Сталь состав применение и свойства – классификация, производство, применение, маркировка, цена

Содержание

Сталь: состав, свойства, виды и применение. Состав нержавеющей стали

Многими людьми в обыденной речи часто употребляются понятия «сталь» и «железо», как синонимы. На практике они существенно отличаются друг от друга.

Что называется сталью

Сталью называют один из самых распространенных металлических сплавов. Он широко применяется при производстве различных машин, механизмов и приборов. Без нее немыслимо производство автомобилей и судов, железнодорожных вагонов и локомотивов. Стальная арматура используется в строительстве, из металлических конструкций сооружаются мосты, быстро возводимые сооружения. Этот сплав создается с заранее заданными свойствами, чтобы в наибольшей степени удовлетворять качественным характеристикам конкретного изделия. Обычно сталью называют сплав, в котором более 45 процентов железа. Для прочности и твердости в него добавляется углерод и легирующие компоненты.

Высокоуглеродистая сталь идет на изготовление различных силовых пружин и амортизаторов, рессор и других упругих деталей, рассчитанных на большие нагрузки. При изготовлении высокотехнологичного оборудования и приборов из такой стали изготавливают подвески, мембраны и множество других элементов разных форм и назначения. Отличаются детали из стали с повышенным содержанием углерода тем, что они выдерживают большие  постоянные,  ударные или циклические нагрузки, не  имея остаточной деформации. Стали, у которых содержание углерода не велико, более пластичные и вязкие. Их удобно использовать для производства штампованных деталей, например, в автомобилестроении.

Для удобства применения стали классифицируют по различным параметрам.

Так по назначению они могут быть:

  • Конструкционными.
  • Нержавеющими.
  • Инструментальными.
  • Жаропрочными.
  • Морозостойкими.

Для оценки химического состава их относят к углеродистым и легированным. Первые бывают низко, средне и высокоуглеродистыми. По такому же принципу, исходя их содержания легирующих компонентов, делятся легированные стали. Стали могут различаться и по другим характеристикам (удельный вес, плотность, температура плавления, содержание хрома, молибдена, вольфрама и пр.).

Есть такой металл – железо


Железом называется элемент, менделеевской периодической системы, обозначаемый символом Fe. Этот металл широко распространен  в коре нашей планеты. Полагают, что из него состоит большая часть ядра Земли. Считается, что  это один из самых распространенных элементов в Солнечной системе. Представляет собой серебристо-белого цвета металл, который поддается ковке. Горит в чистом кислороде.  В чистом виде встречается редко. Комплекс уникальных свойств железа и его сплавов делают этот металл важнейшим для людей. Практически наиболее применяемые его сплавы с углеродом в виде стали, в том числе с добавлением марганца, хрома, никеля и чугуна.

Оно было известно еще в четвертом тысячелетии до н.э. в виде украшений и холодного оружия, которые изготавливались из железа, содержавшегося в метеоритах.

Ценилось дороже золота. Позже его научились плавить из магнетитовых песков и железной руды в вырытых в земле печах. С изобретением примитивных доменных печей с использованием воздуходувных мехов древние римляне освоили производство чугуна и стали из него.

Железо содержится в большом количестве минералов, в частности, в таких:

  • Магнетит (72,4%)
  • Гематит (70 %)
  • Марказит ( 46,6 %)
  • Сидерит ( 35 %)
  • Миспикель ( 34,3 %)
  • Леллингит ( 27,2 %)

В числе стран с наибольшими месторождениями железа находятся Бразилия, Австралия, США, Канада, Швеция, Венесуэла, Либерия, Украина, Франция, Индия. Первое место в мире по его запасам занимает Россия. Перспективными являются железосодержащие месторождения, обнаруженные на дне океанов.

Промышленным способом железо получается из железной руды в виде агломерата, в основном в результате доменного процесса. В доменных печах при температуре 2000 °C его сначала восстанавливают углеродом. Полученный расплав железа, называемый чугуном, перенасыщен углеродом. Для получения стали он нуждается в дальнейшей переработке.  Оно получается в твердом виде и переправляется в электропечах.

В чем отличия

Сталь и железо принципиально отличаются в следующем:

  1. Сталь является готовым продуктом металлоплавления и может использоваться в различных целях. Железо является элементом, который выступает основой и полуфабрикатом для производства стали.
  2. Стали за счет изменения рецептуры и технологии ее производства, могут задаваться определенные качества, необходимые для дальнейшего производства. В железе, как химическом элементе, его качества заложены природой.
  3. Сталь является сплавом, а в чистом железе содержится только оно.
  4. По прочностным характеристикам сталь значительно превосходит железо.
  5. Из стали изготавливают миллионы наименований изделий, из железа – десятки.

В жизни мы постоянно сталкиваемся со сплавами, самый распространенный из которых сталь. Поэтому нет ничего удивительно, что у кого-нибудь да возникнет вопрос о том, как делают сталь?

Сталь – это один из сплавов железа и углерода, получивший широчайшее распространение в повседневной жизни. Процесс производства стали многоступенчатый и состоит из нескольких этапов: добыча и обогащение руды, получение агломерата, производства чугуна и выплавка стали.

Руда и агломерат

Месторождения руд позволяют добывать как богатые, так и бедные породы. Богатую руду можно сразу использовать как производственное сырье. Чтобы можно было выплавлять и бедную руду, ее необходимо обогатить, то есть увеличить в ней содержание чистого металла. Для этого руду измельчают и, применяя различные технологии, отделяют частицы, богатые соединениями металла. Например, для железных руд применяют магнитную сепарацию – воздействие магнитным полем на исходное сырье с целью отделение частиц богатых железом.

Получается низкодисперсионный концентрат, который спекают в более крупные куски. Результат обжига железных руд и есть агломерат. Виды агломератов получили название по основному сырью, входящему в их состав. В нашем случае это железорудный агломерат. Теперь, чтобы понять, как делают сталь, необходимо проследить дальнейший технологический процесс.

Чугун выплавляют в доменных печах, которые функционируют по принципу противотока. Загрузка агломерата, кокса и другого шихтового материала осуществляется сверху. Снизу вверх, навстречу этим материалам, поднимаются потоки раскаленного газа от сгорания кокса. Начинается череда химических процессов, в результате чего происходит восстановление железа и насыщение его углеродом. Температурный режим при этом сохраняется в районе 400-500 градусов Цельсия. В нижних частях печи, куда постепенно опускается восстановленное железо, температура увеличивается до 900-950 градусов. Образуется жидкий сплав железа с углеродом – чугун. К основным химическим характеристикам чугуна относятся: содержание углерода более 2,14 %, обязательное наличие в составе серы, кремния, фосфора и марганца. Чугун отличается повышенной хрупкостью.

Теперь мы приблизились к последнему этапу, позволяющему узнать, как делают сталь. В химическом плане сталь отличается от чугуна пониженным содержанием углерода; соответственно, основная задача производственного процесса – уменьшить содержание углерода и других примесей в основном сплаве железа. Для производства стали используют мартеновские печи, кислородные конвертеры или электропечи.

По различным технологиям расплавленный чугун продувается кислородом при очень высоких температурах. Происходит обратный процесс – окисление железа на уровне примесей, входящих в сплав. Полученный шлак в дальнейшем убирается. В результате продувки кислородом понижается содержание углерода и происходит преобразование чугуна в сталь.

В сталь могут добавляться легирующие элементы, изменяющие свойства материала. Поэтому сталью считается сплав железо-углерод с содержанием железа не менее 45 %.

Вышеописанные процессы разъяснили, как делают сталь, из каких материалов и с применением каких технологий.

СТАЛЬ. сплавы ЖЕЛЕЗА с примесью УГЛЕРОДА. Исключительная прочность стали сделала ее чрезвычайно важным материалом в строительстве и производстве товаров.


иболее распространенным видом является простая углеродная сталь, так как углерод является ее основной примесью. В такой стали содержится около 1% углерода и незначительные количества других компонентов (марганца, кремния, серы и фосфора). В ЛЕГИРОВАННОЙ СТАЛИ также содержится определенное количество углерода, но благодаря присутствию в них марганца, никеля, хрома, ванадия и молибдена, они обладают рядом индивидуальных свойств.
Низколегированная
сталь, в которой содержится менее 5% легирующих добавок, чрезвычайно прочна и используется в строительстве зданий, мостов и частей машин. В высоколегированной стали содержится более 5% добавок. Сюда относится НЕРЖАВЕЮЩАЯ СТАЛЬ. Впервые сталь научились производить около 2000 лет назад, но ранние МЕТОДЫ ее получения были медленными и трудоемкими, поэтому ее удавалось получить только в малых количествах. Широкомасштабное производство стали стало возможным лишь в середине XIX в. с изобретением БЕССЕМЕРОВСКОГО и МАРТЕНОВСКОГО ПРОЦЕССА. Сейчас при изготовлении стали используется КИСЛОРОДНОЕ ДУТЬЕ. Некоторые виды стали производят в ЭЛЕКТРОПЕЧИ ( в том случае, если в ее состав входят материалы, которые подверглись бы окислению в ходе других процессов производства стали).

Сталь На иллюстрации показано, как из железной руды получают обыкновенную углеродистую сталь, состоящую из чистого железа и незначительного количества углерода.


железной руде железо связано с кислородом и другими примесями, главным образом, кремнеземом. Обозначения: A) Полученное сырье — уголь, известняк и железная руда B) После первичного дробления и сортировки сырье обогащается. Уголь коксуется для того, чтобы удалить лишние вещества и примеси. Железная руда подвергается магнитному обогащению, чтобы отделить магнитную руду от немагнитной породы. Известняк обычно не содержит примесей C) Сырье дробится для того, чтобы его можно было использовать в домне D) Слишком крупное сырье возвращается для дальнейшего дробления, а подходящее для домны отправляется прямо туда. Слишком мелкая железная руда смешивается с мелким извесг-няком и коксом и сжигается для получения шлака Е) Известняк, железная руда и кокс продуваются горячим воздухом Топливная нефть сжигается при доменном дутье и воспламеняет кокс Сжигаемый кокс так сильно повышает тем пературу в центре домны, что материал в ней наполовину плавится. Горячий кокс и газы, которые образовались в результате сжигания, удаляют кислород из железной руды и образуют угарный и углекислый газы, — газообразную смесь,которая выводится через выхлопное отверстие Другая важная примесь в железной руде — это кремнезем, реагирующий с известняком. Освобожденные от кислорода железо и кремнезем собираются внизу печи. Смесь железо-кремнезем легче, чем железо, и образует слой шлака,тем самым способствуя их легкому разделению через разделяющие отверстия вверху F) Расплавленное железо поглощает лишний углерод из кокса, уровень которого должен быть понижен для того, чтобы получить годную к употреблению сталь Это происходит посредством продувания чистого кислорода по поверхности расплавленного магериала в домне. Углерод соединяется с кислородом и сгорает с образованием угарного и углекислого газов Извесшяк, скапливающийся на поверхносги расплавленного металла, поглощает много примесей, оставшихся после продувки G) Очищенная сталь с соответствующим содержанием углерода готова к разливке, а примеси остаются в шлаках

Научно-технический энциклопедический словарь .

Смотреть что такое «СТАЛЬ» в других словарях:

сталь — сталь/ … Морфемно-орфографический словарь

сталь — ковкий сплав железа с углеродом (до 2 %) и другими элементами. Материальная основа практически всех областей техники. Производство стали в мире составл

novoevmire.biz

состав, свойства, виды и применение. Состав нержавеющей стали

Многие знают, что сталь — это продукт, получаемый в процессе плавки других элементов. Но каких? Что входит в состав стали? На сегодняшний день эта субстанция представляет собой деформируемый сплав железа с углеродом (его количество составляет 2,14%), а также малой долей других элементов.

Стоит отметить, что сталью называют сплав, имеющий именно до 2,14% углерода в своем составе. Сплав же, в котором есть более 2,14% углерода, уже называется чугуном.

Известно, что состав углеродистой стали и обычной неодинаков. Если в обычный субстрат входит углерод и другие легирующие (улучшающие) компоненты, то в углеродистом продукте легирующих элементов нет. Если же говорить о легированной стали, то ее состав намного богаче. Для того чтобы улучшить эксплуатационные характеристики данного материала, в его состав добавляют такие элементы, как Cr, Ni, Mo, Wo, V, Al, B, Ti и др. Важно отметить, что наилучшие свойства этой субстанции обеспечиваются именно за счет добавления легированных комплексов, а не одного или двух веществ.


Классификация

Провести классификацию рассматриваемого нами материала можно по нескольким показателям:

  • Первый показатель — это химический состав стали.
  • Второй — это микроструктура, которая также очень важна.
  • Конечно же, стали отличаются по своему качеству и способу получения.
  • Также каждый вид стали имеет свое применение.

Более подробно состав можно рассмотреть на примере химического состава. По этому признаку различают еще два вида — это легированные и углеродистые стали.

Среди углеродистых сталей существуют три разновидности, главное отличие которых заключается в количественном содержании углерода. Если в состав субстанции входит менее 0,3% углерода, то ее относят к малоуглеродистой. Содержание этого вещества в районе от 0,3% до 0,7% переводит конечный продукт в разряд среднеуглеродистых сталей. Если же сплав содержит более 0,7% углерода, то сталь относится к разряду высокоуглеродистых.

С легированными сталями дела обстоят примерно также. Если в составе материала содержится менее 2,5% легирующих элементов, то он считается малолегированным, от 2,5% до 10% — среднелегированным, а от 10% и выше — высоколегированным.

Микроструктура

Микроструктура стали отличается в зависимости от ее состояния. Если сплав является отожженным, то его структура будет делиться на карбидную, ферритную, аустенитную и так далее. При нормализованной микроструктуре субстанции, продукт может быть перлитным, мартенситным или аустенитным.

Состав и свойства стали определяют принадлежность продукта к одному из этих трех классов. Наименее легированные и углеродистые стали — это перлитный класс, средние относятся к мартенситному, а высокое содержание легирующих элементов или углерода переводит их в разряд аустенитных сталей.

Производство и качество

Важно отметить, что такой сплав, как сталь, может включать и некоторые негативные элементы, большое содержание которых, ухудшает показатели продукта. К таким веществам относят серу и фосфор. В зависимости от содержания этих двух элементов состав и виды стали разделяют на следующие четыре категории:

  • Рядовые стали. Это сплав обыкновенного качества, содержит до 0,06% серы и до 0,07% фосфора.
  • Качественные. Содержание вышеуказанных веществ в этих сталях снижается до 0,04% серы и 0,035% фосфора.
  • Высококачественные. Содержат всего лишь до 0,025% как серы, так и фосфора.
  • Высшее качество сплаву присваивается в том случае, если процентный показатель содержания серы не более чем 0,015, а фосфора — не более 0,025%.

Если говорить о процессе производства рядового сплава, то чаще всего его получают в мартеновских печах или же в бессмеровских, томасовских конвертерах. Разлив данного продукта производится в большие слитки. Важно понимать, что состав стали, ее строение, а также качественные характеристики и свойства определяются именно способом ее изготовления.

Для получения качественной стали также используются мартеновские печи, однако к процессу плавки здесь предъявляют более строгие требования, чтобы получить качественный продукт.

Плавка же высококачественных сталей осуществляется лишь в электропечах. Это объясняется тем, что применение этого типа промышленного оборудования гарантирует практически минимальное содержание неметаллических добавок, то есть снижает процентное соотношение серы и фосфора.

Для того чтобы получить сплав особо высокого качества, прибегают к методу электрошлакового переплава. Производство этого продукта возможно лишь в электропечах. После окончания процесса изготовления эти стали всегда получаются только легированными.

Виды сплавов по применению

Естественно, что изменение состава стали сильно влияет на эксплуатационные характеристики этого материала, а значит меняется и сфера его использования. Существуют конструкционные стали, которые могут применяться в строительстве, холодной штамповке, а также могут быть цементируемыми, улучшаемыми, высокопрочными и так далее.

Если говорить о строительных сталях, то к ним чаще всего относят среднеуглеродистые, а также низколегированные сплавы. Так как применяются они в основном для возведения зданий, то наиболее важной характеристикой для них является хорошая свариваемость. Из цементируемой стали чаще всего изготавливаются различные детали, основным предназначением которых являются работа в условиях поверхностного износа и динамическая нагрузка.

Другие стали

К другим типам стали можно отнести улучшаемую. Этот вид сплава используют только после проведения термообработки. Сплав подвергается воздействию высоких температур для закалки, а после этого подвергается отпуску в какой-либо среде.

К типу высокопрочных сталей относят те, у которых после подбора химического состава, а также после прохождения термообработки прочность достигает практически максимума, то есть примерно вдвое больше, чем у обычного типа этого продукта.

Можно выделить также пружинные стали. Это сплав, который в результате своего производства получил наилучшие качества по пределу упругости, сопротивлению нагрузкам, а также усталости.

Состав нержавеющей стали

Нержавеющая сталь относится к типу легированных. Основное ее свойство — это высокое сопротивление коррозии, которое достигается за счет добавления такого элемента, как хром, в состав сплава. В некоторых ситуациях вместо хрома может быть использован никель, ванадий или марганец. Стоит отметить, что при плавке материала и добавлении в него нужных элементов, он может получить свойства одной из трех марок нержавеющей стали.

Состав этих видов сплава, конечно же, отличается. Самыми простыми считаются обычные сплавы с повышенной устойчивостью к коррозии 08 Х 13 и 12 Х 13. Последующие два типа этого коррозионностойкого сплава, должны обладать высоким сопротивлением не только при нормальных, но и при повышенных температурах.

autogear.ru

расшифровка, химический состав, характеристики и область применения

Для изготовления различных инструментов были разработаны инструментальные стали. В отличие от других сплавов они обладают высокой износостойкостью, твердостью и прочностью, а также достаточным уровнем вязкости. Все стали, относящиеся к этой группе, можно охарактеризовать содержанием углерода не менее 0,7%. Именно этот компонент отвечает за многие эксплуатационные качества. В этом материале рассмотрим сталь У8 (характеристики, особенности состава и применения) и модифицированный вариант У8а.

Расшифровка сплава

При рассмотрении того, как проводится у8а расшифровка стали, отметим, что в различных странах применяются разные стандарты обозначения. Обозначение материала У8 или У8а проводится согласно стандартам ГОСТ:

  1. Буква «У» указывает на принадлежность материала к группе инструментальных сталей. Подобный символ не указывает на какой-либо компонент или свойство.
  2. Следующая цифра в десятичной форме указывает на концентрацию основного компонента — углерода. В рассматриваемом случае концентрация 0,8%.
  3. Если проводить расшифровку У8а, то следует учитывать, что буква «А» указывает на повышенное качество, которое достигается путем исключения из состав различных вредных примесей или снижения их концентрации.

В маркировке отсутствуют другие обозначения веществ, но в химическом составе присутствует довольно большое количество различных примесей. Примером можно назвать кремний и марганец. Кроме этого, есть и вредные примеси, к примеру, фосфор и сера, от концентрации которых зависит качество стали. С повышением концентрации вредных примесей ухудшаются эксплуатационные качества материала, теряется прочность и твердость.

Основные характеристики

У8а (характеристики и применение всегда взаимосвязаны), как ранее было отмечено, относится к группе инструментальных сталей. При ее производстве не проводится легирование состава, что снижает стоимость материала. К основным свойствам можно отнести:

  1. Высокую прочность и твердость. Для того чтобы изготавливаемые инструменты служили на протяжении длительного периода без проведения заточки, материал должен обладать высокой прочностью и твердостью.
  2. Теплостойкость. Во время механической обработки из-за возникновения трения структура металла нагревается. Слишком быстрый и сильный нагрев становится причиной повышения пластичности и перестроения кристаллической решетки. Теплостойкость определяет то, что инструментальная сталь даже при длительном трении не нагревается, а при нагреве не теряет свою прочность и твердость. У рассматриваемых сталей она относительно невысокая.
  3. Низкую восприимчивость к процессу приваривания и прилипания. При обработке из-за слишком высокой подачи соприкасающиеся металлы могут взаимодействовать. Прилипание становится причиной снижения качества получаемого изделия.
  4. Устойчивость к образованию трещин. Нередко встречается ситуация, когда на момент обработки возникает вибрация или ударная нагрузка. Подобное воздействие часто становится причиной образования микротрещин в структуре металла, которые становятся причиной существенного повышения показателя хрупкости.
  5. Достаточный уровень вязкости. Если изготавливаются инструменты, которые при эксплуатации будут подвержены ударам, то уделяется внимание показателю вязкости.

Инструментальные стали из-за своих основных эксплуатационных характеристик зачастую применяются при изготовлении режущих инструментов, но также подходят для изготовления деталей измерительных приборов. При необходимости можно повысить некоторые характеристики путем проведения термической обработки. Ковка проводится при температуре около 1000 градусов Цельсия, процесс охлаждения проводится на открытом воздухе.

Область применения

Сталь У8а применяется в большинстве случаев для получения рабочей поверхности режущих инструментов. Несмотря на относительно высокую устойчивость к температуре, этот металл применяется в большинстве случаев для изготовления инструментов, которые не нагреваются на момент эксплуатации. Примером можно назвать:

  1. Зубила.
  2. Стамески.
  3. Пилы.
  4. Колуны.
  5. Топоры.
  6. Молотки.

Сегодня У8 и У8а нашли применение в сфере производства слесарно-монтажных инструментов. Как ранее было отмечено, металл предназначен не только для изготовления инструментов, но и различных износостойких деталей. Пружины, ролики, простейшие калибры могут изготавливаться при применении подобной стали.

Еще одна распространенная область применения металла — изготовление штампов для холодной высадки. Подобная инструментальная сталь подходит для изготовления штампов по причине высокой прочности и ударостойкости.

Как показывают результаты проводимых тестов, при нагреве У8 и У8а быстро начинает терять свою прочность и износостойкость. Поэтому сегодня при изготовлении резцов и фрез они практически не применяются.

tokar.guru

Классификация, свойства и назначение стали.

Справочная информация

Стали можно классифицировать:
*по химическому составу,
*по микроструктуре,
*по способу производства,
*по применению.
По химическому составу сталь подразделяют:
*углеродистая сталь (конструкционную сталь, инструментальную сталь),
*легированная сталь (низколегированною сталь, высоколегированная сталь).
По микроструктуре различают:
*перлитный класс,
*мартенситный класс,
*аустенитный класс,
*ферритный класс,
*карбидный класс.
По способу производства различают:
*сталь обыкновенного качества (или рядовая сталь):
углеродистая сталь с содержанием углерода не более 0,6%; она выплавляется чаще всего в больших мартеновских печах, а также в бессемеровских и томасовских конвертерах и разливается в сравнительно крупные слитки, марки сталей — Ст.0, Ст.1, Ст.3, Ст.4, Ст.5, Ст.6, Ст.7.
*сталь качественная — углеродистая сталь или легированная сталь, выплавляемая в основных мартеновских печах с соблюдением более строгих требований к составу, процессам плавки и разливки.
Содержание серы и фосфора в качественной стали не должно превышать (в зависимости от марки) 0,04% каждого из этих элементов.
Количество неметаллических включений меньше, чем в стали обыкновенного качества.
*сталь высококачественная — углеродистая сталь или легированная сталь, чаще всего усложненного химического состава. Такая сталь выплавляется в электрических или кислых мартеновских печах небольшого тоннажа.
Для высококачественной стали установлены суженные пределы содержания элементов.
Содержание серы и фосфора в высококачественной стали не должно превышать соответственно 0,030% и 0,035% (для некоторых марок стали установлено еще более низкое содержание этих элементов).
Эта сталь обладает также повышенной чистотой по неметаллическим включениям.
Высококачественная сталь обозначается буквой А, помещаемой после обозначения марок.
По применению различают:
*класс I — Сталь строительная, применяемая для строительных целей.
По химическому составу — эта сталь главным образом углеродистая, а по способу производства — сталь обыкновенного качества (рядовая).
Эта сталь, как правило, не подвергается термической обработке (закалке) и используется в состоянии, полученном обработкой давлением. .
*класс II — сталь машиностроительная (конструкционная сталь).
По химическому составу — это сталь углеродистая или легированная, по способу производства — качественная или высококачественная.
Большая часть стали этого класса подвергается термической обработке.
Для менее ответственных или малонагруженных деталей болты, клинья, дышала, валы маломощных механизмов и т. п) применяются также более дешевая сталь обыкновенного качества марок Ст.4, Ст.5, Ст.6, и Ст.7.
Кроме того применяют стали марок Ст.2 и Ст.3, используемые главным образом для строительных целей.
*класс III — сталь инструментальная.
По химическому составу сталь углеродистая и легированная, а по способу производства — качественная и очень редко рядовая сталь. Лишь в особых случаях инструментальная сталь применяется в качестве конструкционной для деталей машин специализированного назначения (шарикоподшипники, пружины).
*класс IV — сталь с особыми физическими свойствами.
По химическому составу — это легированная сталь.
По способу производства — высококачественная или качественная сталь, требующая в отдельных случаях соблюдения специальных условий выплавки (например, в вакууме, электрошлаковым переплавом или в атмосфере инертных газов) и последующей обработки.

 

 

 

yaruse.ru

состав, свойства, виды и применение. Состав нержавеющей стали

Бизнес 11 сентября 2017

Многие знают, что сталь — это продукт, получаемый в процессе плавки других элементов. Но каких? Что входит в состав стали? На сегодняшний день эта субстанция представляет собой деформируемый сплав железа с углеродом (его количество составляет 2,14%), а также малой долей других элементов.

Общие сведения

Стоит отметить, что сталью называют сплав, имеющий именно до 2,14% углерода в своем составе. Сплав же, в котором есть более 2,14% углерода, уже называется чугуном.

Известно, что состав углеродистой стали и обычной неодинаков. Если в обычный субстрат входит углерод и другие легирующие (улучшающие) компоненты, то в углеродистом продукте легирующих элементов нет. Если же говорить о легированной стали, то ее состав намного богаче. Для того чтобы улучшить эксплуатационные характеристики данного материала, в его состав добавляют такие элементы, как Cr, Ni, Mo, Wo, V, Al, B, Ti и др. Важно отметить, что наилучшие свойства этой субстанции обеспечиваются именно за счет добавления легированных комплексов, а не одного или двух веществ.

Классификация

Провести классификацию рассматриваемого нами материала можно по нескольким показателям:

  • Первый показатель — это химический состав стали.
  • Второй — это микроструктура, которая также очень важна.
  • Конечно же, стали отличаются по своему качеству и способу получения.
  • Также каждый вид стали имеет свое применение.

Более подробно состав можно рассмотреть на примере химического состава. По этому признаку различают еще два вида — это легированные и углеродистые стали.

Среди углеродистых сталей существуют три разновидности, главное отличие которых заключается в количественном содержании углерода. Если в состав субстанции входит менее 0,3% углерода, то ее относят к малоуглеродистой. Содержание этого вещества в районе от 0,3% до 0,7% переводит конечный продукт в разряд среднеуглеродистых сталей. Если же сплав содержит более 0,7% углерода, то сталь относится к разряду высокоуглеродистых.

С легированными сталями дела обстоят примерно также. Если в составе материала содержится менее 2,5% легирующих элементов, то он считается малолегированным, от 2,5% до 10% — среднелегированным, а от 10% и выше — высоколегированным.

Микроструктура

Микроструктура стали отличается в зависимости от ее состояния. Если сплав является отожженным, то его структура будет делиться на карбидную, ферритную, аустенитную и так далее. При нормализованной микроструктуре субстанции, продукт может быть перлитным, мартенситным или аустенитным.

Состав и свойства стали определяют принадлежность продукта к одному из этих трех классов. Наименее легированные и углеродистые стали — это перлитный класс, средние относятся к мартенситному, а высокое содержание легирующих элементов или углерода переводит их в разряд аустенитных сталей.

Производство и качество

Важно отметить, что такой сплав, как сталь, может включать и некоторые негативные элементы, большое содержание которых, ухудшает показатели продукта. К таким веществам относят серу и фосфор. В зависимости от содержания этих двух элементов состав и виды стали разделяют на следующие четыре категории:

  • Рядовые стали. Это сплав обыкновенного качества, содержит до 0,06% серы и до 0,07% фосфора.
  • Качественные. Содержание вышеуказанных веществ в этих сталях снижается до 0,04% серы и 0,035% фосфора.
  • Высококачественные. Содержат всего лишь до 0,025% как серы, так и фосфора.
  • Высшее качество сплаву присваивается в том случае, если процентный показатель содержания серы не более чем 0,015, а фосфора — не более 0,025%.

Если говорить о процессе производства рядового сплава, то чаще всего его получают в мартеновских печах или же в бессмеровских, томасовских конвертерах. Разлив данного продукта производится в большие слитки. Важно понимать, что состав стали, ее строение, а также качественные характеристики и свойства определяются именно способом ее изготовления.

Для получения качественной стали также используются мартеновские печи, однако к процессу плавки здесь предъявляют более строгие требования, чтобы получить качественный продукт.

Плавка же высококачественных сталей осуществляется лишь в электропечах. Это объясняется тем, что применение этого типа промышленного оборудования гарантирует практически минимальное содержание неметаллических добавок, то есть снижает процентное соотношение серы и фосфора.

Для того чтобы получить сплав особо высокого качества, прибегают к методу электрошлакового переплава. Производство этого продукта возможно лишь в электропечах. После окончания процесса изготовления эти стали всегда получаются только легированными.

Виды сплавов по применению

Естественно, что изменение состава стали сильно влияет на эксплуатационные характеристики этого материала, а значит меняется и сфера его использования. Существуют конструкционные стали, которые могут применяться в строительстве, холодной штамповке, а также могут быть цементируемыми, улучшаемыми, высокопрочными и так далее.

Если говорить о строительных сталях, то к ним чаще всего относят среднеуглеродистые, а также низколегированные сплавы. Так как применяются они в основном для возведения зданий, то наиболее важной характеристикой для них является хорошая свариваемость. Из цементируемой стали чаще всего изготавливаются различные детали, основным предназначением которых являются работа в условиях поверхностного износа и динамическая нагрузка.

Другие стали

К другим типам стали можно отнести улучшаемую. Этот вид сплава используют только после проведения термообработки. Сплав подвергается воздействию высоких температур для закалки, а после этого подвергается отпуску в какой-либо среде.

К типу высокопрочных сталей относят те, у которых после подбора химического состава, а также после прохождения термообработки прочность достигает практически максимума, то есть примерно вдвое больше, чем у обычного типа этого продукта.

Можно выделить также пружинные стали. Это сплав, который в результате своего производства получил наилучшие качества по пределу упругости, сопротивлению нагрузкам, а также усталости.

Состав нержавеющей стали

Нержавеющая сталь относится к типу легированных. Основное ее свойство — это высокое сопротивление коррозии, которое достигается за счет добавления такого элемента, как хром, в состав сплава. В некоторых ситуациях вместо хрома может быть использован никель, ванадий или марганец. Стоит отметить, что при плавке материала и добавлении в него нужных элементов, он может получить свойства одной из трех марок нержавеющей стали.

Состав этих видов сплава, конечно же, отличается. Самыми простыми считаются обычные сплавы с повышенной устойчивостью к коррозии 08 Х 13 и 12 Х 13. Последующие два типа этого коррозионностойкого сплава, должны обладать высоким сопротивлением не только при нормальных, но и при повышенных температурах.

Источник: fb.ru

monateka.com

Стали состав, свойства, применение — Энциклопедия по машиностроению XXL

Стали состав, свойства, применение (табл.) 155, 159, 164, 171, 173  [c.831]

Химический состав этих сталей и сплавов, нх механические свойства н ориентировочные режимы термической обработки указаны в табл. 19, 20, Коррозионная стойкость литых деталей в различных средах, как правило, мало отличается от коррозионной стойкости деформированной стали при условии применения соответствующих режимов термической обработки.  [c.50]


Химический состав, область применения, физические и механические свойства, рассматриваемых в этой главе сталей указаны в табл. 1—5.  [c.83]

По фасонным частям должны иметься следующие данные завода-изготовителя указание, на какое условное давление фасонная часть предназначена марка стали и химический состав, если деталь предназначена для вварки в трубопровод данные о механических свойствах примененной стали и данные об ударной вязкости, если деталь литая и предназначена для работы на 65 кг смР-, указание на испытание детали пробным давлением по ГОСТ 356-52.  [c.294]

Металлы. Чугун и сталь и их применение в котлостроении. Виды, основные свойства и состав чугуна и сталей, применяемых для изготовления отдельных зде-ментов котельного агрегата.  [c.648]

Инструментальная сталь, ее состав, свойства и область применения.  [c.649]

Состав, свойства и применение литой стали с особыми свойствами (по заводским данным)  [c.172]

Состав, свойства, термическая обработка и применение жаропрочных и жаростойких сталей и сплавов  [c.26]

Ниже приводятся состав, свойства и указываются области применения конструкционных сталей.  [c.289]

Химический состав, свойства и область применения некоторых марок качественных сталей приводятся в табл. 4.  [c.13]

Состав, свойства и область применения качественных углеродистых сталей  [c.14]

В качестве инструментальных материалов применяются следующие углеродистые инструментальные стали, легированные инструментальные стали, быстрорежущие стали, металлокерамические твердые сплавы, абразивные материалы и сверхтвердые инструментальные материалы. Состав, свойства и применение инструментальных материалов рассматривается в разделе П,гл. П.  [c.420]

Приведены свойства, химический состав, области применения, рекомендации по выбору сталей конструкционных универсального применения, литейных, специальных (строительных, судостроительных, хладостойких, коррозионно-стойких, жаропрочных, для железнодорожного транспорта и т.д.), инструментальных, электротехнических, а также сталей и сплавов с особыми свойствами.  [c.4]

Окалиностойкие стали марки 273 применение 274 свойства 273 сл. термическая обработка 275 условия эксплуатации 274 химическая стойкость 273 химический состав 273 Окисление  [c.439]

Конструкционные стали общего назначения. Требования, предъявляемые к ним. Конструктивная прочность деталей. Низкоуглеродистые ( цементуемые ) стали состав, термическая обработка, свойства, примеры применения. Среднеуглеродистые ( улучшаемые ) стали состав, термическая обработка, свойства, примеры применения. Высокопрочные стали.  [c.9]

Рессорно-пружинные стали состав, термическая обработка, свойства, примеры применения.  [c.9]

Для применения в атмосферных условиях рекомендуются стали, в состав которых входит не менее 0,3% меди. Положительное влияние меди еще больше усиливается при дополнительном легировании другими добавками, такими, как никель, хром, алюминий, кремний, фосфор, при общем содержании легирующих элементов не менее 1,5 %. Эти элементы усиливают склонность стали к пассивированию, а фосфор, переходя в пленку продуктов коррозии, дополнительно усиливает ее защитные свойства, образуя фосфатные соединения.  [c.11]

С использованием методов планирования экстремального эксперимента на пластометрах были найдены оптимальные условия деформации многих трудно-деформируемых сталей и сплавов [226—228]. Эффективно применение многофакторного эксперимента на пластометре для анализа изменения реологических свойств в зависимости от переменного состава легирующих элементов. Подобная методика исследования систем состав сплава — реологические свойства позволяет создавать материалы с наилучшими сочетаниями механических и технологических свойств.  [c.68]

Во втором томе Конструкционная сталь приведены химический состав, физические, механические, технологические свойства и области применения конструкционной углеродистой и легированной стали.  [c.7]

Структура и свойства хромистых нержавеющих и коррозионностойких сталей описаны в главе 1. В настоящем разделе приведены данные по свойствам и применению сталей и сплавов в условиях их работы при высоких температурах. Химический состав и механические свойства сталей этой группы указаны в табл. 2—4.  [c.122]

Применительно к атомным энергетическим установкам по мере накопления данных о средних и минимальных характеристиках механических свойств, повыщения требований к уровню технологических процессов на всех стадиях получения металла и готовых изделий, развития методов и средств дефектоскопического контроля и контроля механических свойств по отдельным плавкам и листам было принято [5] использовать при расчетах не величины [о ], а коэффициенты запаса прочности и гарантированные характеристики механических свойств для сталей, сплавов, рекомендованных к применению в ВВЭР (см. гл. 1, 2). Для новых металлов, разрабатываемых применительно к атомным энергетическим реакторам, был разработан состав и объем аттестационных испытаний, проводимых в соответствии с действующими стандартами и методическими указаниями. Методы определения механических свойств конструкционных материалов при кратковременном статическом (для определения величин Ов и 00,2) и длительном статическом (для определения величин и o f) нагружениях получили отражение в нормах расчета на прочность атомных реакторов [5].  [c.29]

Механические свойства, химический состав и примеры применения стали групп А, Б и В, приводимые в табл. 183—186, не распространяются на сталь, изготовленную бессемеровским способом. Бессемеровская сталь поставляется по техническим условиям или отраслевым стандартам.  [c.488]

В связи с широким внедрением котлов высокого давления (давление 100 ат и выше и температура пара 500° С и выше) выявилась необходимость применения специальных легированных сталей. Легированной называют такую сталь, в состав которой, помимо углерода, кремния, марганца и других примесей, входят специально добавляемые элементы.-молибден, хром, никель и пр. для повышения прочности стали (ИЛИ получения особых свойств.  [c.13]

В присутствии 0,2—0,7 г/л ТДА скорость растворения стали находится в пределах 50—77 г/(м -ч) за 1 мин травления (z — 42—65 %), что достаточно для НТА. С увеличением времени травления за 30 мин скорость растворения составляет 39—59 г/(м -ч), т. е. защитное действие ингибитора повышается до 85—91 %, что предотвращает перетрав металла при остановке НТА. При концентрации 0,2 г/л ингибитор обеспечивает хорошее качество травления поверхности. Поверхность металла чистая, без шлама, растрава. Использование ТДА исключает применение пенообразователей, так как в его состав входят поверхностно-активные вещества, дающие на поверхности травильного раствора высокую, устойчивую пену. Ингибитор в концентрации 0,5 г/л на 4—13 % увеличивает время стравливания технологической окалины, что практически не влияет на режим работы НТА, ие снижает его производительности. ТДА улучшает пластические свойства углеродистых сталей в процессе травления. Так, травление СтЗ при 75 °С в 12°/о-ной НС с 0,2 г/л ТДА увеличило пластичность иа 21 % по сравнению с травлением в кислоте без ингибитора [227].  [c.157]

Сочетание высокой прочноегп и пластичности этих чугуиов позволяет изготавливать из них ответственные изделия. Так, коленчатый вал легковой машины Волга изготавливают из высокопрчного чугуна, имеющею состав 3,4—3,6% С 1,8-2,2% Si 0,96—1,2% Мл 0,16-0,30% Сг электрической печи. Это обстоятельство, а также применение термической обработки приводит к получению еще более высоких свойств, чем это указано л табл. 24, а именно ац = 62-н65 кгс/мм б = 8- -12% и твердость НВ 192—240. Хотя этот чугун но механическим свойствам и уступает стали констру — тивная прочность коленчатого вала из такого чугуна может быть выше, что в целом уменьшит массу машины. Из чугуна, обладающего лучшими, чем у стали, литейными свойствами, можно литьем (дешевым способом) изготавливать изделия сложной конфигурации (с внутренними полостями и т, п,), обладающие лучшим сопротивлением разнообразным механи-ческн. воздействиям, чем более простые по форме кованые детали, Дру ими словами, в ряде случаев деталь сложной конфигурации из менее прочного материала (чугуна) конструктивно оказывается более прочной, простой по конфигурации детали из более прочного материала (стали).  [c.218]

Хромистая нержавеющая сталь. В настоящее время в паротурбостроении в качестве лопаточного материала кроме 12-процентной хромистой стали для работы до 565— 580° С получил применение ряд новых упрочненных марок стали, состав которых и требования по механическим свойствам приведены в табл. V. 14 и V. 15.  [c.200]

Кроме приведенных выше сталей для изготовления литых деталей широкое применение в промышленности получили стали ЗОЛ, 20ГСЛ, 08ГДНФЛ, 20ХМФЛ. Химический состав, область применения, режимы термической обработки и механические свойства этих сталей приведены в табл. 25 и 26.  [c.650]

Охлаждающие жидкости должны обладать высокой теплоемкостью, смазыва1ющими и антикоррозийными свойствами, устойчивостью и высокой температурой вспышки. При обработке стали в качестве такой смазочно-охлаждающей жидкости применяется эмульсия из соды, зеленого мыла, минерального масла и воды. Для резьбонарезания и зубофрезерования используется сульфо-фрезол, состоящий из минерального масла), серы и смолистых веществ. Чистовое точение, фрезерование и сверление стали ведутся с применением растворов из 0,5—1% мыла, 0,5—0,75% соды и 0,25% нитрита натрия или же с применением эмульсии, содержащей 3—4% эмульсола и 0,2— 0,3% соды или жидкого стекла. Входящий в состав упомянутой эмульсии эмульсол состоит из 7% олеиновой кислоты, 10% канифоли, 4% каустической соды,  [c.127]

Применение. Для сварк 1 термитным способом пригодны все сорта стали с содержанием углерода ниже 1% также малолегировапные стали. Состав термитного железа легко привести в соответствие с основным металлом, но не с составом сильно легированной стали. Добавочный материал имеет свойства неотожжен-ной литой стали, т. е. высокое сопротивление на разрыв и небольшое удлинение. В сбшем полученный по термитному способу материал в месте соединения по своим свойствам очень подходит к основному материалу, по сопротивлению на разрыв приблизительно до 95- /о, а по удлинению — на 70°/о.  [c.959]

На каждый изготовленный аппарат должен быть составлен паспорт, в котором отмечается химический состав стали, механические свойства и результаты коррозионных испытаний, марка и тип электродов, примененных для сварки аппарата, пор5(-док и режимы сварки, фамилия, имя, отчество и номер паспорта сварщика, а также результаты испытаний образцов-свидете-лей.  [c.162]

Состав, свойства, термическая обработка и применение сталей с различным содержанием углерода приведены в гл. XIII (специальные стали).  [c.169]

Обобщены результаты последних исследовании по извлечению титана из руд и его применению в черной металлургии. Описаны фи-эико-химические свойства титана и его соединений с элементами-восстановителями и элементами, входящими в состав тит.ансодержа-щих сталей. Приведены сведения о титансодержащих рудах и методах получения титановых концентратов. Рассмотрены особенности восстановления титана алюминием, углеродом и другими элементами, показатели качества и способы получения титана, ферротитана и других легирующих титансодержащих сплавов.  [c.44]

В концентрированных растворах хлоридов при определенных концентрациях гексаметафосфата (ГМФ) и ионов кальция на поверхности стали образуется тонкая вязкая пленка. Состав пленки в растворе, содержащем 2500 мг/л Na l, 100 мг/л ГМФ и 60 мг/л кальция, (NaH) Fe a (Р0з)в-8Н20. Такая пленка на поверхности стали сохраняется и в том случае, если образец переносится в электролит без ингибиторов. Это очень важное свойство гексаметафосфата, так как при его применении нет необходимости постоянно подавать ингибитор.  [c.88]

Состав стали. Низковольфрамовая быстрорежущая сталь ЭИ 184 имеет ограниченное применение в виду невысоких режущих свойств и затруднений при её горячей обработке давлением и при термообработке.  [c.466]

В таблице приведен химический состав сталей, применяемых в СССР и за рубежом для изготовления сосудов высокого давления в сварном многослойном рулонированном исполнении, а также механические свойства и температура их использования. Кан видно, наименее легированная сталь 08Г2СФБ рассчитана на применение  [c.94]

Рассмотрены основные технологические операции при изготовлении и ремонте котлов, сосудов и трубопроводов обработка металла в заготовительных цехах, изготовление обечаек путем вальцовки п штамповки, изготовление днищ с помощью штамповки и фланжировки, гибка труб, штамповка отводов, переходов и тройников, вальцовка труб в барабаны котлов. Подробно освещены требования к сварке изделий котлонадзора, а также требования к термической обработке сварных соединений. Приведены данные о материалах, применяемых для изготовления п ремонта объектов котлонадзора. Описаны механические свойства, химический состав и области применения сталей, чугунов и цветных металлов, используемых для котлов, трубопроводов и сосудов.  [c.2]

В связи с возможным использованием для паропроводов острого пара 12%-ных хромистых феррито-мар-тенситных сталей,в частности стали 1Х12В2МФ (ЭР1756), для литой арматуры могут быть применены упрочненные 12% -ные хромистые феррито-мартенситные стали ХИЛА и Х11ЛБ. По уровню жаропрочности эти литейные стали занимают промежуточное положение между сталями перлитного и аустенитного классов, а по окалиностойко-сти они значительно превосходят стали перлитного класса. Эти стали для литья нашли применение в конструкциях паровых турбин мощностью 200 и 300 Мет. Химический состав и механические свойства литых перлитных феррито-мартенситных и аустенитных сталей приведены соответственно в табл. 4-8 и 4-9. В этих таблицах приведены также характеристики сталей для литья, применяемых в ФРГ и США,  [c.157]

Сплавы алюминия, содержащие литий, пока нашли лишь ограниченное промышленное применение. Среди таких литиевоалюминиевых сплавов особый интерес представляет, по-видимому, склерон [18—2Ц. Типичный состав этого сплава следующий 83% алюминия, 12% цинка, 2% меди, 0,5—1% марганца, 0,5% железа, 0,5% кремния, 0,1% лития. По физическим свойствам склерон напоминает мягкую сталь или латунь. Сообщалось, что его предел прочности при растяжении, упругие свойства и твердость выше, чем у дюралюминиевых сплавов.  [c.366]

Состав низколегированных сталей перлитного класса стабилизировался н новых путей его принципиального изменения пока не найдено. Значительное улучшение свойств достигнуто совершенствованием технологии производства и применением микролегн-рования.  [c.398]

В последние годы заметно увеличилось производство ряда комплексных сплавов, изготовленных на основе ферросилиция и содержащих дополнительно барий, марганец, щелочноземельные металлы (ЩЗМ), РЗМ и другие элементы. Это связано с ростом потребности в сталях с особыми свойствами и в отлпвках из высокопрочного чугуна, необхо-.димостью устранить отбел чугуна. Применение таких ферросплавов улучшает качество металла и обеспечивает повышение долговечности изделий из него и снижение расхода металла при производстве изделий. В табл. 25 приведен состав некоторых специальных сплавов, производимых в СССР и зарубежом. Производство таких сплавов осуществляется пли присадкой в шихту при выплавке ферросилиция, концентратов, или передельных сплавов, содержащих необходимые элементы, или введением металлических добавок, содержащих эти элементы, в ковш, в изложницу или в струю сплава при его разливке. Часто используют и комбинацию этих методов, когда часть дополнительных элементов вводится в шихту при выплавке ферросилиция, а остальные растворяют тем или иным способом в жидком сплаве. Реже используют методы сплавления твердых элементов, металлотермии п др. В каждом конкретном случае должно быть найдено оптимальное решение, обеспечивающее высокую эффективность производства, использование недефицптного сырья п охрану природной среды. Следует отметить, что большое количество производимых сплавов и еще большее число патентов свидетельствуют не только об интересе к этой проблеме и ее важной роли в промышленности, но также и об отсутствии научного выбора оптимального химического состава сплавов. Серьезной является также проблема обеспечения нормальных санитарно-гигиенических условий при производстве этих сплавов, особенно содержащих такие элементы как стронций, барий и т. п. [73].  [c.95]

Применение циркония в металлургии обусловлено тем, что он является одним из энергичнейших раскислителей стали. Кроме того, связывая в прочные соединения азот и серу, цирконий, нейтрализует их вредное влияние на сталь. В сочетании с другими легирующими присадками цирконий повышает вязкость, прочность, износостойкость и свариваемость стали. Присаживают цирконий в сталь в виде сплавов, состав которых приведен в табл. 103. Цирконий является довольно распространенным элементом, содержание которого в земной коре составляет 0,02 %. Свойства наиболее важных минералов циркония приведены в табл. 104. Различают два основных типа месторождений циркония коренные и россыпи. Важнейшее значение имеют современные и древние прибрежно-морские россыпи, которые обычно представляют собой комплексные руды циркония и титана, реже содержащие также торий, уран и другие ценные элементы. Наиболее крупные месторождения циркония находятся в США, Индии, Бразилии и Австралии. Запасы циркониевых руд в СССР обеспечивают потребность отечественной промышленности в цирконии и его сплавах. Циркониевый концентрат поставляется по ОСТ 48-82—74 (табл. 105). Кроме того, циркониевый концентрат может содержать торий и уран, суммарно в эквиваленте не более 0,1 % тория. Это необходимо учитывать прн работе с циркониевым концеи-  [c.316]


mash-xxl.info

Строение и свойства сталей и сплавов

Чистые металлы (содержание основного компонента 99,99— 99,999%) обладают низкой прочностью, поэтому их в технике используют редко (кроме Сu и Аl в электротехнике). Наиболее широко применяют в технике в качестве конструкционных материалов металлические сплавы.

Сплавом называют материал, состоящий из двух или большего числа химических элементов, являющихся компонентами сплава. В металлических сплавах основным компонентом (более 50%) является металл. Так же как и чистые металлы, сплавы построены из кристаллических зерен.

У сплавов можно получать более высокие механические характеристики, электрическое сопротивление, стойкость к коррозии и т.д.

Большинство сплавов, кроме сплавов с неорганической растворимостью компонентов в твердом состоянии, можно представить как систему, состоящую из нескольких фаз, находящихся в равновесии при определенных внешних условиях (температуре, давлении).

Сталями называют сплавы железа с углеродом и некоторыми другими химическими элементами. Содержание углерода в сталях может доходить до 2,14. Однако в сталях, применяемых в машиностроении и строительстве, углерода содержится не более 1,3%.

Влияние углерода и постоянных примесей на свойства сталей.

При содержании углерода более 1,3% стали становятся слишком хрупкими, и существенно затрудняется их обработка режущим инструментом. На сегодняшний день стали являются основным конструкционным материалом для изготовления нагруженных деталей машин, сооружений, элементов подвижного состава. В электро- и радиотехнике стали (некоторые ее сорта) используют главным образом в качестве ферромагнетика и ограниченно — в качестве проводникового материала, а как конструкционный материал — в электроустановках при изготовлении несущих конструкций, органов управления и т.п.

Кроме железа и углерода в сталях содержатся полезные и вредные примеси. Сталь — основной металлический материал, широко применяемый для изготовления деталей машин, летательных аппаратов, приборов, различных инструментов и строительных конструкций. Широкое использование сталей обусловлено комплексом механических, физико-химических и технологических свойств. Методы широкого производства стали были открыты в середине ХIX в. В это же время были уже проведены и первые металлографические исследования железа и его сплавов. Стали сочетают высокую жесткость с достаточной статической и циклической прочностью. Эти параметры можно менять в широком диапазоне за счет изменения концентрации углерода, легирующих элементов и технологий термической и химико-термической обработки. Изменив химический состав, можно получить, стали с различными свойствами, и использовать их во многих отраслях техники и народного хозяйства.



Если сталь имеет в своем составе только Fе, С и некоторое количество постоянной примеси, то такую сталь называют углеродистой. Если в углеродистую сталь специально введены один или несколько так называемых легирующих элементов (Сr, Ni, W и др.) с целью улучшения ее служебных и технологических свойств, то такую сталь называют легированной. При легировании могут возникать новые свойства, не присущие углеродистым сталям.

Классификация конструкционных сталей

Стали классифицируют по химическому составу, качеству, степени раскисления, структуре, прочности и назначению.

По химическому составу стали классифицируют на углеродистые и легированные. В зависимости отконцентрации углерода те и другие подразделяют на низко углеродистые (< 0,3 % С), среднеуглеродистые низкоуглеродистые (<0,3 % С), среднеуглеродистые

(0,3-0,7 % С) и высокоуглеродистые (> 0,7 %С).

По назначению стали классифицируют на конструкционные и инструментальные. Конструкционные стали, представляют наиболее обширную группу, предназначенную для изготовления строительных сооружений, деталей машин и приборов. К этим сталям относят цементуемые, улучшаемые, высокопрочные и рессорно-пружинные. Инструментальные стали, подразделяют на стали для режущего, измерительного инструмента, штампов холодного и

горячего (до 200 ?С) деформирования.

По качеству стали, классифицируют на обыкновенного качества, качественные, высококачественные. Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойства стали, а также её технологичность во многом зависят от содержания газов (водорода, кислорода) и вредных примесей — серы и фосфора. Стали обыкновенного качества бывают только углеродистыми (до 0,5 % С), качественные и высококачественные — углеродистыми и легированными.

По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие.

Раскисление — процесс удаления из жидкого металла кислорода, проводимый с целью предотвращения хрупкого разрушения стали при горячей деформации.

Спокойные стали раскисляют марганцем, кремнием и алюминием. Они содержат мало кислорода и затвердевают спокойно без газовыделения. Кипящие стали раскисляют только марганцем. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании, частично взаимодействуя с углеродом, удаляется в виде СО. Выделение пузырей СО создает впечатление кипения стали, с чем и связано ее название. Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими.

По назначению конструкционные стали подразделяют на машиностроительные, предназначенные для изготовления деталей машин и механизмов, и строительные, используемые для металлоконструкций и сооружений.

Углеродистые стали

На долю углеродистых сталей приходится 80 % от общего объема. Это объясняется тем, что углеродистые стали дешевы и сочетают удовлетворительные механические свойства с хорошей обрабатываемостью резанием и давлением. При одинаковом содержании углерода по обрабатываемости резанием и давлением они значительно превосходят легированные стали. Однако углеродистые стали менее технологичны при термической обработке. Из-за высокой критической скорости закалки углеродистые стали охлаждают в воде, что вызывает значительные деформации и коробление деталей. Кроме того, для получения одинаковой прочности с легированными сталями их следует подвергать отпуску при более низкой температуре, поэтому они сохраняют более высокие закалочные напряжения, снижающие конструкционную прочность.

По статистической прочности стали относятся преимущественно к сталям нормальной прочности. Углеродистые конструкционные стали выпускают двух видов: обыкновенного качества и качественные.

Стали обыкновенного качества выпускают в виде проката (прутки, балки,

листы, уголки, трубы, швеллеры и т.п.) в нормализованном состоянии. В углеродистых сталях обыкновенного качества допускается содержание вредных примесей, а также газонасыщенность и загрязнённость неметаллическими включениями. И в зависимости от назначения и комплекса свойств подразделяют на группы: А, Б, В.

Стали маркируются сочетанием букв Ст и цифрой (от 0 до 6), показывающей номер марки, а не среднее содержание углерода в ней, хотя с повышением номера содержание углерода в стали увеличивается. Стали групп Б и В имеют перед маркой буквы Б и В, указывающие на их принадлежность к этим группам. Группа А в обозначении марки стали не указывается. Степень раскисления обозначается добавлением индексов: в спокойных сталях — «сп», полуспокойных — «пс», кипящих — «кп», а категория нормируемых свойств (кроме категории 1) указывается последующей цифрой.

Стали группы А используют в состоянии поставки для изделий, изготовление которых не сопровождается горячей обработкой. В этом случае они сохраняют структуру нормализации и механические свойства, гарантируемые стандартом.

Сталь марки Ст3 используется в состоянии поставки без обработки давлением и сваркой. Ее широко применяют в строительстве для изготовления металлоконструкций, в сельском хозяйственном машиностроении (валики, оси, рычаги, изготовляемые холодной штамповкой, а также цементируемые детали: шестерёнки, порневые пальцы).

Стали группы Б применяют для изделий, изготавливаемых с применением горячей обработки (ковка, сварка и в отдельных случаях термическая обработка), при которой исходная структура и механические свойства не сохраняются. Для таких деталей важны сведения о химическом составе, необходимые для определения режима горячей обработки.

Стали группы В дороже, чем стали групп А и Б, их применяют для ответственных деталей (для производства сварных конструкций).

Углеродистые стали обыкновенного качества (всех трех групп) предназначены для изготовления различных металлоконструкций, а также слабонагруженных деталей машин и приборов. Эти стали, используются, когда работоспособность деталей и конструкций обеспечивается жесткостью. Углеродистые стали обыкновенного качества широко используются в строительстве при изготовлении железобетонных конструкций. Способностью к свариванию и к холодной обработке давлением отвечают стали групп Б и В номеров 1-4, поэтому из них изготавливают сварные фермы, различные рамы и строительные металлоконструкции, кроме того, крепежные изделия, часть из которых подвергается цементации.

Низкоуглеродистые стали отличаются малой прочностью и высокой пластичностью в холодном состоянии. Эти стали в основном производят в виде тонкого листа и используют после отжига или нормализации для холодной штамповки с глубокой вытяжкой. Они легко штампуются из-за малого содержания углерода и незначительного количества кремния, что и делает их очень мягкими. Их можно использовать в автомобилестроении для изготовления деталей сложной формы. Глубокая вытяжка из листа этих сталей применяется при изготовлении консервных банок, эмалированной посуды и других промышленных изделий.

Среднеуглеродистые стали номеров 3 и 4, обладающие большой прочности предназначаются для рельсов, железнодорожных колес, а также валов, шкивов, шестерен и других деталей грузоподъемных и сельскохозяйственных машин. Применяют для изготовления небольших валов, шатунов, зубчатых колес и деталей, испытывающих циклические нагрузки. В крупногабаритных деталях больших сечений из-за плохой прокаливаемости механические свойства значительно снижаются.

Высокоуглеродистые стали 5 и 6, а также с повышенным содержанием марганца в основном используют для изготовления пружин, рессор, высокопрочной проволоки и других изделий с высокой упругостью и износостойкостью. Их подвергают закалке и среднему отпуску на структуру троостит в сочетании удовлетворительной вязкостью и хорошим пределом выносливости.

Углеродистые качественные стали.

Эти стали характеризуются более низким, чем у сталей обыкновенного качества, содержанием вредных примесей и неметаллических включений. Их поставляют в виде проката, поковок и других полуфабрикатов с гарантированным химическим составом и механическими свойствами.

Маркируют их двухзначными числами: 08, 10, 15, 20, 60, обозначающими среднее содержание углерода в сотых долях процента (ГОСТ 1050—88). Например, сталь 10 содержит в среднем 0,10 % С, сталь 45 — 0,45 % С и т.д.

Спокойные стали маркируют без индекса, полуспокойные и кипящие с индексами соответственно «пс» и «кп». Кипящими производят стали О8кп, 10кп, I5кп, I8кп, 2Окп; полуспокойными — О8пс, I0пс, I5пс, 2Опс. В отличие от спокойных кипящие стали практически не содержат кремния (не более 0.03 %‚:. в полуспокойных его количество ограничено 0.05 — 0.17 %.

Содержание марганца повышается по мере увеличения концентрации углерода от 0,25 До 0,80 %. Содержание азота для сталей, перерабатываемых в тонкий лист, ограничено 0,006 %; для остальных сталей — 0,008 %.

Механические свойства зависят от толщины проката.

Качественные стали находят многостороннее применение в технике, так как в зависимости от содержания углерода и термической обработки обладают разнообразными механическими и технологическими свойствами.

Низкоуглеродистые стали по назначению подразделяют на две подгруппы.

1. Малопрочные и высокопластичные стали 08, 10. Из-за способности к глубокой вытяжке их применяют для холодной штамповки различных изделий. Без термической обработки в горячекатаном состоянии эти стали используют для шайб, прокладок, кожухов и других деталей, изготавливаемых холодной деформацией и сваркой.

2. Цементуемые — стали 15, 20, 25. Предназначены они для деталей небольшого размера (кулачки, толкатели, малонагруженные шестерни и т.п.), от которых требуется твердая, износостойкая поверхность и вязкая сердцевина. Они пластичны, хорошо штампуются и свариваются; используются для изготовления деталей машин и приборов невысокой прочности (крепежные детали, втулки, штуцеры и т.п.), а также деталей котлотурбостроения (трубы перегревателей, змеевики), работающих под давлением при температуре от — 40 до 425?С.

Среднеуглеродистые стали 30, 35, 40, 45, 50, 55 отличаются большей прочностью, но меньшей пластичностью, чем низкоуглеродистые. В улучшенном состоянии стали применяют для изготовления деталей небольшого размера, работоспособность которых определяется сопротивлением усталости (шатуны, коленчатые валы малооборотных двигателей, зубчатые колеса, маховики, оси и т.п.). При этом возможный размер деталей зависит от условий их работы и требований к прокаливаемости. Для деталей, работающих на растяжение — сжатие (например, шатуны), необходима однородность свойств металла по всему сечению и, как следствие, сквозная прокаливаемость. Размер поперечного сечения таких нагруженных деталей ограничивается 12 мм. для деталей (валы, оси и т.п.), испытывающих главным образом напряжения изгиба и кручения, которые максимальны на поверхности, толщина упрочненного при закалке слоя должна быть не менее половины радиуса детали. Возможный размер поперечного сечения таких деталей — 30 мм.

для изготовления более крупных деталей, работающих при невысоких циклических и контактных нагрузках, используют стали 40, 45, 50.

Их применяют после нормализации и поверхностной индукционной закалки с нагревом ТВЧ тех мест, которые должны иметь высокую твердость поверхности (40 — 58 NRC) и сопротивление износу (шейки коленчатых валов, кулачки распределительных валиков, зубья шестерён)

Индукционной закалкой с нагревом ТВЧ упрочняют также поверхность длинных валов, ходовых винтов станков и других деталей, для которых важно ограничить деформации при термической обработке.

В машиностроении углеродистые качественные стали, используются для изготовления деталей разного, чаще всего неответственного назначения и являются достаточно дешевым материалом. В промышленность эти стали поставляются в виде проката, поковок, профилей различного назначения с гарантированным химическим составом и механическим свойствами.

Качественные стали широко применяются в машиностроении и приборостроении, так как за счет разного содержания углерода в них, а

соответственно и термической обработки можно получить широкий диапазон механических и технологических свойств.

Вывод

Конструкционные углеродистые стали и сплавы — это материалы с целой гаммой свойств, и в зависимости от количества примесей обладают теми или иными качествами, как например, прочность, износостойкость, твёрдость, хрупкость. К тому же они сравнительно недороги.

Благодаря этим достоинствам стали — основной металлический материал промышленности.

Источники информации

1. Колесов, С.Н. «Материаловедение и технология конструкционных материалов»: — М.: Высш шк., 2004. — 512 с.: ил.

2. Б.Н. Арзамасов « Материаловедение». М.: Изд-во МГТУ им. Н. Э. Баумана, 2003. — 648с.: ил.

3. Ройтман И.А., Кузьменко В.И. «Основы машиностроения в черчении» М.: Гуманит. изд. центр ВЛАДОС, 2000. — Кн. 1. — 224с.: ил.

 

 

stydopedia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *