Смолы эпоксидные – Эпоксидная смола — Википедия

Эпоксидные смолы Википедия

Структура эпоксидной смолы — продукта конденсации эпихлоргидрина с бисфенолом А, n = 0-25

Эпоксидная смола — олигомеры, содержащие эпоксидные группы и способные под действием отвердителей (полиаминов и др.) образовывать сшитые полимеры. Наиболее распространённые эпоксидные смолы — продукты поликонденсации эпихлоргидрина с фенолами, чаще всего — с бисфенолом А. Смолы на основе бисфенола А часто называются эпоксидно-диановыми в честь русского химика А. П. Дианина, впервые получившего бисфенол А[1].

Свойства[ | ]

Эпоксидные смолы стойки к действию галогенов, некоторых кислот (к сильным кислотам, особенно к кислотам-окислителям, имеют слабую устойчивость), щелочей, обладают высокой адгезией к металлам. Эпоксидная смола в зависимости от марки и производителя выглядит как прозрачная жидкость желто-оранжевого цвета, напоминающая мёд, или как коричневая твёрдая масса, напоминающая гудрон. Жидкая смола может иметь очень разный цвет — от белого и прозрачного до винно-красного (у эпоксидированного анилина).

Следующие свойства имеет чистая, не модифицированная смола без наполнителей:

  • модуль упругости: E≈3000−4500Nmm2{\displaystyle E\approx 3000-4500{\frac {\rm {N}}{\rm {{mm}^{2}}}}};
  • предел прочности: R≈80Nmm2{\displaystyle R\approx 80{\frac {\rm {N}}{\rm {{mm}^{2}}}}};
  • плотность: ρ≈1,2gcm3{\displaystyle \rho \approx 1{,}2{\frac {\rm {g}}{\rm {{cm}^{3}}}}}.

Хотя отверждённая по правильной технологии эпоксидная смола считается абсолютно безвредной при нормальных условиях, её применение сильно ограничено, так как при отверждении в промышленных условиях в ЭС остаётся некоторое количество золь-фракции — растворимого остатка. Он может нанести серьёзный урон здоровью, если будет вымыт растворителями и попадёт внутрь организма. В неотверждённом виде эпоксидные смолы являются достаточно ядовитыми веществами и могут также навредить здоровью.

Модификация

ru-wiki.ru

Эпоксидные смолы Википедия

Химическая стойкость полиэпоксидных и эпоксидных смол
Химическое веществоХимическая устойчивость
Азотная кислота, Nitric AcidНеустойчивое вещество
Амилацетат, Amyl acetateОтличная (при t < 72 °F, 22 °C)
Амины, AminesОтличная (при t < 72 °F, 22 °C)
Аммоний 10 %, Ammonia 10 %Отличная (при t < 72 °F, 22 °C)
Аммоний жид, Ammonia — LiquidОтличная (при t < 72 °F, 22 °C)
Анилин, AnilineСносная (при t < 72 °F, 22 °C)
Ацетат натрия, Sodium AcetateОтличная
Ацетилен, AcetyleneОтличная
Ацетон, AcetoneНеустойчивое вещество
Бензин, GasolineОтличная
Бензол, BenzolОтличная (при t < 72 °F, 22 °C)
Бертолетова соль, Sodium ChlorateОтличная
Бикарбонат калия, Potassium BicarbonateОтличная
Бикарбонат натрия, Sodium BicarbonateОтличная
Бисульфат натрия, Sodium BisulfateОтличная
Бисульфит кальция, Calcium Bisulfite Отличная (при t < 72 °F, 22 °C)
Борная кислота, Boric acidОтличная (при t < 72 °F, 22 °C)
Бром, BromineНеустойчивое вещество
Бромид калия, Potassium BromideОтличная
Бромистоводородная кислота 100 %, Hydrobromic Acid, 100 %Неустойчивое вещество
Бура (пироборнокислый натрий), BoraxОтличная (при t < 72 °F, 22 °C)
Бутадиен (дивинил), Butadiene gasОтличная (при t < 72 °F, 22 °C)
Бутан газ, Butane gasОтличная (при t < 72 °F, 22 °C)
Бутилацетат, Butyl acetateХорошая (при t < 72 °F, 22 °C)
Винная кислота, Tartaric AcidОтличная
Гексан, HexaneХорошая
Гексан, Hydraulic FluidОтличная
Гексафторкремнекислота. Fluosilicic acidСносная
Гептан, HeptaneОтличная
Гидроксид аммония, Ammonium HydroxideОтличная (при t < 72 °F, 22 °C)
Гидроксид бария, Barium HydroxideОтличная (при t < 72 °F, 22 °C)
Гидроксид калия, Potassium HydroxideОтличная
Гидроксид кальция, Calcium HydroxideОтличная (при t < 72 °F, 22 °C)
Гидроксид магния, Magnesium HydroxideОтличная
Гидроксид натрия, Sodium Hydroxide, 50 %Хорошая (при t < 120 °F, 50 °C)
Гипохлорит кальция, Calcium HypoChloriteОтличная (при t < 72 °F, 22 °C)
Гипохлорит натрия 100 %, Sodium HypoChlorite, 100 %Неустойчивое вещество
Глицерин, GlycerineОтличная
Глюкоза, GlucoseХорошая
Дизельное топливо, Diesel FuelОтличная (при t < 72 °F, 22 °C)
Диоксид серы, Sulfur DioxideОтличная (при t < 72 °F, 22 °C)
Дистиллированная вода, Water — DistilledОтличная
Дихлорэтан, DichloroethaneХорошая (при t < 120 °F, 50 °C)
Дихромат калия, Potassium DichromateСносная
Дубильная кислота, Tannic AcidОтличная
Железный купорос, Ferrous SulfateОтличная (при t < 72 °F, 22 °C)
Жирная кислота, Fatty AcidsОтличная (при t < 72 °F, 22 °C)
Гидроксид алюминия, Aluminum HydroxideХорошая (при t < 72 °F, 22 °C)
Изопропиловый спирт, Alcohol — IsopropylОтличная
Карбонат аммония, Ammonium CarbonateОтличная (при t < 72 °F, 22 °C)
Карбонат бария, Barium CarbonateОтличная (при t < 72 °F, 22 °C)
Карбонат калия, Potassium CarbonateОтличная
Карбонат кальция, Calcium CarbonateОтличная (при t < 72 °F, 22 °C)
Карбонат натрия, Sodium CarbonateСносная (при t < 72 °F, 22 °C)
Касторовое масло, Oil — CastorОтличная
Керосин, KeroseneОтличная
Ксилол, XyleneОтличная
Лигроин, NaphthaОтличная
Лимонная кислота, Citric AcidОтличная (при t < 72 °F, 22 °C)
Малеиновая кислота, Maleic AcidОтличная
Масляная кислота, Butyric AcidСносная (при t < 72 °F, 22 °C)
Метиловый спирт, Alcohol — MethylХорошая (при t < 72 °F, 22 °C)
Метилэтилкетон, Methyl Ethyl KetoneСносная (при t < 72 °F, 22 °C)
Молочная кислота, Lactic AcidХорошая (при t < 72 °F, 22 °C)
Морская (солёная) вода, Water — Sea, SaltОтличная
Моча, UrineОтличная
Муравьиная кислота, Formic AcidСносная (при t < 72 °F, 22 °C)
Мыло, SoapsОтличная
Нафталин, NaphthaleneОтличная
Нитрат аммония, Ammonium NitrateОтличная (при t < 72 °F, 22 °C)
Нитрат калия, Potassium NitrateОтличная
Нитрат магния, Magnesium NitrateОтличная
Нитрат меди, Copper NitrateОтличная (при t < 72 °F, 22 °C)
Нитрат натрия, Sodium NitrateОтличная
Нитрат серебра, Silver NitrateОтличная
Олеиновая кислота, Oleic acidОтличная
Перекись водорода 10 %, Hydrogen Peroxide, 10 %Сносная (при t < 72 °F, 22 °C)
Пиво, BeerОтличная (при t < 72 °F, 22 °C)
Пикриновая кислота, Picric AcidОтличная
Плавиковая кислота 75 %, HydroFluoric Acid, 75 %Хорошая (при t < 72 °F, 22 °C)
Пропан жидк., Propane, liquidОтличная
Реактивное топливо, Jet FuelОтличная
Ртуть, MercuryОтличная
Пресная вода, Water — FreshОтличная
Серная кислота 75—100 %, Sulfuric Acid, 75—100 %Сносная (при t < 72 °F, 22 °C)
Сероводород, Hydrogen SulfideОтличная
Силикат натрия, Sodium SilicateОтличная
Соляная кислота 20 %, HydroChloric acid, 20 %Хорошая (при t < 72 °F, 22 °C)
Стеариновая кислота, Stearic AcidХорошая
Сульфат алюминия, Aluminum SulfateОтличная (при t < 72 °F, 22 °C)
Сульфат аммония, Ammonium Sulfate Отличная (при t < 72 °F, 22 °C)
Сульфат бария, Barium SulfateСносная (при t < 72 °F, 22 °C)
Сульфат железа, Ferric SulfateОтличная (при t < 72 °F, 22 °C)
Сульфат калия, Potassium SulfateОтличная
Сульфат кальция, Calcium SulfateОтличная (при t < 72 °F, 22 °C)
Сульфат магния, Magnesium SulfateОтличная
Сульфат натрия, Sodium SulfateОтличная
Сульфат никеля, Nickel SulfateОтличная
Сульфид бария, Barium SulfideХорошая (при t < 72 °F, 22 °C)
Сульфит натрия, Sodium SulfiteОтличная
Терпентин, TurpentineХорошая
Тетрахлорид углерода, Carbon TetrachlorideОтличная (при t < 72 °F, 22 °C)
Тиосульфит натрия, Sodium ThiosulfateОтличная
Толуол, TolueneХорошая (при t < 72 °F, 22 °C)
Углекислота, Carbonic AcidХорошая (при t < 72 °F, 22 °C)
Углекислый газ, Carbon dioxide gasОтличная (при t < 72 °F, 22 °C)
Углекислый магний, Magnesium CarbonateОтличная
Уксус, VinegarОтличная
Уксусная кислота, Acetic Acid (20 %)Отличная
Уксуснокислый свинец, Lead acetateОтличная
Фенол (оксибензол), PhenolХорошая
Формальдегид 40 %, Formaldehyde, 40 %Отличная (при t < 72 °F, 22 °C)
Фосфат аммония, Ammonium PhosphateОтличная (при t < 72 °F, 22 °C)
Фосфорная кислота, Phosphoric AcidХорошая
Фреон, FreonОтличная
Фторид алюминия, Aluminum FluorideХорошая (при t < 72 °F, 22 °C)
Фтористые газы, Fluorine gasНеустойчивое вещество
Фтористый натрий, Sodium FluorideОтличная
Хлорид алюминия, Aluminum ChlorideОтличная (при t < 72 °F, 22 °C)
Хлорид аммония, Ammonium ChlorideОтличная (при t < 72 °F, 22 °C)
Хлорид бария, Barium ChlorideОтличная (при t < 72 °F, 22 °C)
Хлорид железа, Ferric ChlorideОтличная (при t < 72 °F, 22 °C)
Хлорид калия, Potassium ChlorideОтличная
Хлорид кальция, Calcium ChlorideОтличная (при t < 72 °F, 22 °C)
Хлорид магния, Magnesium ChlorideОтличная
Хлорид меди, Copper ChlorideОтличная
Хлорид натрия, Sodium ChlorideОтличная
Хлорид никеля, Nickel ChlorideОтличная
Хлорид цинка, Zinc ChlorideОтличная
Хлористое железо, Ferrous ChlorideОтличная (при t < 72 °F, 22 °C)
Хлористое олово, Stannic ChlorideОтличная
Цианид натрия, Sodium CyanideОтличная
Цианистый водород, HydroCyanic AcidОтличная
Щавелевая кислота, Oxalic AcidОтличная
Этилацетат, Ethyl acetateСносная (при t < 72 °F, 22 °C)
Этиленгликоль, Ethylene glycolСносная (при t < 72 °F, 22 °C)
Этиловый спирт, Alcohol — EthylОтличная (при t < 120 °F, 50 °C)
Этилхлорид, Ethyl chlorideОтличная (при t < 72 °F, 22 °C)

wikiredia.ru

Мир современных материалов — Эпоксидные смолы

 Эпоксидные смолы — олигомеры или мономеры, содержащие в молекуле не менее двух эпоксидных

 глицидиловых

 

  или оксирановых

  групп и способные превращаться в полимеры пространственного строения.

  Эпоксидные смолы бывают:

 1) диановые;

 2) азотсодержащие;

 3) эпоксиноволачные и эпоксифенольные;

 4) галогенсодержащие;

 5) сложные диглициловые эфиры;

 6) алифатические.

 Важное практическое значение имеют также модифицированные эпоксидные смолы, получаемые путем химического взаимодействия немодифицированных эпоксидных смол с реакционноспособными модификаторами.

 Неотвержденные эпоксидные смолы представляют собой вязкие жидкости или низкоплавкие продукты, которые растворяются во многих органических растворителях (ацетон, толуол, хлорированные углеводороды и др.), не растворимы в воде, бензине, ограниченно растворимы в спиртах.

 Механизм отверждения ди- и полифункциональных эпоксидных смол заключается во взаимодействии их функциональных групп (эпоксидных и гидроксильных) с реакционноспособными группами отвердителя или между собой. Такая реакция приводит к удлинению молекулы и образованию поперечных связей. В результате получаются твердые прочные полимеры. Такое свойство эпоксидных смол используется в заливочных и пропиточных компаундах. Эпоксидные смолы отверждаются без выделения побочных продуктов, поэтому изделия из них имеют минимальную усадку (0,3-2,0%) и могут использоваться в толстых слоях.

               В качестве отвердителей применяют:

 1)     продукты основного характера; к ним относятся различные ди- и полифункциональные алифатические и ароматические амины, низкомолекулярные полиамиды и различные производные аминов, допускающие отверждение при комнатной температуре; для завершения процесса отверждения необходимо воздействие температуры 60-150°С в течение 4-10 ч в зависимости от вида и количества отвердителя эпоксидных смол и массы изделия;

 2)     продукты кислого характера – ангидриды ди- и поликарбоновых кислот; отверждение происходит при 120-200°С за время от нескольких часов до нескольких суток;

 3)     полиэфирные, феноло-, анилино- и резорциноформальдегидные олигомеры;

 4)     комплексные соединения трехфтористого бора и различных аминов.

 Выбор отвердителя для того или иного типа эпоксидных смол обуславливается назначением, допустимыми условиями переработки композиции и требуемыми свойствами отвержденного продукта. Отвердители ангидридного типа дают возможность получать полимеры с более высокими электрическими и механическими свойствами и с большей нагревостойкостью по сравнению с отвердителями – аминами; они менее токсичны, чем амины.

Эпоксидные смолы отверждаются без выделения побочных продуктов, поэтому изделия из них имеют минимальную усадку 0,3-2% и могут быть использованы в толстых слоях.

При введении минеральных наполнителей рабочая температура эпоксидных полимеров повышается, доходя до класса нагревостойкости Н. Композиционные материалы на основе эпоксидных полимеров, содержащие неорганические компоненты, имеют нагревостойкость, обычно превышающую таковую самих полимеров.

В табл. 1 приведены свойства эпоксидных смол.

Таблица 1.

Показатель

Полимеры

диановые

азотсодержащие,
отвержденные
МА

эпоксиноволачные

циклоали-
фатичес-
кие

полиэфир-
эпоксид-
ные

на основе
ЭД-20,
отверди-
тель—
МТГФА

на основе
CY-205 (фирма
«Циба»,
Швейцария),
отвердитель—
гексогидро-
фталевый ангидрид

на основе

ЭН-6, отвер-
дитель—МА

на основе
DEN-438
(фирма
«Дау Ке-
миклз»,
США)+
+1.5%
БДМА,
отверди-
тель—МЭА

Прочность, МПа:

при растяжении

при сжатии
при статическом изгибе

 

150

90

 

 

20-30

130—150

110-130

 

 

170-180

80-100

 

 

140

60

 

 

31

160

110

 

 

50—70

182—190

75—130

 

 

 

Ударная вязкость,
кДж/м2

 

8-14

8-12

15-18

7-9

3-25

εr

3,6-3,8

3,3-3,6

(при 25°С)

4,0

(при
1 МГц)

3,4

(при 60 Гц)

3-6

tgδ

0,0047-
0,0053
(при
50 Гц)
0,011—
0,013

(при
1 МГц)

0,004—0,051
(при 25 ОС)

0,018
(при
1 МГц)

0,011
(при 20°С)

0,011
(при 150°С)

0,0141
(при 200°С)

0,00661

0.0041
(при
25 °С)

0,004—
0,0051

(при 100°С)

0,005-
0,0251

ρs, Ом

1015

5,4×1015

ρ, Ом*м

1012

1014

(при 25 °С)

1013

1013

(при 20 °С)

1014

1012-1013

(при 20 °С)

Епр, МВ/м

16-18

15

23

Теплостойкость по
Мартенсу, °С

105-113

80-90

115

180

Усадка при отверждении, %

1,7-1,9

0,97-1,3

Водопоглощение
за 24 ч, %

0,25 (за 10 суток)

0,03

0,05

 

Обозначения в таблице:

εr– относительная диэлектрическая проницаемость

tgδ — тангенс угла диэлектрических потерь

ρs – удельное электрическое поверхностное сопротивление

ρ — удельное электрическое объемное сопротивление

Епр – электрическая прочность

 

               Эпоксидно-диановые смолы

          Наибольшее применение в промышленности нашли эпоксидно-диановые смолы ввиду их исключительной адгезии и механической прочности.

               Эпоксидно-диановые смолы — реакционноспособные олигомерные продукты конденсации дифенилпропана с эпихлоргидрином. Их образование можно представить схемой:

 

 Неотвержденные смолы легко растворяются в кетонах, эфирах, ароматических углеводородах. Совмещаются с полиэфирными, акриловыми, фенолоформальдегидными и другими смолами. В табл. 2 приведены сведения о некоторых марках эпоксидно-диановые смол.

 Таблица 2

 

Марка

Внешний вид

Динамическая вязкость, Па×с, при 25°С

Свойства

Применение

ЭД-16

Высоковязкая прозрачная жидкость

5-18

Хорошая адгезия к различным подложкам. Покрытия на основе смолы отличаются высокими физико-механическими свойствами.

производства покрытий, клеев холодного отверждения.

ЭД-20

Вязкая прозрачная жидкость

13-20

Хорошая адгезия к различным подложкам. Покрытия на основе смолы отличаются высокими физико-механическими свойствами.

Для производства покрытий, клеев холодного отверждения.

Э-20С

Твердые прозрачные куски

Покрытия на основе смолы отличаются высокими физико-механическими свойствами.

Связующее для пропитанных стеклослюдинитовых лент

ЭД-22

Низковязкая прозрачная жидкость

8-12

Обладает низкой вязкостью, узким интервалом содержания эпоксидных групп, стабильностью физико-химических свойств

электроизоляционные и пропиточные композиции

Э-23

Твердые прозрачные куски

Покрытия на основе Э-23 отличаются хорошей адгезией, механической прочностью, коррозионной стойкостью

Основа порошковых лакокрасочных материалов

 

В зависимости от соотношения исходных компонентов и условий ведения процесса выпускаются смолы различной молекулярной массы лаковые, высоковязкие и твердые.

            Эпоксидно-диановые смолы, в частности ЭД-22, с отвердителями ангидридного типа находят широкое применение при изготовлении термореактивной изоляции высоковольтных электрических машин.

            

Вас также может заинтересовать:

worldofmaterials.ru

Эпоксидная смола — это… Что такое Эпоксидная смола?

Структура эпоксидной смолы — продукта конденсации эпихлоргидрина с бисфенолом А, n = 0-25

Эпоксидная смола — олигомеры, содержащие эпоксидные группы и способные под действием отвердителей (полиаминов и др.) образовывать сшитые полимеры. Наиболее распространенные эпоксидные смолы — продукты поликонденсации эпихлоргидрина с фенолами, чаще всего — с бисфенолом А.

Свойства

Эпоксидные смолы стойки к действию галогенов, кислот, щелочей, обладают высокой адгезией к металлам. Из эпоксидных смол готовят различные виды клея, пластмассы, электроизоляционные лаки, текстолит (стекло- и углепластики), заливочные компаунды и пластоцементы. Эпоксидная смола в зависимости от марки и производителя, выглядит как прозрачная жидкость желто-оранжевого цвета напоминающая мёд, или как коричневая твердая масса, напоминающая гудрон. Жидкая смола может иметь очень разный цвет — от белого и прозрачного до винно-красного (у эпоксидированного анилина). Следующие свойства имеет чистая, не модифицированная смола без наполнителей.

  • Модуль эластичности:
  • Предел прочности:
  • Плотность:

Хотя отверждённая по правильной технологии эпоксидная смола считается абсолютно безвредной при нормальных условиях, её применение сильно ограничено, так как при отверждении в промышленных условиях в ЭС остается некоторое количество золь-фракции — растворимого остатка. Он может нанести серьёзный урон здоровью, если будет вымыт растворителями и попадет внутрь организма. В неотверждённом виде эпоксидные смолы являются достаточно ядовитыми веществами и могут также навредить здоровью. По этой причине при работе с ЭС требуется соблюдать определенные правила:

  • Склееная при помощи ЭС посуда не может быть использована в дальнейшем для приготовления и употребления пищи.
  • При работе следует надевать резиновые перчатки.
  • При работе с отвердителями и смолами в твердом виде требуется использовать противопылевой респиратор.
  • При попадании брызг ЭС в глаз нужно срочно промыть глаз холодной водой и обратиться к врачу.
  • Не рекомендуется отверждать смолу в бытовой духовке[1].

Модификация

Эпоксидные смолы поддаются модификации. Различают химическую и физическую модификацию.

Первая заключается в изменении строения сетки полимера путём добавления соединений, встраивающихся в состав оной. Как пример — добавление лапроксидов (простых полиэфиров спиртов, содержащих глицидиловые группы, например ангидрида глицерина) в зависимости от функциональности и молекулярной массы придаёт отверждённой смоле эластичность, за счёт увеличения молекулярной массы межузлового фрагмента, но понижает её водостойкость. Добавление галоген- и фосфорорганических соединений придаёт смоле большую негорючесть. Добавление фенолформальдегидных смол позволяет отверждать эпоксидную смолу прямым нагревом без отвердителя, придаёт большую жёсткость, улучшает антифрикционные свойства, но понижает ударную вязкость[2].

Физическая модификация достигается добавлением в смолу веществ, не вступающих в химическую связь со связующим. Как пример — добавление каучука позволяет увеличить ударную вязкость отверждённой смолы. Добавление коллоидного диоксида титана увеличивает её коэффициент преломления и придаёт свойство непрозрачности к ультрафиолетовому излучению[3].

Получение

Схема производства жидких эпоксидных смол периодическим методом. 1 — реактор; 2, 6 — холодильники; 3 — приёмник; 4 — фильтры; 5 — аппарат для отгонки толуола; 7 — сборник.[2]

Впервые эпоксидная смола была получена французским химиком Кастаном в 1936 году.

Эпоксидную смолу получают поликонденсацией эпихлоргидрина с различными органическими соединениями: от фенола до пищевых масел, скажем соевого[3]. Такой способ носит название «эпоксидирование».

Ценные сорта эпоксидных смол получают каталитическим окислением непредельных соединений. Например, таким образом получают циклоалифатические смолы, ценные тем, что они совершенно не содержат гидроксильных групп, и поэтому очень гидроустойчивы, трекинго- и дугостойки.

Для практического применения смолы нужен отвердитель. Отвердителем может быть полифункциональный амин или ангидрид, иногда кислоты. Также применяют катализаторы отверждения — кислоты Льюиса и третичные амины, обычно блокированные комплексообразователем наподобие пиридина. После смешения с отвердителем эпоксидная смола может быть отверждена — переведена в твердое неплавкое и нерастворимое состояние. Если это полиэтиленполиамин (ПЭПА), то смола отвердеет за сутки при комнатной температуре. Ангидридные отвердители требуют 10 часов времени и нагрева до 180 °C в термокамере (и это ещё без учёта каскадного нагрева со 150 °C).

Применение

Перевернутая верхняя часть лодки из стеклоткани с ЭС

На основе эпоксидных смол производятся различные материалы, применяемые в различных областях промышленности. Углеволокно и ЭС образуют углепластик (используется как конструктивный материал в различных областях: от авиастроения (см. Боинг-777) до автостроения). Композит на основе ЭС используются в крепёжных болтах ракет класса земля-космос. ЭС с кевларовым волокном — материал для создания бронежилетов.

Зачастую эпоксидные смолы используют в качестве эпоксидного клея или пропиточного материала — вместе со стеклотканью для изготовления и ремонта различных корпусов или выполнения гидроизоляции помещений, а также как самый доступный способ в быту изготовить продукт из стекловолокнита, как сразу готовое после отливки в форму, так и с вероятностью дальнейшего разрезания и шлифовки.

Из стеклоткани с ЭС делают корпуса плавсредств, выдерживающие очень сильные удары, различные детали для автомобилей и других транспортных средств.

В качестве заливки (герметика) для различных плат, устройств и приборов.

Также эпоксидные смолы используются в строительстве (см. Сиднейский оперный театр).

Из эпоксидных смол изготовляются самые различные предметы и вещи (скажем, мундштуки).

Эпоксидные смолы используют в качестве бытового клея. Использовать эпоксидный клей довольно просто. Смешивание эпоксидной смолы с отвердителем как правило выполняется в крайне малых объемах (несколько граммов), поэтому перемешивание производится при комнатной температуре и не вызывает затруднений, точность пропорции смола/отвердитель при смешивании зависит от производителя эпоксидной смолы или отвердителя, необходимо использовать только те пропорции, которые рекомендованы производителем, так как от этого зависит время отвердевания и физические свойства получившегося продукта (отступлении от нужной пропорции как правило приводит к изменению времени отвердевания, в крайних случаях можно получить нетвердый продукт). В качестве отвердителей применяют: отвердители холодного триэтилентетрамин (ТЭТА), полиэтиленполиамин (ПЭПА), полисебациновый ангидрид и горячего отверждения малеиновый ангидрид (ДЭТА).[4][5] Как правило стандартная пропорция составляет от 10:1 до 5:1, но в некоторых случаях может доходить до 1:1. Запрещается смешивать сразу большое количество смолы с отвердителем без использования специальных аппаратов для смешивания во избежание вскипания.[6]

Основные области применения эпоксидных смол:[7]
Отрасль примененияОсновные виды эпоксидных материаловОсновное назначениеПреимущественные показателиЭкономический эффект применения, отнесенный к стоимости материала
СтроительствоПолимербетоны, компаунды, клеиРазметочные полосы дорог, плиты для полов, наливные бесшовные полыФизико-механические показатели, износо-химстойкость, беспыльность, высокая адгезияот 3 до 29
Покрытия (лакокрасочные, порошковые, водно-дисперсионные)Декоративно-облицовачные и защитные функцииМалая усадка, химическая стойкость
Связующие для стекло- и углепластиковРемонт железобетонных конструкций, дорог, аэродромов. Склеивание конструкций мостов и др. Вытяжные трубы и ёмкости хим. производств. ТрубопроводыАтмосферостойкость, Химстойкость, Прочность, Теплостойкость
Электромашиностроение и радиотехникаКомпаунды, связующие для армированных пластиков, покрытия, прессматериалы, пенопластыГерметизация изделий, электроизоляционные материалы (стеклопластик и др.). Заливка трансформаторов и др. Эл. изоляционные и защитные покрытия.Радиопрозрачность, высокие диэлектрические показатели, малая усадка при отверждении, отсутствие летучих продуктов отвержденияОт 0,1 до 7,0; 300-800 (электроника)
СудостроениеСвязующие для стеклопластиковСудовые гребные винты, лопатки компрессоровПрочность, кавитационнная стойкость75
Покрытия из жидких ЛКМ и порошковСосуды для газов и топливаВодо-, химстойкость, абразивная стойкость
Cинтактические пенопластыОбтекатели гребных винтовУдаропрочность при низких температурах
Машиностроение, в т.ч. автомобилестроениеКомпаунды, Лакокрасочные материалы, КлеиРемонт и заделка дефектов литьевых изделий, формы, штампы, оснастка, инструмент (модели, копиры и т.д.)Прочность, твердость, изностойкость, размерная стабильностьОт 3,1 до 15,0
ПолимербетоныНаправляющие металлорежущих станков, cтанины прецезионных станковТеплостойкость, высокая адгезия к подложкам и наполнителям, функциональные и антифрикционные свойства320 (тяжелые станки)
Связующие для армированных пластиковЕмкости, трубы из стеклопластиков «мокрой» намоткиХим.стойкость Ударопрочность
Прессматериалы и порошкиПодшипники и др. антифрикционные материалы, пружины, рессоры из эпоксидных пластиков, электропроводящие материалы
Авиа-и ракетостроениеСвязующее для армированных стекло-и органопластиковСиловые конструкции и обшивки крыльев, фюзелляжа, оперения, конуса сопел и статоры реактивных двигателейВысокая удельная прочность и жесткость, радиопрозрачность, абляционные свойства (теплозащитные)
Покрытия защитныеЛопасти вертолета, топливные баки ракет, корпус реактивного двигателя, баллоны для сжатых газовСтойкость к действию топлива

Интересные факты об эпоксидных смолах

Хотя самые высокотоннажные марки смол ЭД-20, ЭД-22 и ЭД-16 при нормальных условиях являются высоковязкими жидкостями, температура кристаллизации олигомеров, их составляющих, лежит ниже 20°C. Жидкое состояние смол связано с тем, что олигомеры с длиной цепи отличной от длины цепи других молекул не дают им образовать упорядоченную структуру для кристаллизации. Всё же некоторое количество кристаллической фазы, называемых «пачками» присутствует в растворах, что неизбежно влияет на свойства отверждаемой смолы. Один из методов физической модификации смолы заключается в предварительном разрушении этих агрегатов с помощью ультразвука. Примечательно то, что при такой обработке смола меняет свой цвет с золотистого на зелёный.

Большинство олигомеров, состоящих из одинаковых молекул и выделенных в чистом виде из ЭД упомянутых выше марок, при нормальных условиях являются твёрдыми кристаллическими веществами.

См. также

Литература

Ссылки

Примечания

  1. Так как при разгерметизации формы может произойти вытекание смолы на поверхности духовки, в результате чего последующее приготовление пищи в ней омрачается специфическим запахом горелого пластика в приготовляемой пище.
  2. 1 2 А. Ф. Николаев, В. К. Крыжановский, В. В. Бурлов и др. Технология полимерных материалов / Под ред. В. К. Крыжановского. — СПб.: Профессия, 2008. — 544 с.
  3. 1 2 По материалам реферативного журнала «Химия»
  4. Отвердители для эпоксидных смол
  5. Современные отвердители эпоксидных смол
  6. Эпоксидная смола
  7. Хозин В. Г. Усиление эпоксидных полимеров. — Казань: ПИК «Дом печати», 2004. — 446 с.

dikc.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *