (2660 ° F) и полностью твердо при температуре около 1400 ° C (2550 ° F). С этого момента все кристаллы железа находятся в аустенитном — , то есть ГЦК — расположении и содержат весь углерод в твердом растворе. При дальнейшем охлаждении происходит резкое изменение при температуре около 727 ° C (1341 ° F), когда кристаллы аустенита превращаются в тонкую пластинчатую структуру, состоящую из чередующихся пластин феррита и карбида железа.Эта микроструктура называется перлит, а изменение называется эвтектоидным превращением. Жесткость алмазной пирамиды (DPH) составляет приблизительно 200 кг на квадратный миллиметр (285 000 фунтов на квадратный дюйм) по сравнению с DPH, равной 70 кг на квадратный миллиметр для чистого железа. Охлаждение стали с более низким содержанием углерода (, например, , 0,25 процента) приводит к микроструктуре, содержащей около 50 процентов перлита и 50 процентов феррита; это мягче, чем перлит, с DPH около 130.Сталь с содержанием углерода более 0,77%, например 1,05%, содержит в своей микроструктуре перлит и цементит; он тверже перлита и может иметь DPH 250.

Диаграмма равновесия железоуглерод. Encyclopædia Britannica, Inc. .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *