Авиационные марки сталей — Let’s glock them all — LiveJournal
Постоянное совершенствование конструкций летательных аппаратов требовало непрерывного повышения прочности и удельной прочности (отношение прочности к плотности материала) при сохранении всех преимуществ сталей. Если в авиации до 1941 г. первый из этих параметров колебался от 800 до 1000 МПа, то сейчас — от 1300 до 2000. Впрочем, сложность проблемы заключается не столько в достижении таких показателей, сколько в обеспечении работоспособности выполненных из соответствующих материалов авиационных конструкций.Дело в том, что повышение прочности сталей ведет к снижению их пластичности, вязкости, трещиностойкости и т.д. В связи с этим разработчики новых их разновидностей ведут непрерывный поиск компромиссов между повышением прочности и обеспечением надежности. В настоящее время в авиационной технике чаще всего применяют три группы высокопрочных сталей: конструкционные среднелегированные; коррозионностойкие; используемые для изготовления деталей, работающих в тяжелых условиях с повышенным трением и подвергаемых химико-термической обработке.
Но в любом случае появление таких материалов заставило пересмотреть принятые ранее подходы к конструированию и технологии изготовления деталей, так как все перечисленные стали обладают рядом специфических особенностей и существенно отличаются от созданных ранее и имевших среднюю прочность (до 1400 МПа). В частности, оказалось: нарушение технологического цикла их получения может приводить к преждевременному выходу из строя деталей, несмотря на полную доброкачественность металла. При этом очагами разрушения могут быть поверхностные или подповерхностные дефекты, полученные на различных стадиях изготовления полуфабриката, самой детали или конструкции целиком. Потому-то было очень важно разработать четкие организационно-технические мероприятия, включающие инструкции по термической и механической обработке деталей, защите от коррозии, сварке и т.д., что нами и было сделано в начале 60-х годов XX в. Кроме того, существенно изменился и подход к изделиям из высокопрочных сталей; основными требованиями к ним стали минимальная концентрация напряжений и высокая чистота поверхности.
Итак, новые стали заняли свое место в авиастроении, причем в зависимости от предела прочности из них изготавливают разные детали. Скажем, если этот параметр находится в пределах 1600-1800 МПа, то такой металл пригоден для производства силового набора планера (лонжероны, различные балки, рамы, оси и т.д.). А стали ВКС-8 (1800-2000 МПа) и ВКС-9 (1950-2100 МПа) незаменимы при изготовлении крупногабаритных сварных деталей (возможна электроннолучевая и аргонно-дуговая сварка) планера и шасси в машинах Конструкторских бюро им. Сухого, Антонова, Микояна, Камова. Мало того. Стали с пределом прочности выше 1950 МПа с успехом заменяют титановые сплавы, что позволяет при их одинаковой удельной прочности существенно уменьшить затраты на производство.
В последние десятилетия разработан новый класс высокопрочных, или так называемых мартенситностареющих сталей. Их прочность 1450-2500 МПа, они обладают уникальными физико-механическими и технологическими свойствами. Например, благодаря низкому содержанию углерода и азота имеют высокую пластичность, вязкость, сопротивление повторностатическим нагрузкам и коррозионному растрескиванию. Этот материал очень технологичен, т.е. заготовки, выполненные из него, после закалки можно подвергать различным видам холодной обработки давлением (раскатку обечаек, накатку резьбы и т.д.), без затруднений обрабатывать режущим инструментом, а затем повышать в два раза их прочность простой термической обработкой — старением (нагрев и охлаждение на воздухе) при относительно низких температурах.
Перечисленные преимущества мартенситностареющих сталей наиболее полно реализуются при изготовлении деталей сложной формы с малыми допусками (в том числе и прецизионных), подвергаемых химико-термической обработке . Металл такого класса нашел применение в тяжелонагруженных узлах истребителей МиГ-31 и МиГ-29, деталей узла поворота и шасси орбитального космического корабля многоразового использования «Буран» и др.
Дальнейшее развитие самолетостроения выдвинуло очередные требования к материалам. В первую очередь речь идет об истребителях, скорость которых опережает звук в 2,5-3 раза, так как для этого они должны преодолевать тепловой барьер — температуры в 280-300 о С, когда алюминиевые сплавы неприменимы. Мы сумели решить и эту задачу. Предложенные нами высокопрочные коррозионностойкие стали обладают всеми необходимыми качествами: высокой прочностью, пластичностью, вязкостью, высокими технологическими свойствами — их легко штамповать, сваривать. Последнее свойство позволяет обойтись без дальнейшей термообработки, и в результате можно создавать сложные, ажурные конструкции, скажем, несущие баки-кессоны, причем без помощи герметиков и клепки, ранее широко применяемых.
Основным материалом в цельносварных самолетных отсеках сверхзвуковых самолетов серии Ми Г стала коррозионностойкая сталь ВНС-2 с пределом прочности 1250- 1400 МПа. В виде листа и ленты ее применяют для обшивки и внутреннего набора, а также при изготовлении силовых деталей (прутки, поковки и т.д.).
Однако в процессе эксплуатации летательных аппаратов, в которых была использована сталь ВНС-2, выяснилось: она недостаточно пригодна в условиях влажного климата (скажем, Средиземноморья). Дальнейший поиск позволил нам получить новые стали ЭП817 (пруток) и ВНС-41 (лист). По своим механическим характеристикам и технологичности они соответствуют уже проверенной ВНС-2, а за счет новой системы легирования и оптимизации режима упрочняющего старения значительно превосходят ее по коррозионной стойкости, причем это касается как основных деталей, так и сварных соединений.
Наибольшее распространение из материалов этого класса получила сталь ВНС-5 с пределом прочности 1380-1600 МПа. Из нее изготавливают силовые детали планеров МиГ и Су, а также шасси гидросамолета Конструкторского бюро им. Бериева. Применяют ее и в гражданской авиации (широкофюзеляжный самолет Ил-86 и аэробус Ил-96) — при производстве высоконагруженных болтов для крепления двигателя к фюзеляжу
Еще один представитель этого класса металлов — сталь СН-2А с пределом прочности 1100-1300 МПа. Она прекрасно зарекомендовала себя как материал для силовых, в том числе крепежных деталей, а также воздушных и кислородных баллонов, которыми оснащены все виды самолетов, включая морскую авиацию. Важнейшая особенность таких баллонов — при пулевом поражении они не разлетаются на осколки.
Сейчас в авиационной и ракетной технике все большее распространение находит новый вид топлива — водород и его окислитель — жидкий кислород, имеющий температуру — 253 градуса. Для работы в таких условиях в нашем институте разработали специальные высокопрочные коррозионностойкие стали (ВНС-25, ВНС-49, ВНС-59) с пределом прочности 1000-1400 МПа при комнатной температуре и 1700-2100 при 20 К (-253 градуса). Этот металл успешно применяют в различных жидкостно-ракетных двигателях, в частности, в самом мощном из них в мире марки PD-170 конструкции КБ «Энергомаш». Детали из этого материала — корпуса насосов и регуляторов подачи горючего — составляют 50-60% от их массы.
В качестве конструкционных материалов, а также для изготовления деталей редукторов и агрегатов, подвергаемых химико-термической обработке, ныне широко применяют среднелегированные и коррозионно-стойкие стали. Объясняется это тем, что в результате долгих изысканий удалось предложить технологию, обеспечивающую сочетание необходимых свойств поверхностного слоя изделия (высокие твердость, износостойкость, сопротивление усталости) и его сердцевины (пластичность, вязкость, технологичность и др.). Так, для тяжелонагруженных, крупномодульных шестерен редукторов разработана сталь ВКС-7 с карбонитридным упрочнением, обеспечивающая после химико-термической обработки глубину упрочняющего слоя до 2,5 мм и твердость больше 60 HRC, что обеспечивает высокую контактную выносливость при рабочих температурах до 250С (пока таких аналогов нет).
Отдельный разговор о вертолетах. Для них в нашем институте создана высокопрочная (до 1300 МПа), износостойкая, теплопрочная сталь ВКС-10. В отличие от серийных отечественных и зарубежных аналогов, работающих при температуре до 250 градусов, она выдерживает 450 градусов. Ее применение обеспечивает передачу больших крутящихся моментов, при которых в зоне контакта зубьев происходит локальное повышение температуры, и даже при нарушении подачи масла работа редуктора может продолжаться в течение 2 ч без аварии.
Все вышесказанное свидетельствует: в авиастроении сталь традиционно остается основным материалом, хотя и она, как, впрочем, и другие творения рук человеческих, требует дальнейшего совершенствования.
Сопротивление усталости характеризуется пределом выносливости — наибольшим напряжением, которое может выдержать материал без разрушения при заданном числе циклических воздействий.
Член-корреспондент РАН Е. М. КАБЛОВ, генеральный директор ГНЦ РФ Государственного предприятия «ВИАМ», доктор технических наук А. Ф. ПЕТРАКОВ, главный научный сотрудник того же центра
http://kocmi.ru/letatelnym-apparatam-vysokoprochnye-stali.html
——————
Себе в копилку на память.
В оружейном разрезе, прямым аналогом часто используемой за рубежом 4130,является наша 30ХМА.
Но ассортимент проката невелик, поэтому можно использовать близкие по хар-кам 38ХМА или 40ХН.
Из авиационных интересно было бы посмотреть на ВНС-2, но она скорее всего дорогая и сверлится плохо.
Вообще, нельзя не отметить,что со сталями,которые «сверлятся хорошо», у нас беда.
Ребята с Орсиса намучились,пока нашли подходящую марку стали на стволы винтовок для армии.
Металлы и их сплавы, применяемые в авиастроении
Данная тема для статьи была взята на рассмотрение, поскольку Самара один из городов, в котором развито авиастроение. В городе выпускают самолеты ТУ-154, аэродромное оборудование, авиационные детали. Авиакор – авиационный завод, основной продукцией которого являются пассажирские самолеты (ТУ-154М и АН-140-100). Основные его потребители – это гражданская и военная авиация. Так же данное предприятие производит обслуживание и капитальный ремонт самолетов.
ДЕФОРМИРУЕМЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ
Алюминиевые сплавы – это сплавы, в состав которых входит алюминий и легирующие добавки, такие как цинк, медь, марганец, литий. В следствии чего появляется возможность подвергать такие сплавы упрочняющей термической обработке. Для производства сплавов используется алюминий, выпускаемый в виде чушек. Такие сплавы образуют твердые растворы, эвтектики. Их подвергают закалке, старению и отжигу. При закалке Tнагрева = 485…525°С. после охлаждения деталь подвергают старению при Т = 150…200°С на протяжении 10…24 часов. Благодаря таким тепловым обработкам увеличивается твердость и прочность обрабатываемых сплавов.
Деформируемые сплавы – металлические сплавы для изготовления изделий, которые подвергают пластической деформации в горячем и холодном состоянии.
Высокопрочные сплавы
Алюминий В95пч – высокопрочный термоупрочняемый сплав алюминия с цинком, магнием и медью (табл. 1). Это самый прочный из наиболее известных сплавов алюминия. Сплав обладает высокой твёрдостью и прочностью (σв = 500–560 МПа; σ0,2 = 430–480 МПа; δ = 7–8 % [1]) в виду образования твёрдых кристаллических образований в нём. Широко применяемый высокопрочный сплав в виде катаных и прессованных длинномерных (до 30 м) полуфабрикатов для верхних обшивок крыла (плиты, листы), стрингеров, балок, стоек (профили, трубы) и других элементов фюзеляжа и крыла (рис. 1) современных самолетов (Ту-204, Бе-200, Ил-96, SSI-100).
Зарубежные металлургические компании выпускают следующие материалы – аналоги В95пч:
- США – AA7075;
- Германия – 3.4365;
- Япония – 7075;
- Европейский Союз – ENAW-AlZn5.5MgCu.
Таблица 1
Химический состав в % материала В95пч ГОСТ 4784 – 97
Fe |
Si |
Mn |
Ni |
Cr |
Ti |
Al |
Cu |
Mg |
Zn |
Примесей |
0.05 – 0.25 |
до 0.1 |
0.2 – 0.6 |
до 0.1 |
0.1 – 0.25 |
до 0.05 |
87.45 – 91.45 |
1.4 – 2 |
1.8-2.8 |
5-6.5 |
0.1 |
Рис. 1. Крыло Ил-96
1965 – 1 (В96Ц3) – особо прочный (σв = 615–645MПа; σ0,2 = 595–620 МПа; δ = 7÷8 % [1]) сплав алюминия и легирующих элементов. Рекомендуется для применения в сжатых зонах конструкций планера самолетов: для верхних обшивок крыла, стоек и других элементов. Поставляется промышленностью в виде длинномерных катаных плит или листов, прессованных полуфабрикатов: профилей, панелей, полос.
Таблица 2
Химический состав в % материала 1965 – 1 (В96Ц3)
Fe |
Si |
Mn |
Zr |
Cr |
Ti |
Al |
Cu |
Mg |
Zn |
0.2 и меньше |
0.1 и меньше |
0.05 и меньше |
0.1 – 0.2 |
1.4 – 2 |
0.05 и меньше |
84.4 – 87.4 |
|
1.7-2.3 |
7.6-8.6 |
ЛИТЕЙНЫЕ МАГНИЕВЫЕ СПЛАВЫ
Магниевые сплавы применяются в промышленности намного чаще, чем чистый магний. Данный метал обладает высокой химической активностью. В качестве основных элементов магниевых сплавов, которые повышают механические характеристики, применяют алюминий, цинк и марганец. Литейные магниевые сплавы используются для отливки различных изделий благодаря их жидкотекучести и повышенной пластичности [2]. Их приготавливают в различных видах плавильных печей. Для предотвращения горения при плавке или литьё используются специальные флюсы и присадки. Отливки получаются путем литья в песчаные, гипсовые и оболочковые формы.
Коррозионностойкие сплавы
Основная структура данных сплавов – твердый раствор хрома, молибдена, меди и других легирующих элементов в никелевой основе (содержание Ni не менее 50%). Никель коррозионностоек во многих агрессивных средах, характеризуется высокими механическими свойствами и технологичностью.
ВМЛ18-Т4
Сплав ВМЛ18 обработанный по режиму Т4 системы Mg–Al–Zn обладает повышенными пределами прочности (σв = 245–250 МПа; σ0,2 = 100–110 МПа; δ = 5–8 % [1]).
Предназначен для работы во всех климатических условиях. Рекомендуется для изготовления деталей внутреннего набора планера самолетов и вертолетов, приборных рам, деталей кабин пилотов, систем управления (рис. 2), трансмиссий взамен сплава МЛ5п.ч. Сплав выплавляется по специальной технологии, разработанной в ВИАМ. Он превосходит по коррозионной стойкости и чистоте все существующие магниевые сплавы.
Рис. 2. Корпус редуктора вертолета из сплава ВМЛ18
Жаропрочные сплавы
Металлические материалы, обладающие высоким сопротивлением пластической деформации и разрушению при действии высоких температур и окислительных сред [2].
МЛ9-Т6
Сплав (σв = 230 МПа; σ0,2 = 120 МПа; δ = 4 % [1]), предназначенный для изготовления деталей самолетов, вертолетов, двигателей, приборов, маслоагрегатов, редукторов и других агрегатов, работающих при повышенной температуре (до 300°С). Способ литья – кокиль (разборная форма для литья). Характерны хорошие литейные свойства, которые позволяют изготавливать сложные крупногабаритные отливки.
ТИТАН И ТИТАНОВЫЕ СПЛАВЫ
Конструкционные сплавы
Сплавы, из которых изготавливают детали, механизмы и конструкции в разных отраслях промышленности.
ВТ20
Сплав (σв = 932 МПа; σ0,2 = 834 Мпа [1]) (табл. 3) отличается высокой жаропрочностью. Он хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С. В конструкции планера самолета Су-35 (рис. 3) из этого сплава изготовлено значительное количество деталей и сварных узлов фюзеляжа, крыла и киля. Для изготовления деталей и узлов используют полуфабрикаты в виде плит, штамповок, профилей, прутков и листов [1].
Таблица 3
Химический состав в % материала ВТ-20
Fe |
C |
Si |
Mo |
V |
N |
Ti |
Al |
Zr |
O |
до 0.25 |
до 0.1 |
до 0.15 |
0.5 – 2 |
0.8 – 2.5 |
до 0.05 |
85.15 – 91.4 |
5.5 – 7 |
1.5-2.5 |
до 0.15 |
Рис. 3. Самолет СУ-35
Таким образом мы рассмотрели металлы и их сплавы, применяемые в авиастроении.
Сталь авиационная — Энциклопедия по машиностроению XXL
Прецизионным методом литья изготовляются детали и корпусы приборов и диафрагм, мелкие шестерни, хирургические щипцы, скальпели и ножницы, детали протезов из нержавеющей стали, авиационная арматура из нержавеющей стали, лопатки газовых турбин и турбокомпрессоров, мелкие автодетали, детали фото- и киноаппаратов, швейных машин и др. [c.416]Стабилизация полета искусственная 41—42 Стабильность посадок 251 Сталь авиационная, механические свойства и применение 276 (табл. 3.16) — 279 Станция радиолокационная допплеровская 395 [c.419]
ДЛЯ сталей стационарных паровых турбин предел ползучести обычно определяется как напряжение, при котором минимальная скорость деформации ползучести равна 10 или 10 1/ч. Для сталей авиационных газовых турбин при определении предела ползучести часто исходят из величины деформации ползучести [c.255]
Иркутск стал авиационным городом в далеком 1934 году. Именно тогда вступил в строй авиазавод № 125 имени Сталина. В тяжелые дни декабря 1941 года коллектив завода пополнился работниками московского завода №39. С этого времени завод №125 получил наименование завода №39. За свою долгую историю он серийно строил самолеты многих конструкторов. Среди них и машины А.Н.Туполева СБ, Ту-2, Ту-14.
Применяется как высокопрочная сталь с достаточно удовлетворительными технологическими свойствами в химической, авиационной и других отраслях промышленности применяется в основном для крепежа [c.213]
Развитие реактивной авиационной техники первого поколения в 1980 — 1965 гг. базировалось на изготовлении деталей, имеющих сложные формы и точные размеры. Их изготавливали объемной штамповкой, механической обработкой, сваркой или пайкой и шлифованием. Получать пустотелые лопатки методом объемной штамповки практически стало невозможно, т.е. их можно изготовить только методом точного литья. [c.11]
На первом этапе (1950 — 1965 гг.) развития реактивной авиационной техники основные детали (лопатки), имеющие сложные геометрические формы и точные размеры, изготовляли объемной штамповкой, механической обработкой, шлифованием, сваркой или пайкой. Получение пустотелых лопаток методом штамповки практически стало невозможным. [c.12]
Конструкционная сталь. Содержит 0,5 — 0,55% С и называется иногда также машиностроительной сталью, обычно поступает на авиационные заводы в виде поковок или катаных полуфабрикатов (прутков, листов, полос, труб). [c.42]
Хром повышает коррозионную стойкость стали в атмосферных условиях и сопротивляемость стали газовой коррозии при высоких температурах. При больших концентрациях хрома на поверх-ности стали образуется тонкая оксидная пленка, которая препятствует развитию процесса коррозии в атмосферных условиях, а также при погружении в кислоты, особенно в азотную. В связи с этим хром всегда вводят в сталь, применяемую для изготовления выхлопных клапанов, седел, лопаток газовых турбин авиационных двигателей и других деталей, работающих при высоких температурах. [c.86]
За годы войны республика стала одним из крупных регионов с многоотраслевой промышленностью. Возникли новые отрасли авиационная, машиностроения, станкостроения, химическая, электроламповая, витаминная и другие. Расширилось производство на деревообделочных, кожевенных, швейных, обувных предприятиях. Вошли в строй 364 новых предприятия, переработка нефти увеличилась в полтора раза. [c.46]
В 1922 г. по решению Реввоенсовета и Наркомпроса на базе Московского авиатехникума, существовавшего с 1919 г., была учреждена Академия воздушного флота (позднее реорганизованная в Военно-воздушную инженерную академию), многие выпускники которой — С. В. Ильюшин, А. С. Яковлев, А. И. Микоян и другие — стали впоследствии крупными конструкторами и организаторами авиационной промышленности. Кроме того, авиационных инженеров тогда же готовили механический факультет МВТУ, Ленинградский, Киевский, Харьковский и другие политехнические институты страны. Наконец, в 30-х годах в Москве, Харькове, Казани и других городах были основаны учебные институты, готовящие кадры конструкторов и технологов для проектно-конструкторских бюро и авиационных заводов. [c.335]
Еще через три года Н. Н. Поликарпов, использовав аэродинамическую схему самолета И-3 и двигатель М-22, разработал конструкцию нового самолета И-5 с уменьшенными весом и размерами, первого отечественного истребителя, выполненного на уровне лучших образцов тогдашней мировой авиационной техники и серийно изготовлявшегося затем в течение нескольких лет (всего было построено около 800 таких самолетов). С этого времени идея создания боевых самолетов-истребителей с наиболее легкими по удельному весу двигателями и с минимально возможными геометрическими размерами и весом конструкции стала господствующей в отечественной авиационной технике 30-х и 40-х годов. [c.338]
За основу была принята схема свободнонесущего, хорошо обтекаемого скоростного самолета-моноплана с увеличенной нагрузкой на крыло, с гладкой обшивкой и потайной клепкой, закрытой кабиной летчика и с убирающимся в полете шасси, определившая значительное снижение лобового сопротивления (примерно на 45% у самолетов-истребителей и на 30—33% у тяжелых самолетов). Кроме того, были применены так называемые средства механизации крыльев (щитки, закрылки, предкрылки и выдвижные подкрылки с воздушными, гидравлическими и электромеханическими системами привода) для увеличения подъемной силы при посадочных углах атаки. Тогда же началось освоение авиационных двигательных установок большой мощности с хорошо обтекаемыми капотами и радиаторами, с воздушными винтами изменяемого шага и с приводными нагнетателями, намного увеличившими высотность двигателей (свойство сохранения постоянства мощности до расчетных высот полета). К тому же времени относилось использование новых конструкционных материалов — различных марок высокопрочной стали и легких сплавов. [c.343]
Работы, выполненные сотрудниками этого института в 1932—1939 гг.,— рецептура высокопрочной авиационной стали, используемой в самолетостроительной практике до настоящего времени, рецептура и способы получения броневой авиационной стали, методы противокоррозионной защиты стали, алюминиевых и магниевых сплавов, методы упрочнения ( облагораживания ) древесины, применявшейся для изготовления элементов конструкций самолетов-истребителей, и пр.— во многом определили повышение технического уровня отечественного самолетостроения. [c.348]
Для несущих слоев используют полимеры, армированные ориентированными волокнами (в строительстве, в производстве легких самолетов и др.), хаотически армированные материалы (в строительных панелях), алюминий (в большинстве авиационных конструкций), титан (в высоконагруженных элементах летательных аппаратов), нержавеющую сталь (в панелях самолетов В-58 и В-70). [c.198]
Турбореактивные авиационные двигатели впервые вошли в употребление как энергетические установки относительно небольших высокоскоростных военных самолетов-истребителей и штурмовиков. Вскоре после того, как их стали использовать в крупных самолетах, обозначилось значительное различие в требованиях, предъявляемых к двигателям для крупных военных или гражданских самолетов. [c.54]
В общих транспортных системах подсистема воздушных перевозок в прошлом использовалась в основном для перевозки пассажиров, а не грузов. В последние годы, однако, грузоотправители по-новому стали смотреть на систему воздушных перевозок, уяснив, что авиационные грузовые перевозки обладают рядом преимуществ по сравнению с другими способами транспортировки. Это преимущество отражается, например, в снижении стоимости перевозок в результате изменения следующих характеристик [c.222]
Несмотря на различную чувствительность материалов к КПН, в настояш,ее время следует считать установленным возможность коррозионного растрескивания для очень многих технических материалов, различие заключается лишь в составе агрессивных сред и в величине действующих растягивающих сил, как внешних, так и внутренних. Можно назвать некоторые виды деталей и материалов, для которых разрушения типа КПН являются характерными. Так, были зарегистрированы случаи коррозионного растрескивания деталей из высокопрочных конструкционных сталей, эксплуатируемых в авиационной и космической технике, например детали шасси самолетов [54]. Отмечалось коррозионное растрескивание стоек шасси, тяг, балок, тележек, опорных цапф и т. д. [c.79]
Впервые созданные примерно в 1890 г. турбины стали основным средством получения электроэнергии и основным типом судового и авиационного двигателя. Турбина обеспечива- ет очень высокий КПД преобразования внутренней энергии нагретого рабочего тела в энергию вращения вала турбины. Для турбин. характерны малые удельные капитальные вложения на единицу мощности, снимаемой с вала, экономичность обслуживания, высокий КПД, а также равномерность вращения н отсутствие вибраций при работе. Первые турбины были небольшими, мощностью несколько сот киловатт, и предназначались для военных кораблей. Одна из самых крупных современных турбин, используемая в качестве судового двигателя, имеет мощность 1300 МВт (эл). В автомобильной промышленности изучается возможность использования турбин в качестве автомобильных двигателей. Учитывая широкое применение турбин, рассмотрим общий принцип их работы. [c.70]
С созданием паровых турбин паровые поршневые машины практически полностью пере- стали использоваться, поэтому их работа здесь не рассматривается. Однако необходимо от-> метить, что существуют мнения о возможности их применения в качестве автомобильного двигателя, Турбина позволила перейти на более высокие температуры, а соответственно повысить КПД и производительность. В конце XIX — начале XX вв. в условиях интенсивного развития техники применение турбин совершило переворот в области создания корабельных двигателей и в энергетике. Несколько позднее появилась новая отрасль промышленности — авиация, которая также остро нуждалась в, легких и мощных двигателях. Паровая турбина в этом случае не могла стать выходом из положения большая масса, большие расходы воды и топлива, необходимость конденсации отработанного пара, медленный темп изменения частоты вращения делали ее непригодной для авиации. Эти требования и проблемы привели к созданию высокоскоростной авиационной газовой турбины. Недавно были сделаны попытки использовать газовую турбину в качестве автомобильного двигателя. Процессы, протекающие в газовой и паровой турбинах, существенно отличаются. Рассмотрим термодинамический цикл газовой турбины, а затем особенности ее влияния на окружающую среду. [c.76]
Наряду с растворами электролитов коррозионное растрескивание аустенитных нержавеющих сталей наблюдается в воде, а также в паровой фазе (в сухом, перегретом и насыщенном паре). Поэтому в системах тепловых и атомных электростанций наблюдается коррозионное растрескивание элементов конструкций из нержавеющих аустенитных сталей. В авиационной практике происходят разрушения болтов из мартенситной стали вследствие коррозионного растрескивания во влажной атмосфере. [c.44]
Жаростойкая и жаропрочная сталь, сваривается трудно. Детали клапанов авиационных двигателей [c.40]
Магнето с вращающимся якорем, двух-искровое по своей принципиальной схеме, применимо лишь при малом числе цилиндров (до 6 или 7), и потому оно широко применялось лишь в начальный период развития автотранспорта, когда основным типом являлся 4- или 6-цилиндровый двигатель внутреннего сгорания. В дальнейшем магнето из автотранспорта стало интенсивно вытесняться батарейным зажиганием, развитие же авиации предъявило спрос на многоискровые магнето для многоцилиндровых двигателей, в связи с чем основным типом стало авиационное [c.317]
Первым потребителем титана стала авиационная промышленность. Создание летательных аппаратов со скоростями, близкими к скорости звука и провосходящими ее (в несколько раз), выдвинуло ряд технических и экономических требований к конструкционным материалам, идущим на изготовление самого планера, а также двигателей, систем управления, оборудования и т. п. [c.103]
Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]
В научных разработках и во внедрении новых жаропрочных сплавов для ГТД неоспоримые заслуги принадлежат М.А. Ферину. М.А. Ферин — выпускник Московского института стали и С1хлавов (1934 г.) продолжительное время (более 10 лет) возглавлял металлургическое производство на Уфимском моторостроительном заводе. Заслуги в разработках новых жаропрочных сплавов в авиационном моторостроении в 1947 г. были отмечены присуждением ученой степени кандидата технических наук и лауреата Государственной премии. [c.13]
Сталь 18ХНВА хромоникельвольфрамовая применяется для изготовления самых ответственных и наиболее нагруженных деталей авиационных двигателей (коленчатые валы, валы компрессора). [c.96]
Комплексно-легированные чугуны тугоплавкими элементами (Ni, Сг, Мо, W) для литья поршневых и уплотнительных колец авиационных двигателей выплавляют в электродуговых и индукционных печах. Жаропрочные стали для литья формообразующих деталей, а также, например, жаропрочный сплав 38Х18Н25Ф2Л для литья поддонов прокалочных и термических печей выплавляют в электропечах открытого типа. [c.261]
Охлаждение погружением в масло является основным при закалке изделий из легированных сталей. Масло как закалочная среда имеет следующие преимущества небольшую скорость охлаждения в мартенситном интервапе температур, что уменьшает возникновение закалочных дефектов, и постоянство закаливающей способности. К недостаткам относятся повышенная вос-штаменяемость (температура вспышки 165. 300 °С), низкая охлаждающая способность в области температур перлитного превращения, а также повышенная стоимость. Масла с пониженной вязкостью обладают более высокой охлаждающей способностью. Долговечность индустриальных масел (марки И-Ь2Л, И-20А) при работе без защитной атмосферы составляет 400… 000 ч, в зависимости от массы закаленных изделий. В качестве охлаждающих сред применяются таюке машинное масло, трансформаторное, авиационное МС-20 и др. [c.68]
Вскоре стала разрабатываться ЕСКД (Единая система конструкторской документации). Основы системы специалисты предприятий изучали на курсах, организованных совместно с Уфимским авиационным институтом. [c.115]
Титан обладает тремя основными преимуш,ествами по сравнению с другими техническими металлами малым удельным весом (4,5 Г1см ), высокими механическими свойствами (предел прочности 50—60 кГ1мм у технического титана и 80—140 кГ/мм у сплавов на его основе) и отличной коррозионной стойкостью, подобной стойкости нержавеющей стали, а в некоторых средах и выше. Сочетание малого удельного веса с высокой прочностью, обеспечивающее наибольшую удельную прочность (т. е. прочность на единицу веса), делает титан особенно перспективным материалом для авиационной промышленности, а коррозионная стойкость — в судостроении и в химической промышленности. Для современной высокоскоростной авиации особенно ценным свойством титановых сплавов является также их высокая жаропрочность сравнительно с алюминиевыми и магниевыми сплавами. Титановые сплавы по абсолютной и тем более по удельной прочности превосходят магниевые, алюминиевые сплавы и легированные стали в довольно широком температурном интервале. [c.356]
Упрочняющая поверхностная обработка деталей является одним из способов увеличения периода зарождения трещин при циклическом нагружении различных элементов конструкции. При такой обработке создаются остаточные сжимающие напряжения в поверхностном слое материала, что приводит к существенному повышению длительности периода зарождения усталостных трепщн в элементах авиационных конструкций. Это типичная ситуация для поверхности стоек шасси ВС, изготавливаемых из высокопрочных сталей, и лонжеронов лопастей несущих винтов вертолетов, изготавливаемых из алюминиевого сплава АВТ и стали ЗОХГСА. Поверхностная обработка влияет на перераспределение соотношения между длительностями периода распространения трещины и долговечностью. [c.65]
Применительно к элементам авиационных конструкций, изготавливаемых из высокопрочных сталей с пределом прочности более 1800 МПа, имеющих структуру МР, развитие усталостных трещин в окружающей среде происходит по фаницам зерен с разной интенсивностью формирования продуктов коррозии в виде окислов в направлении роста трещины. Так, например, разрушение шлиц-шарнира опоры шасси самолета Ту-154Б произошло в эксплуатации по механизму коррозии под напряжением (рис. 7.30). Деталь изготовлена [c.387]
Еще в 1921 г. были построены первые отечественные опытные самолеты-истребители, не доведенные, однако, до серийной постройки из-за отсутствия легких и мощных авиационных двигателей. Несколько позднее (в 1924 г.) Д. П. Григоровичем был предложен истребитель-биплан И-2 с двигателем М-5. В варианте И-2бис этот самолет был подготовлен к серийному производству. Но и для него, как и для самолетов более ранних конструкций, ос-1Т0ВНЫМ недостатком оставалась низкая энерговооруженность. Поэтому в 1927 г. под руководством Поликарпова был спроектирован и стал серийно изготовляться истребитель-биплан И-3 с 500-сильным двигателем М-17 жидкостного охлаждения, выполненным применительно к двигателю BMW. Всего было построено около 400 самолетов этого типа. В том же году бригадой П. О. Сухого в ЦАГИ под руководством А.Н. Туполева было закончено проектирование самолета-истребителя АНТ-5 (И-4) (рис. 91), и до 1936 г. изготовлено 370 шт. этих самолетов с двигателем М-22 (по типу фирмы Бристоль — Юпитер ) мощностью 480 л. с., тогда же освоенным в производстве под руководством А. А. Бессонова. По сравнению с самолетом И-3 он обладал лучшей горизонтальной маневренностью, меньшей посадочной скоростью и на 500 кг меньшим собственным весом, определявшимся соответственно достигнутым снижением удельного веса двигателя М-22 (0,75 кз/л. с. против 0,84 кг/л. с. у двигателя М-17) . [c.337]
По мере развития техники композиционных материалов проведен широкий круг исследований по определению экономии массы, получаемой в результате применения их в авиационных конструкциях. Министерство обороны и другие организации признали, что композиционные материалы обеспечивают существенное снижение массы и способствуют совершенствованию летных качеств авиационной техники [12]. Эти выводы в равной дшре применимы и к гражданским самолетам, однако они недостаточно серьезно рассматривались вплоть до недавнего времени, когда снизилась стоимость композиционных материалов и стали более доступными как сами материалы, так и технологические процессы изготовления изделий из них. [c.39]
В современном автомобильном двигателе, около 50 /о термически обрабатываемых стальных деталей, а в авиационном двигателе — 85—90°/о- Конструкционные стали проходят двойную упрочняющую обработку закалку — отпуск, причем среднеуглеродистые стали обычно подвергают высокому отпуску, цизкоуглеродистые — низкому. Напрев под закалку производится до температур, на 30—50 С превышающих точку A s (точка на линии со-лидуса диаграммы состояния (Л. 20]). У большинства 108 [c.108]
После того как между Волгой и Уралом была создана новая нефтяная база, нефтеперерабатывающие заводы стали получать с урало-волжских месторождений сернистые и сильно засоленные нефти. Опыта переработки таких нефтей советские нефтяники не имели. Решить эту задачу можно было только путем широкого внедрения новых химических процессов переработки крекинг-газов, которые могли давать сырье для процесса каталитической полимеризации. Были построены газофракционирующие, полимеризационные и гидроге-низационные установки. Было построено несколько установок каталитического алкилирования, вырабатывающих этилбензол — компонент авиационных бензинов, он же служил сырьем для производства синтетического каучука. Успехи нефтепереработки позволили с 1940 г. производить для авиации несколько сортов бензинов прямой гонки с октановым числом от 59 до 78. [c.54]
Авиационные марки сталей — ndemidov — LiveJournal
Постоянное совершенствование конструкций летательных аппаратов требовало непрерывного повышения прочности и удельной прочности (отношение прочности к плотности материала) при сохранении всех преимуществ сталей. Если в авиации до 1941 г. первый из этих параметров колебался от 800 до 1000 МПа, то сейчас — от 1300 до 2000. Впрочем, сложность проблемы заключается не столько в достижении таких показателей, сколько в обеспечении работоспособности выполненных из соответствующих материалов авиационных конструкций.Дело в том, что повышение прочности сталей ведет к снижению их пластичности, вязкости, трещиностойкости и т.д. В связи с этим разработчики новых их разновидностей ведут непрерывный поиск компромиссов между повышением прочности и обеспечением надежности. В настоящее время в авиационной технике чаще всего применяют три группы высокопрочных сталей: конструкционные среднелегированные; коррозионностойкие; используемые для изготовления деталей, работающих в тяжелых условиях с повышенным трением и подвергаемых химико-термической обработке.
Но в любом случае появление таких материалов заставило пересмотреть принятые ранее подходы к конструированию и технологии изготовления деталей, так как все перечисленные стали обладают рядом специфических особенностей и существенно отличаются от созданных ранее и имевших среднюю прочность (до 1400 МПа). В частности, оказалось: нарушение технологического цикла их получения может приводить к преждевременному выходу из строя деталей, несмотря на полную доброкачественность металла. При этом очагами разрушения могут быть поверхностные или подповерхностные дефекты, полученные на различных стадиях изготовления полуфабриката, самой детали или конструкции целиком. Потому-то было очень важно разработать четкие организационно-технические мероприятия, включающие инструкции по термической и механической обработке деталей, защите от коррозии, сварке и т.д., что нами и было сделано в начале 60-х годов XX в. Кроме того, существенно изменился и подход к изделиям из высокопрочных сталей; основными требованиями к ним стали минимальная концентрация напряжений и высокая чистота поверхности.
Итак, новые стали заняли свое место в авиастроении, причем в зависимости от предела прочности из них изготавливают разные детали. Скажем, если этот параметр находится в пределах 1600-1800 МПа, то такой металл пригоден для производства силового набора планера (лонжероны, различные балки, рамы, оси и т.д.). А стали ВКС-8 (1800-2000 МПа) и ВКС-9 (1950-2100 МПа) незаменимы при изготовлении крупногабаритных сварных деталей (возможна электроннолучевая и аргонно-дуговая сварка) планера и шасси в машинах Конструкторских бюро им. Сухого, Антонова, Микояна, Камова. Мало того. Стали с пределом прочности выше 1950 МПа с успехом заменяют титановые сплавы, что позволяет при их одинаковой удельной прочности существенно уменьшить затраты на производство.
В последние десятилетия разработан новый класс высокопрочных, или так называемых мартенситностареющих сталей. Их прочность 1450-2500 МПа, они обладают уникальными физико-механическими и технологическими свойствами. Например, благодаря низкому содержанию углерода и азота имеют высокую пластичность, вязкость, сопротивление повторностатическим нагрузкам и коррозионному растрескиванию. Этот материал очень технологичен, т.е. заготовки, выполненные из него, после закалки можно подвергать различным видам холодной обработки давлением (раскатку обечаек, накатку резьбы и т.д.), без затруднений обрабатывать режущим инструментом, а затем повышать в два раза их прочность простой термической обработкой — старением (нагрев и охлаждение на воздухе) при относительно низких температурах.
Перечисленные преимущества мартенситностареющих сталей наиболее полно реализуются при изготовлении деталей сложной формы с малыми допусками (в том числе и прецизионных), подвергаемых химико-термической обработке . Металл такого класса нашел применение в тяжелонагруженных узлах истребителей МиГ-31 и МиГ-29, деталей узла поворота и шасси орбитального космического корабля многоразового использования «Буран» и др.
Дальнейшее развитие самолетостроения выдвинуло очередные требования к материалам. В первую очередь речь идет об истребителях, скорость которых опережает звук в 2,5-3 раза, так как для этого они должны преодолевать тепловой барьер — температуры в 280-300 о С, когда алюминиевые сплавы неприменимы. Мы сумели решить и эту задачу. Предложенные нами высокопрочные коррозионностойкие стали обладают всеми необходимыми качествами: высокой прочностью, пластичностью, вязкостью, высокими технологическими свойствами — их легко штамповать, сваривать. Последнее свойство позволяет обойтись без дальнейшей термообработки, и в результате можно создавать сложные, ажурные конструкции, скажем, несущие баки-кессоны, причем без помощи герметиков и клепки, ранее широко применяемых.
Основным материалом в цельносварных самолетных отсеках сверхзвуковых самолетов серии Ми Г стала коррозионностойкая сталь ВНС-2 с пределом прочности 1250- 1400 МПа. В виде листа и ленты ее применяют для обшивки и внутреннего набора, а также при изготовлении силовых деталей (прутки, поковки и т.д.).
Однако в процессе эксплуатации летательных аппаратов, в которых была использована сталь ВНС-2, выяснилось: она недостаточно пригодна в условиях влажного климата (скажем, Средиземноморья). Дальнейший поиск позволил нам получить новые стали ЭП817 (пруток) и ВНС-41 (лист). По своим механическим характеристикам и технологичности они соответствуют уже проверенной ВНС-2, а за счет новой системы легирования и оптимизации режима упрочняющего старения значительно превосходят ее по коррозионной стойкости, причем это касается как основных деталей, так и сварных соединений.
Наибольшее распространение из материалов этого класса получила сталь ВНС-5 с пределом прочности 1380-1600 МПа. Из нее изготавливают силовые детали планеров МиГ и Су, а также шасси гидросамолета Конструкторского бюро им. Бериева. Применяют ее и в гражданской авиации (широкофюзеляжный самолет Ил-86 и аэробус Ил-96) — при производстве высоконагруженных болтов для крепления двигателя к фюзеляжу
Еще один представитель этого класса металлов — сталь СН-2А с пределом прочности 1100-1300 МПа. Она прекрасно зарекомендовала себя как материал для силовых, в том числе крепежных деталей, а также воздушных и кислородных баллонов, которыми оснащены все виды самолетов, включая морскую авиацию. Важнейшая особенность таких баллонов — при пулевом поражении они не разлетаются на осколки.
Сейчас в авиационной и ракетной технике все большее распространение находит новый вид топлива — водород и его окислитель — жидкий кислород, имеющий температуру — 253 градуса. Для работы в таких условиях в нашем институте разработали специальные высокопрочные коррозионностойкие стали (ВНС-25, ВНС-49, ВНС-59) с пределом прочности 1000-1400 МПа при комнатной температуре и 1700-2100 при 20 К (-253 градуса). Этот металл успешно применяют в различных жидкостно-ракетных двигателях, в частности, в самом мощном из них в мире марки PD-170 конструкции КБ «Энергомаш». Детали из этого материала — корпуса насосов и регуляторов подачи горючего — составляют 50-60% от их массы.
В качестве конструкционных материалов, а также для изготовления деталей редукторов и агрегатов, подвергаемых химико-термической обработке, ныне широко применяют среднелегированные и коррозионно-стойкие стали. Объясняется это тем, что в результате долгих изысканий удалось предложить технологию, обеспечивающую сочетание необходимых свойств поверхностного слоя изделия (высокие твердость, износостойкость, сопротивление усталости) и его сердцевины (пластичность, вязкость, технологичность и др.). Так, для тяжелонагруженных, крупномодульных шестерен редукторов разработана сталь ВКС-7 с карбонитридным упрочнением, обеспечивающая после химико-термической обработки глубину упрочняющего слоя до 2,5 мм и твердость больше 60 HRC, что обеспечивает высокую контактную выносливость при рабочих температурах до 250С (пока таких аналогов нет).
Отдельный разговор о вертолетах. Для них в нашем институте создана высокопрочная (до 1300 МПа), износостойкая, теплопрочная сталь ВКС-10. В отличие от серийных отечественных и зарубежных аналогов, работающих при температуре до 250 градусов, она выдерживает 450 градусов. Ее применение обеспечивает передачу больших крутящихся моментов, при которых в зоне контакта зубьев происходит локальное повышение температуры, и даже при нарушении подачи масла работа редуктора может продолжаться в течение 2 ч без аварии.
Все вышесказанное свидетельствует: в авиастроении сталь традиционно остается основным материалом, хотя и она, как, впрочем, и другие творения рук человеческих, требует дальнейшего совершенствования.
Сопротивление усталости характеризуется пределом выносливости — наибольшим напряжением, которое может выдержать материал без разрушения при заданном числе циклических воздействий.
Член-корреспондент РАН Е. М. КАБЛОВ, генеральный директор ГНЦ РФ Государственного предприятия «ВИАМ», доктор технических наук А. Ф. ПЕТРАКОВ, главный научный сотрудник того же центра
http://kocmi.ru/letatelnym-apparatam-vysokoprochnye-stali.html
——————
Себе в копилку на память.
В оружейном разрезе, прямым аналогом часто используемой за рубежом 4130,является наша 30ХМА.
Но ассортимент проката невелик, поэтому можно использовать близкие по хар-кам 38ХМА или 40ХН.
Из авиационных интересно было бы посмотреть на ВНС-2, но она скорее всего дорогая и сверлится плохо.
Вообще, нельзя не отметить,что со сталями,которые «сверлятся хорошо», у нас беда.
Ребята с Орсиса намучились,пока нашли подходящую марку стали на стволы винтовок для армии.
КРЫЛАТЫЕ МЕТАЛЛЫ И СПЛАВЫ | Наука и жизнь
Наука и жизнь // Иллюстрации
Наука и жизнь // Иллюстрации
Восьмимоторный гигант АНТ-20 («Максим Горький») был построен, как и многие металлические самолеты начала 30-х годов, из гофрированного алюминия.
При использовании традиционного сплава Д-16 пассажирский самолет Ту-154 получался слишком тяжелым.
Сварной корпус самолета МиГ-29 изготовлен из алюминиево-литиевого сплава 1420.
Массивные и очень ответственные детали шасси современных транспортных и пассажирских самолетов ОКБ им. С. В. Ильюшина изготовлены из титанового сплава ВТ-22. На снимке: Ил-76.
‹
›
— Сталь и алюминий, титан и пластмассы, клеи и дерево, стекло и резина — ни один самолет не полетит без этих материалов. Все они разработаны или испытаны в ВИАМе
— В каждой лопатке турбины реактивного двигателя воплощены самые совершенные металлургические технологии. Стоимость одной монокристаллической лопатки соизмерима с ценой дорогого легкового автомобиля
— Испытательный центр — «малая академия наук» ВИАМа. Грозит ли усталость металла разрушением самолета? Как найти скрытые дефекты в металле? Какими свойствами обладает новый материал? Во всем этом разбираются сотрудники Испытательного центра
— Армрестлинг как способ разрешения ученого спора, или Как Н. С. Хрущев летал в Америку
— «Состаренный» материал не значит «старый»
— Как кроили «шубу» для «Бурана»
— От воздействия высоких температур турбинные лопатки защищает плазма
— Чем совершеннее летательный аппарат, тем больше в нем неметаллических материалов . Уже спроектированы самолеты, на две трети состоящие из композитных материалов и пластмасс
— Утром лаборант, вечером студент. И все это — не выходя из родной лаборатории. Если государство не готовит специалистов, их приходится учить на месте
— Коррозия — враг любого металла. Ржавеет даже нержавеющая сталь. Как лечить язвы на теле «Рабочего и колхозницы»?
— Склеить можно все что угодно. Нужен только подходящий клей. В небе летают склеенные самолеты, и это не детские модели, а большие транспортные воздушные суда.
Первые шаги нашей авиации связаны с закупкой иностранных самолетов. Были они по большей части деревянными, фюзеляж и крылья обтягивались тканью. Конечно же такие «матерчатые» самолеты не могли выдерживать значительных скоростных и температурных нагрузок, нужны были иные материалы, прежде всего — металл.
Идея строить самолеты из алюминия возникла в Германии. Там же появились первые сплавы, разработанные специально для самолетов. Их назвали дуралюминами. Подобный сплав был создан и у нас в стране в середине 20-х годов. Он получил марку Д-1 — это сплав алюминия с медью и небольшим количеством магния.
В 1932 году академик А. А. Бочвар разработал теорию рекристаллизации алюминиевых сплавов, которая легла в основу создания легких сплавов. В стране к тому моменту существовала производственная база: первый алюминиевый завод «Кольчугалюминий» (расположенный в селе Кольчугино Владимирской области) выпускал гладкие и гофрированные листы технического алюминия — это алюминий с небольшими добавками марганца и магния. Такой алюминий обладал достаточной прочностью, был пластичен и потому использовался для обшивки фюзеляжей летательных аппаратов.
Однако материал для новых скоростных самолетов должен был иметь совершенно иные качества. И через некоторое время в лаборатории алюминиевых сплавов ВИАМа (созданной одновременно с открытием института в 1932 году) разработали сплав Д-16, который применялся в самолетостроении почти до середины 80-х годов. Это сплав на основе алюминия с содержанием 4-4,5% меди, около 1,5% магния и 0,6% марганца. Из него можно было делать практически любые детали самолета: обшивку, силовой набор, крыло.
Но скорости и высота полетов росли. Требовались высокопрочные сплавы. В середине 50-х годов возглавивший лабораторию алюминиевых сплавов академик И. Н. Фридляндер совместно со своими коллегами В. А. Ливановым и Е. И. Кутайцевой разрабатывает теорию легирования высокопрочных сплавов. Введение в систему алюминий — медь цинка и магния позволило резко увеличить прочность материала. Так возник сплав В-95, обладающий прочностью 550-580 Мпа (~ 5500- 5800 кгс/см2) и в то же время имеющий хорошую пластичность. У него был один изъян: недостаточная коррозионная стойкость, что, однако, устранялось путем двухступенчатого искусственного старения.
Новый сплав получил признание авиастроителей не сразу. В это время А. Н. Туполев создавал новый пассажирский лайнер Ту-154. Проект никак не укладывался в заданные весовые характеристи ки, и тогда генеральный конструктор сам позвонил Фридляндеру, обратившись за помощью, на что тот конечно же предложил использовать новый сплав. Проект новой машины переработали. Сплав В-95 нашел свое место для верхней поверхности крыла, из него изготовили прессованные панели и стрингеры, значительно снизив вес самолета. Такие же исследования параллельно шли в США. Там возникли сплавы серии 7000, в частности сплав 7075 — полный аналог нашего сплава.
Нагрузки, которые испытывает крыло самолета, неравноценны. Если верх крыла работает в основном на сжатие, то нижняя часть — на растяжение. Поэтому ее по-прежнему делали из дуралюмина Д-16, имеющего более высокие пластичность и порог усталости. Но и этот сплав претерпел серьезную модификацию за счет повышения чистоты по примесям при литье слитков. Технологические усовершенствования были столь значительны, что появился фактически новый материал — сплав 1163, который и в настоящее время успешно используется в нижних обшивках крыла и всего фюзеляжа.
Увеличение эксплуатационного ресурса самолетов всегда оставалось и остается задачей номер один. Добиться еще большей надежности и долговечности материалов можно, изменив структуру металла — «измельчив зерно». Для этого в сплавы начали вводить небольшие количества (до 0,1%) циркония. Величина зерна металла действительно резко уменьшилась, ресурс возрос. Одновременно создавались специальные ковочные сплавы, предназначенные для самых ответственных, силовых конструкций лайнеров. Так был разработан сплав 1933, превосходящий по своим параметрам зарубежные аналоги. Из него изготовляют детали силового набора и шпангоуты. Специалисты европейской авиастроительной фирмы «Эрбас» провели испытания нового материала и приняли решение использовать его в своих самолетах серий А-318 и А-319.
К сожалению, процесс весьма выгодного сотрудничества приостановлен. Причина в том, что акции двух основных российских производителей алюминиевой продукции — Самарского и Белокалитвенского металлургических комбинатов — выкуплены американской фирмой «ALKO». Значительная часть оборудования на предприятиях демонтирована, технологическая цепочка нарушена, квалифицированные кадры разошлись, и производство фактически прекратилось. Сейчас эти предприятия выпускают в основном фольгу, которая идет на изготовление пищевых банок и упаковок…
И хотя в настоящее время при посредстве российского правительства между компанией «АЛКОА-РУС» (она теперь называется так), ВИАМом и авиационными конструкторскими бюро достигнуты договоренности о возобновлении выпуска так необходимых нашей авиационной промышленности материалов, процесс восстановления идет крайне медленно и болезненно.
ВИАМ стал родоначальником серии сплавов пониженной плотности. Это совершенно новый класс материалов, содержащих литий. Первый такой сплав создал академик И. Н. Фридляндер со своими учениками еще в 60-х годах — на четверть века раньше, чем где-либо в мире. Его практическое использование, правда, поначалу было ограничено: такой активный элемент, как литий, требует особых условий выплавки. Первый промышленный алюминиево-литиевый сплав (его марка 1420) был создан на основе системы алюминий — магний с добавлением 2% лития. Его использовали в КБ А. С. Яковлева при строительстве самолетов вертикального взлета для палубной авиации — именно для таких конструкций экономия веса имеет особое значение. Як-38 эксплуатируется до сих пор, и никаких нареканий к сплаву нет. Более того. Оказалось, что детали из этого сплава обладают повышенной коррозионной стойкостью, хотя алюминиево-магниевые сплавы и сами по себе мало подвержены коррозии.
Сплав 1420 можно сваривать. Это его свойство использовали при создании самолета МиГ-29М. Выигрыш в весе при строительстве первых опытных образцов самолета за счет пониженной плотности сплава и исключения большого количества болтовых и клепочных соединений достигал 24%!
В настоящее время модификацией этого сплава — сплавом 1424 — весьма заинтересовались специалисты «Эрбаса». На заводе в городе Кобленце (ФРГ) из сплава откатали широкие листы длиной 8 м, из которых изготовили полноразмерные элементы конструкции фюзеляжа. Ребра жесткости из того же материала приварили лазерной сваркой, а элементы соединили между собой сваркой трением, после чего отправили на ресурсные испытания во Францию. Несмотря на то что некоторым деталям намеренно нанесли повреждения (для оценки работоспособности в экстремальной ситуации), после 70 тысяч циклов нагрузки конструкция полностью сохранила эксплуатационные свойства.
Еще один сплав с литием, созданный в ВИАМе, — 1441. Его главная особенность в том, что из него можно делать листы рулонной прокатки толщиной 0,3 мм с сохранением высоких прочностных качеств. Конструкторское бюро имени Бериева использовало сплав для изготовления обшивки своего гидросамолета Бе-103. Эту небольшую — всего на четыре человека — машину, толщина обшивки которой 0,5-0,7 мм, выпускает завод в Комсомольске-на-Амуре. Ее вес на 10% меньше, чем аналогичных моделей из традиционных материалов. Партию таких самолетов уже купили американцы.
Тонкий, но прочный прокат необходим для создания недавно появившегося нового класса материалов — слоистых алюмостеклопластиков, которые в России называются «сиал», а за границей — «глэр». Материал представляет собой многослойную конструкцию: чередование слоев алюминия и стеклопластика. У него немало преимуществ перед монолитными. Во-первых, стеклопластик можно армировать искусственными волокнами, на треть увеличивая прочность. Но главный выигрыш в том, что, если в конструкции появляется трещина, она растет на порядок медленней, чем в монолитных материалах. Именно этим сиалы, или глэры, в первую очередь заинтересовали авиастроителей. Из такого материала впервые изготовлена верхняя часть обшивки фюзеляжа аэробуса А-380 в наиболее ответственных местах — перед крылом и после крыла. Ресурсные испытания показали, что трещина в таком материале при рабочих нагрузках практически не растет. Поэтому глэры можно использовать как преграды-стопперы для предотвращения роста трещин в виде вставок в верхние обшивки фюзеляжа, где требуются особо высокая надежность и долгий ресурс службы.
Титан, как и алюминий, тоже имеет право называться небесным или крылатым. Лаборатория титановых сплавов была создана в институте в 1951 году. Ее основатель профессор С. Г. Глазунов изобрел установку для литья титана и, собственно, создал первый титановый сплав. Вторая подобная установка была с помощью ВИАМа построена во Всесоюзном институте легких сплавов (ВИЛС), а потом мы вместе внедряли разработанные технологические процессы на металлургическом комбинате в Верхней Салде, который сейчас является основным производителем титановой продукции в стране. В советское время комбинат выпускал более 100 тыс. тонн такой продукции. После распада СССР производство сократилось в несколько раз. Новому директору завода В. В. Тютюхину пришлось приложить огромные усилия, чтобы исправить положение. После резкого спада производства завод начал подниматься. Сейчас выпуск титановой продукции составляет 25 тыс. тонн в год. Большая ее часть (около 80%) поставляется за границу по заказам ведущих самолетостроительных концернов. В связи с оживлением авиастроительной промышленности в России возникла насущная необходимость создания альтернативного производства. Гиганту, каким является комбинат, невыгодно выпускать небольшие партии продукции. Заказы же российских авиапроизводителей пока невелики — 3-5 тонн, а цикл изготовления очень длительный и доходит до года. Такое производство может быть создано на базе ВИАМа, ВИЛСа и Ступинского металлургического комбината, где, собственно, и перерабатываются слитки, получаемые из Верхней Салды.
В ВИАМе создано более полусотни титановых сплавов различного назначения, из которых сегодня серийно используется около тридцати. Сейчас доля титановых сплавов в самолете в зависимости от его типа и назначения колеблется от 4 до 10-12%. Высокопрочные сплавы из титана, например ВТ-22, более четверти века используются для изготовления сварных шасси Ил-76 и Ил-86. Это сложные, массивные детали на Западе начинают делать из титана только сейчас. В ракетной технике доля титана намного выше — до 30%.
Созданные в ВИАМе высокотехнологичные сплавы ВТ-32 и ВТ-35 в отожженном состоянии очень пластичны. Из них можно формовать сложные детали, которые после искусственного старения приобретают чрезвычайно высокую прочность. Когда в начале 1970-х годов в КБ Туполева создавался стратегический бомбардировщик Ту-160, на московском заводе «Опыт» был построен специальный цех для изготовления титановых деталей центроплана. Эти самолеты летают до сих пор, правда, в России их осталось только одна эскадрилья.
Сегодня перед ВИАМом стоит задача создания титановых сплавов, надежно работающих при температурах 700-750оС. К сожалению, все металловедческие возможности, использовавшиеся при создании традиционных сплавов, уже реализованы. Требуются новые подходы. В этом направлении в лаборатории идут исследования по созданию так называемых интерметаллидных соединений на базе титан — алюминий.
Алюминиево-бериллиевые сплавы (их называют АБМ) исследуются и создаются на нашем предприятии уже 27 лет. Первый самолет с использованием такого сплава построил конструктор П. В. Цыбин.
Сплавы АБМ выгодно отличаются от других алюминиевых сплавов более высокой усталостной прочностью и уникальной акустической выносливостью. Сейчас они нашли применение в сварных конструкциях космических аппаратов, в том числе в серии хорошо известных межпланетных станций «ВЕНЕРА».
Интересен и сам бериллий, у которого модуль упругости на 30-40% выше, чем у высокопрочных сталей, а коэффициенты термического расширения близки, что позволило применять его в гироскопах.
В ВИАМе разработана технология изготовления тонкой вакуумно-плотной фольги и дисков и пластин из нее. Разработана технология пайки такой фольги с другими конструкционными материалами, и налажено серийное производство узлов рентгеновских аппаратов как для российских предприятий, так и для зарубежных фирм.
Еще один наш филиал организован в Поволжье в начале 1980-х годов, во время создания самого большого авиационного завода в Ульяновске, который выпускал гиганты авиации — «Русланы» и «Мрии». Для технологического сопровождения этих самолетов и была создана специальная лаборатория.
Одна из ее задач — внедрение в авиастроение композиционных материалов. Это — ближайшее будущее самолетостроения. Например, «Боинг-787», который готовится к выпуску через два года, на 55-60% будет состоять из композиционных материалов. Весь планер: фюзеляж, крыло, оперение — строится из композиционных материалов — углепластиков. Доля алюминия сократится до 15%. Углепластики — чрезвычайно заманчивый материал для самолетостроителей. Они обладают высокой удельной прочностью, малым весом, довольно приличными ресурсными характеристиками. Угроза разрушения из-за образования трещин снижается на порядки. Хотя, конечно, в отношении этих материалов остается ряд вопросов, которые до сих пор не решены. Было установлено, например, что в месте контакта углепластика с алюминием из-за возникновения гальванической пары развивается коррозия. Поэтому в таких местах алюминий пришлось менять на титан.
Когда создавался Ульяновский филиал, доля композитных материалов в конструкции отечественных летательных аппаратов была не очень велика. Тем не менее мы потихоньку начали обучать работе технологов, рабочих… Потом настали трудные времена, весь завод находился на грани закрытия, но филиал выжил. Постепенно производство восстанавливалось, и, хотя до сих пор оно наполовину законсервировано, есть несколько заказов на Ту-204, есть заказы из Германии на изготовление «Русланов». А значит, есть поле деятельности для нашей лаборатории.
Второе направление работы Ульяновского филиала — специальные, эрозионно- и коррозиестойкие покрытия.
При разложении металлоорганических жидкостей в вакууме на поверхностях образуются покрытия из хрома и карбидов хрома. Регулируя процесс, можно получать покрытия, содержащие любые соотношения этих компонентов — от чистого хрома до чистых карбидов. Твердость хромированного покрытия — 900-1000 Мпа, карбидного — вдвое выше — около 2000 Мпа. Но, чем выше твердость, тем больше хрупкость. Между этими крайностями и находят искомое в каждом отдельном случае.
Другой путь достижения нужных результатов обеспечивают нанотехнологии. В гальванические хромосодержащие ванны вводят наночастицы карбидов и оксидов металлов размером от 50 до 200 нм. Изюминка процесса в том, что сами эти частицы в состав покрытия не входят. Они лишь усиливают активность осаждаемого компонента, создают дополнительные центры кристаллизации, благодаря чему покрытие получается более плотным, более коррозиестойким, обладает лучшими противоэрозионными свойствами.
И в заключение еще об одном уникальном качестве института: в СССР существовала неплохая система, надежно гарантирующая качество конечного продукта предприятия. В ВИАМе эта система сохранилась и поныне. Если конструкторское бюро или частная компания закупают какой-то продукт, перед использованием они предпочитают передать его в ВИАМ на испытание. Нам по-прежнему доверяют.
См. в номере на ту же тему
Е. КАБЛОВ — ВИАМ — национальное достояние.
И. ДЕМОНИС — Во все лопатки.
М. БРОНФИН — Испытатели — исследователи и контролеры.
Академики дают разрешение на беспосадочный перелет Н. С. Хрущева в Нью-Йорк на сверхдальнем самолете ТУ-114 .
И. ФРИДЛЯНДЕР — Старение — не всегда плохо.
Б. ЩЕТАНОВ — Тепловая защита «Бурана» началась с листа кальки.
С. МУБОЯДЖЯН — Плазма против пара: победа за явным преимуществом .
БЮРО НАУЧНО-ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ.
Э. КОНДРАШОВ — Без неметаллических деталей самолеты не летают.
И. КОВАЛЕВ — В науку — со школьной скамьи .
С. КАРИМОВА — Коррозия — главный враг авиацииc.
А. ПЕТРОВА — Посадить на клей.
авиационная сталь — это… Что такое авиационная сталь?
- авиационная сталь
- aircraft steel
Большой англо-русский и русско-английский словарь. 2001.
- авиационная связь
- авиационная техника
Смотреть что такое «авиационная сталь» в других словарях:
Авиационная промышленность — отрасль промышленности, осуществляющая научные исследования, разработки, опытное строительство, испытания и серийное производство летательных аппаратов, авиационных двигателей, бортовых систем и оборудования. Поставщиками многих комплектующих… … Энциклопедия техники
Сталь в авиастроении — С. присущ комплекс ценных свойств, обусловивших применение её в качестве конструкционного материала в авиастроении: высокая удельная прочность, работоспособность при высоких и низких температурах, а также при действии агрессивных сред, хорошая… … Энциклопедия техники
сталь — в авиастроении. С. присущ комплекс ценных свойств, обусловивших применение её в качестве конструкционного материала в авиастроении: высокая удельная прочность, работоспособность при высоких и низких температурах, а также при действии агрессивных… … Энциклопедия «Авиация»
сталь — в авиастроении. С. присущ комплекс ценных свойств, обусловивших применение её в качестве конструкционного материала в авиастроении: высокая удельная прочность, работоспособность при высоких и низких температурах, а также при действии агрессивных… … Энциклопедия «Авиация»
авиационная промышленность — На заводе «Дукс». авиационная промышленность отрасль промышленности, осуществляющая научные исследования, разработки, опытное строительство, испытания и серийное производство летательных аппаратов, авиационных двигателей, бортовых систем и … Энциклопедия «Авиация»
авиационная промышленность — На заводе «Дукс». авиационная промышленность отрасль промышленности, осуществляющая научные исследования, разработки, опытное строительство, испытания и серийное производство летательных аппаратов, авиационных двигателей, бортовых систем и … Энциклопедия «Авиация»
авиационная промышленность — На заводе «Дукс». авиационная промышленность отрасль промышленности, осуществляющая научные исследования, разработки, опытное строительство, испытания и серийное производство летательных аппаратов, авиационных двигателей, бортовых систем и … Энциклопедия «Авиация»
авиационная промышленность — На заводе «Дукс». авиационная промышленность отрасль промышленности, осуществляющая научные исследования, разработки, опытное строительство, испытания и серийное производство летательных аппаратов, авиационных двигателей, бортовых систем и … Энциклопедия «Авиация»
СССР. Технические науки — Авиационная наука и техника В дореволюционной России был построен ряд самолётов оригинальной конструкции. Свои самолёты создали (1909 1914) Я. М. Гаккель, Д. П. Григорович, В. А. Слесарев и др. Был построен 4 моторный самолёт… … Большая советская энциклопедия
Список заслуженных рационализаторов Российской Федерации — Приложение к статье Заслуженный рационализатор Российской Федерации Содержание 1 … Википедия
Быстроразъёмное соединение — Запрос «БРС» перенаправляется сюда; см. также другие значения. Быстроразъёмное соединение элемент соединения шлангов, рукавов, различных частей промышленного оборудования, позволяющее произвести быстрое cоединение энергоконтуров (сред)… … Википедия
свойства, марки, состав, получение, характеристики
Алюминий применяется в разных направлениях промышленности, сферах деятельности. Сплав авиационного алюминия — улучшенная основа чистого металла. У него повышенная прочность, твердость. Появился этот материал относительно недавно, но быстро получил популярность.

История открытия
История появления авиационного алюминия начинается с 1909 года. Его изобрел инженер-металлург Альфред Вильгельм. Он получил новое соединение, когда добавил к алюминию небольшое количество марганца, меда и магния. После этого ученый провел закалку соединения при температуре 500°C и резко охладил его до 25°C. Мужчина выдерживал сплав при такой температуре в течение 4 суток. С течением времени соединение становилось прочнее, тверже. Данную процедуру инженер назвал возмужанием или старением.
Первой освоила новый сплав компания Dürener Metallwerken. Вскоре открылась новая торговая марка под названием Dural. Именно от нее пошло название «дуралюминий». В последующие годы новое соединение было модернизировано американскими металловедами В. Джафрис, Р. Арчер. Первый улучшенный сплав получил маркировку 2024.
Промышленное получение
Процесс промышленного получения авиационного алюминия состоит из нескольких этапов:
- Расплавление основы.
- Добавление легирующих компонентов.
- Закалка при 500°C.
- Резкое охлаждение, выдерживание заготовки на протяжении нескольких суток при комнатной температуре.
После этого заготовки проходят конечную обработку, поступают в продажу.
Оборудование для закалки металла (Фото: Instagram / mufelnaia)Марки
По марке авиационного алюминия можно узнать, какие примеси он содержит. Первая цифра указывает на легирующие добавки:
- 1 — чистый алюминий.
- 2 — сплавы с медью.
- 3 — соединения с марганцем.
- 4 — сплавы с кадмием.
- 5 — смесь с магнием.
- 6 — сплавы с высоким показателем пластичности. Легирующие добавки — кремний, магний.
- 7 — соединения, которые проходили дополнительную термическую закалку. К ним добавлен магний, цинк.
Следующая цифра обозначает модификацию сплава. Последние две цифры — номер соединения, наличие сторонних примесей.
Самыми популярными считаются сплавы с маркировкой 5056, 2025, 5052, 2219, 3003, 2017, 2024. Данные соединения обладают большим количеством преимуществ — стойкостью к трению, высокой прочностью, устойчивостью к высоким нагрузкам, пластичностью, легкостью.
Свойства и характеристики
Чтобы определить характеристики соединения, нужно знать из каких компонентов он состоит, учитывать их количество. Основа материала — алюминий. Легирующие компоненты — медь (до 5,2%), марганец (до 1%), магний (до 2,7%). Могут добавляться другие металлы для изменения характеристик и свойств, но их количество подбирается индивидуально.
Подстаканник (Фото: Instagram / antiksergei)Физические
Свойства:
- Цвет — серебристо-белый.
- Плотность — 2698,9 кг/м3.
- Температура кипения — 2500°C.
- Показатель теплопроводности — 343 Вт/м.
- Температура плавления — 660°C.
- Удельная теплоемкость — 2,39 • 10-5 град-1.
- Пластичность — до 50%.
Соединение устойчиво к органической, азотной кислоте.
Химические
Свойства:
- Степень окисления — +3.
- При взаимодействии с кислородом образуется Al2О3.
- При высоких температурах может соединяться с серой, углеродом, азотом.
- Не взаимодействует с водородом.
- Растворяется в щелочах. При этом выделяется водород.
Слитки металла (Фото: Instagram / plotnikov_tzwa)На открытом воздухе поверхности покрываются прочной оксидной пленкой, которая защищает металл от образования ржавчины, окисления.
Механические
Свойства:
- Модуль упругости — 66600 Н/мм2.
- Предел текучести — до 120 Мпа.
- Предел усталости — до 50 Мпа.
- Относительное удлинение — до 40%.
- Относительное сужение — до 90%.
- Твердость по системе Бринелля — 20 НВ.
Механические характеристики зависят от наличия дополнительных примесей, легирующих добавок, типа соединения.
Технологические
Свойства:
- Высокая пластичность. Из этого соединения можно изготавливать тонкие детали, заклепки.
- Низкая обрабатываемость процессом резки.
- Хрупкость при сильном нагревании.
- Температура отпуска — 150°C, рекристаллизации — 400°.
Катер из алюминия (Фото: Instagram / aliuminievyelodki)Могут возникать трудности при сваривании. Они связаны с высоким показателем теплопроводности, появлением прочной оксидной пленки на воздухе.
Сферы применения
Авиационные металлы и сплавы на основе алюминия изначально начали применяться для сборки различных летательных аппаратов, ракет. Постепенно список сфер применения расширился.
Сплав используется в разных отраслях:
- автомобилестроении;
- изготовлении промышленного оборудования;
- проведении строительных работ;
- атомной промышленности;
- производстве железнодорожного транспорта;
- сборке летательных аппаратов.
Из этого материала изготавливаются фонарики, наушники, мобильные телефоны и т. д.
Влияние на организм
Большое количество алюминия содержится в разных органах, крови, мышечных тканях. Он может накапливаться в почках, головном мозге, легких, печени, опорно-двигательной и нервной системе. Алюминий участвует в регенерации, строении плотной соединительной ткани, эпителия, оказывает воздействие на работу пищеварительного тракта.
Больший положительный эффект этот вид металла можно принести людям с остеопорозом, гастритом, язвенными заболеваниями. Его назначают в таблетках после хирургических вмешательств.
Изначально авиационный алюминий применялся для изготовления корпусов самолетов, других летательных аппаратов. Сейчас для этой цели применяется только материал с маркировкой 7075. Остальные виды сплава применяются в других сферах промышленности.
Завод авиационных стальных тросов, производственная компания OEM / ODM по изготовлению авиационных стальных тросов на заказ
Всего найдено 78 авиационных заводов и компаний по производству стальных канатов с 234 продуктами. Закажите высококачественный авиационный стальной канат из нашего огромного ассортимента надежных заводов по производству авиационного стального каната. Золотой членТип бизнеса: | Производитель / Завод |
Основные продукты: | Сталь Проволока, Сталь Проволока Канат , Сталь Канат , Пружина Сталь Проволока, Сталь Кабель. |
Mgmt. Сертификация: | ISO9001: 2008, ISO14001: 2004 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | Собственный бренд, ODM, OEM |
Расположение: | Наньтун, Цзянсу |
Тип бизнеса: | Производитель / Завод , Торговая компания |
Основные продукты: | Нержавеющая сталь Сталь Проволока Канат |
Mgmt.Сертификация: | ISO9001: 2015 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | Собственный бренд, ODM, OEM |
Расположение: | Тайчжоу, Цзянсу |
Тип бизнеса: | Производитель / Завод |
Основные продукты: | Нержавеющая сталь , проволока , трос , нержавеющая сталь , трос , сталь , проволока , трос , трос , трос , трос , проволока из нержавеющей стали , трос |
Mgmt.Сертификация: | ISO 9001, ISO 9000 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | OEM, ODM, собственный бренд |
Расположение: | Тайчжоу, Цзянсу |
Тип бизнеса: | Производитель / Завод , Торговая компания |
Основные продукты: | Сталь Проволока Канат , Проволока Канат , оцинкованная Сталь Проволока Канат , Сталь Канат , оцинкованная проволока Канат |
Mgmt.Сертификация: | ISO 9001 |
Объем НИОКР: | OEM |
Расположение: | Наньтун, Цзянсу |
Производственные линии: | Больше 10 |
Тип бизнеса: | Производитель / Завод , Торговая компания |
Основные продукты: | Волокно UHMWPE, пуленепробиваемый жилет, баллистический шлем, Ud-лист, бронежилет |
Mgmt.Сертификация: | ISO 9001, ISO 9000, ISO 14001, ISO 14000 |
Собственность завода: | Государственная |
Объем НИОКР: | OEM, ODM, собственный бренд |
Расположение: | Пекин, Пекин |
Тип бизнеса: | Производитель / Завод , Торговая компания |
Основные продукты: | Сталь Проволока Канат , Нержавеющая сталь Сталь Проволока Канат с пластиковым покрытием Сталь Проволока Канат |
Mgmt.Сертификация: | ISO 9001 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | ODM, OEM |
Расположение: | Цзинань, Шаньдун |
Тип бизнеса: | Производитель / Завод , Торговая компания |
Основные продукты: | Швейная нить PTFE |
Mgmt.Сертификация: | ISO14001: 2015 |
Собственность завода: | Общество с ограниченной ответственностью |
Объем НИОКР: | Собственный бренд, ODM, OEM |
Расположение: | Сучжоу, Цзянсу |
Стандартный Yb / t5197-2005 Диаметр 1,8-9,75 мм авиационный стальной трос
Стандартный YB / T5197-2005 Диаметр 1,8–9,75 мм Авиационный стальной трос
Описание продукта
Характеристики продукта:
Стальной трос для подъемников
Авиационный трос
Стальной трос Commnon
Невращающийся канатСтальной канат с покрытием из ПВХ
Канат из нержавеющей стали
Параметр:
Наши услуги
Стальной канат является важным оборудованием для многих мест, мы можем разработать и предложить вам лучшие продукты с хорошие услуги: мы позаботимся о вашем заказе!
1.Пунктуальность доставки:
- Мы помещаем ваш заказ в наш плотный график производства, информируем наших клиентов о производственном процессе, обеспечиваем своевременную доставку.
- Уведомление о доставке / страховка для вас, как только ваш заказ будет отправлен.
2. Послепродажное обслуживание:
- После получения товара, мы принимаем ваши отзывы в первый раз.
- Мы можем предоставить руководство по установке, если вам нужно, мы можем предоставить вам глобальный сервис.
- Наши отделы продаж работают круглосуточно онлайн для вашего запроса
3.Профессиональные продажи:
- Мы ценим каждый отправленный нам запрос, чтобы обеспечить быстрое конкурентоспособное предложение.
- Сотрудничаем с заказчиком на торгах. Предоставляем всю необходимую документацию.
- Мы — команда продаж со всей технической поддержкой команды инженеров.
Почему выбирают нас
Для продуктов: гарантия высокого качества
Ассортимент продукции: Мы специализируемся на всем судовом оборудовании и технических решениях, что означает, что мы можем предложить вам все морское оборудование и аксессуары.
Дизайн продукта: У нас есть большая сильная команда инженеров, для всей морской продукции мы разработаем чертежи в соответствии с вашими требованиями или проверим чертежи, которые вы нам даете, все производство должно быть начато после подтверждения чертежей.
Процесс производства: Весь поток продукции завершается на наших производственных базах, поэтому качество и время доставки могут оставаться такими же, а также избежать некоторых ошибок в деталях.
Проверка продукции: у нас есть сертификат ISO, и общие продукты, мы предоставим сертификат завода, также мы можем предоставить сертификат ABS, BV, CCS, DNV, GL, LR, KR, NK, RINA, RS, и мы принимаем третий партийный осмотр, такой как SGS и т. д.наши клиенты также могут посетить наш завод.
Для доставки
Мы сотрудничаем со многими популярными перевозчиками и авиакомпаниями, что означает, что у нас конкурентоспособные цены и хорошее обслуживание морских и воздушных грузов;
Если вам нужна экспресс-доставка небольших товаров, мы выберем DHL, FedEx, TNT и т. Д., По этой цене у нас есть скидка от 20% до 60%, так что это улучшит нашу ценовую конкурентоспособность.
Бочи — ваш лучший выбор !! Свяжитесь с нами для получения дополнительной информации.
.