Силикатный модуль жидкого стекла – САФУ — Ошибка 404: такой страницы не существует

Содержание

Жидкое стекло — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 октября 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 октября 2018; проверки требует 1 правка.

Жи́дкое стекло́ — водный щелочной раствор силикатов натрия Na2O(SiO2)n и (или) калия K2O(SiO2)n[1]. Реже в качестве жидкого стекла используют силикаты лития, например, в электродном покрытии.

Жидкое стекло также широко известно как силикатный клей (торговое название).

Впервые жидкое стекло получил в 1818 году немецкий химик и минеролог Ян Непомук фон Фукс действием щелочей на кремниевую кислоту.

В настоящее время жидкое стекло получают обработкой в автоклаве кремнезёмсодержащего сырья концентрированными растворами гидроксида натрия или сплавлением кварцевого песка с содой. Известны также способы получения жидкого стекла, основанные на прямом растворении кремнистого сырья (опоки, трепелы, диатомиты и другие) в растворах щелочей при атмосферном давлении и относительно невысокой температуре (температура кипения раствора щелочи).

Характеристикой химического состава жидкого стекла является силикатный модуль. Модуль показывает отношение содержащегося в жидком стекле оксида кремния к оксиду натрия или калия и характеризует выход кремнезёма в раствор. По величине силикатного модуля о качестве жидкого стекла не судят, но в некоторых технологических прописях присутствуют указания к использованию конкретного модуля, когда конечный продукт напрямую зависит от количественного соотношения данных оксидов.

Свойства[

ru.wikipedia.org

Силикатный модуль - Большая Энциклопедия Нефти и Газа, статья, страница 1

Силикатный модуль

Cтраница 1

Силикатный модуль характеризует соотношение твердой и жидкой фаз при температуре спекания. Низкий силикатный модуль показывает наличие большего количества расплава, и благодаря этому шихта хорошо спекается. Высокий модуль в шихте показывает незначительное количество расплава при обжиге и плохую спекаемость. Обычно цементы с низким силикатным модулем обладают высокой начальной прочностью, но незначительным ростом ее в последующие сроки. Наоборот, у цементов с высоким силикатным модулем прочность в первые сроки твердения не очень велика, но зато быстро нарастает в последующие сроки.  [1]

Силикатный модуль - отношение числа грамм-молекул кремнезема к числу грамм-молекул окиси натрия, вычисляемое по формуле М 1 0323 А / В, где М - силикатный модуль; А - содержание кремнезема в процентах; В - содержание окиси натрия в процентах; 1 0323 - отношение молекулярной массы окиси натрия к молекулярной массе кремнезема.  [2]

Силикатный модуль - отношение числа молекул кремнезема к числу молрчул оксида натрия, вычисляемое по формуле М - 1 0323 Л / В, где М - силикатный модуль; I-содержание кремнезема, %; В - содержание оксида натрия, %; 1 0323 - отношение молекулярной массы оксида натрия к молекулярной массе кремнезема. Допускается выпадение осадка при хранении.  [3]

Силикатный модуль является главной характеристикой раствора силиката натрия, определяющей его состав.  [4]

Силикатный модуль - это отношение числа грамм-молекул кремнезема ( SiO2) к числу грамм-молекул оксида натрия, опре деляется в основном для моющего средства Анкрас.  [5]

Силикатный модуль М рассчитывают из процентного содержания.  [7]

Повышение силикатного модуля или, иными словами, уменьшение содержания щелочи в жидком стекле улучшает его качество. Попытки использовать в виде связующего для красочных составов натриевое жидкое стекло, - имеющее низкий модуль ( около 1 5), не дали благоприятных результатов, так как покрытия получались неустойчивыми, и на окрашенной поверхности появлялись высолы углекислого натрия в виде белых налетов.  [8]

При низком силикатном модуле сырьевая смесь является легкоплавкой, что вызывает сваривание ее в крупные куски при обжиге и образование так называемых колец.  [9]

При снижении силикатного модуля скорость растворения щелочного силикатного стекла увеличивается. Присутствие примесных оксидов снижает скорость растворения силикатного стекла.  [10]

Хроматографическое определение силикатного модуля цеолитов, ( Разработан метод ГХ для определения силикатного модуля цеолитов.  [11]

При снижении силикатного модуля стекла до 2 - 2 3 прочность этих составов повышается примерно в три раза.  [12]

Цементы с повышенным силикатным модулем характеризуются низким содержанием минералов-плавней и, наоборот, весьма высоким содержанием силикатов.  [13]

Если в производстве повышенный силикатный модуль клинкера обусловлен наличием в сырьевой смеси значительного количества кварцевого песка, то такая сырьевая смесь трудно обжигается.  [14]

Жидкие стекла характеризуются силикатным модулем, выражающим молярное соотношение диоксида кремния и щелочного оксида, и плотностью, определяющей концентрацию оксидов в растворе.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

силикатный модуль - это... Что такое силикатный модуль?


  • силикатный люминофор
  • силикатный расплав

Смотреть что такое "силикатный модуль" в других словарях:

  • Силикатный модуль — характеристика силикатов натрия и калия; выражается отношением грамм молекул SiO2 к числу грамм молекул Na2O(K2O). Силикатный модуль силиката натрия (%SiO2:%Na2O) • 1,0323; силиката калия (%SiO2:%K2O) 1,566. где 1,0323 и 1,566 соответственно… …   Энциклопедический словарь по металлургии

  • СИЛИКАТНЫЙ МОДУЛЬ — характеристика силикатов натрия и калия; выражается отношением грамм молекул SiO2 к числу грамм молекул Na2O(K2O). Силикатный модуль силиката натрия (%SiO2: %Na2O)•1,0323; силиката калия (%SiO2:%K2O)•1,566, где 1,0323 и 1,566… …   Металлургический словарь

  • силикатный модуль — silikatinis modulis statusas T sritis chemija apibrėžtis SiO₂ ir Fe₂O₃(Al₂O₃) kiekių santykis cemente. atitikmenys: angl. silica modulus rus. силикатный модуль …   Chemijos terminų aiškinamasis žodynas

  • силикатный модуль — кремнезёмный модуль …   Cловарь химических синонимов I

  • модуль силикатный — Модуль 2., характеризующий портландцементную сырьевую смесь и выражаемый массовым отношением содержания окиси кремния к суммарному содержанию окиси алюминия и окиси железа [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя… …   Справочник технического переводчика

  • МОДУЛЬ ЖИДКОГО СТЕКЛА — смотри Силикатный модуль …   Металлургический словарь

  • Модуль силикатный цементно-сырьевой — (п) отношение содержания кремнезема Si02 к сумме содержания оксидов алюминия и железа Al203+Fe203, %. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Свойства цемента Рубрики… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • МОДУЛЬ СИЛИКАТНЫЙ — модуль 2., характеризующий портландцементную сырьевую смесь и выражаемый массовым отношением содержания окиси кремния к суммарному содержанию окиси алюминия и окиси железа (Болгарский язык; Български) силикатен модул (Чешский язык; Čeština)… …   Строительный словарь

  • кремнезёмный модуль — силикатный модуль …   Cловарь химических синонимов I

  • определение — 2.7 определение: Процесс выполнения серии операций, регламентированных в документе на метод испытаний, в результате выполнения которых получают единичное значение. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Жидкое стекло — Жидкое стекло  водный щелочной раствор силикатов натрия Na2O(SiO2)n и (или) калия K2O(SiO2)n[1]. Реже в качестве жидкого стекла используют литиевые силикаты, например, в электродном покрытии. Содержание 1 Получение 2 …   Википедия

dic.academic.ru

Силикатный модуль - это... Что такое Силикатный модуль?


Силикатный модуль
— характеристика силикатов натрия и калия; выражается отношением грамм-молекул SiO2 к числу грамм-молекул Na2O(K2O). Силикатный модуль силиката натрия — (%SiO2:%Na2O) • 1,0323; силиката калия — (%SiO2:%K2O) — 1,566. где 1,0323 и 1,566 — соответственно отношение молекулярной массы Na2O(K2O) к молекулярной массе SiO2. ГОСТ 13078—81.

Энциклопедический словарь по металлургии. — М.: Интермет Инжиниринг. Главный редактор Н.П. Лякишев. 2000.

  • Силикат натрия
  • silicates

Смотреть что такое "Силикатный модуль" в других словарях:

  • СИЛИКАТНЫЙ МОДУЛЬ — характеристика силикатов натрия и калия; выражается отношением грамм молекул SiO2 к числу грамм молекул Na2O(K2O). Силикатный модуль силиката натрия (%SiO2: %Na2O)•1,0323; силиката калия (%SiO2:%K2O)•1,566, где 1,0323 и 1,566… …   Металлургический словарь

  • силикатный модуль — silikatinis modulis statusas T sritis chemija apibrėžtis SiO₂ ir Fe₂O₃(Al₂O₃) kiekių santykis cemente. atitikmenys: angl. silica modulus rus. силикатный модуль …   Chemijos terminų aiškinamasis žodynas

  • силикатный модуль — кремнезёмный модуль …   Cловарь химических синонимов I

  • модуль силикатный — Модуль 2., характеризующий портландцементную сырьевую смесь и выражаемый массовым отношением содержания окиси кремния к суммарному содержанию окиси алюминия и окиси железа [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя… …   Справочник технического переводчика

  • МОДУЛЬ ЖИДКОГО СТЕКЛА — смотри Силикатный модуль …   Металлургический словарь

  • Модуль силикатный цементно-сырьевой — (п) отношение содержания кремнезема Si02 к сумме содержания оксидов алюминия и железа Al203+Fe203, %. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Свойства цемента Рубрики… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • МОДУЛЬ СИЛИКАТНЫЙ — модуль 2., характеризующий портландцементную сырьевую смесь и выражаемый массовым отношением содержания окиси кремния к суммарному содержанию окиси алюминия и окиси железа (Болгарский язык; Български) силикатен модул (Чешский язык; Čeština)… …   Строительный словарь

  • кремнезёмный модуль — силикатный модуль …   Cловарь химических синонимов I

  • определение — 2.7 определение: Процесс выполнения серии операций, регламентированных в документе на метод испытаний, в результате выполнения которых получают единичное значение. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Жидкое стекло — Жидкое стекло  водный щелочной раствор силикатов натрия Na2O(SiO2)n и (или) калия K2O(SiO2)n[1]. Реже в качестве жидкого стекла используют литиевые силикаты, например, в электродном покрытии. Содержание 1 Получение 2 …   Википедия

metallurgicheskiy.academic.ru

Определение силикатного модуля жидкого стекла Силикатный

Documents войти Загрузить ×
  1. Бизнес
  2. Менеджмент
  3. Управление проектами
advertisement advertisement
Related documents
Часть 1
Контрольная работа №3.
Внеклассное мероприятие по химии- ИГРА «ЗВЁЗДНЫЙ ЧАС» Цели мероприятия:
Вариант № 3 Тесты в форме...
Задания Всероссийского интернет
Контрольная работа по химии для учащихся 8 класса,
Abstract1_Fedotov
8 класс химия
Актуализация опорных знаний.
Соединения химических элементов
Скачать advertisement StudyDoc © 2018 DMCA / GDPR Пожаловаться

studydoc.ru

Жидкое стекло — Википедия

Материал из Википедии — свободной энциклопедии

Жи́дкое стекло́ — водный щелочной раствор силикатов натрия Na2O(SiO2)n и (или) калия K2O(SiO2)n[1]. Реже в качестве жидкого стекла используют силикаты лития, например, в электродном покрытии.

Жидкое стекло также широко известно как силикатный клей (торговое название).

История

Впервые жидкое стекло получил в 1818 году немецкий химик и минеролог Ян Непомук фон Фукс действием щелочей на кремниевую кислоту.

В настоящее время жидкое стекло получают обработкой в автоклаве кремнезёмсодержащего сырья концентрированными растворами гидроксида натрия или сплавлением кварцевого песка с содой. Известны также способы получения жидкого стекла, основанные на прямом растворении кремнистого сырья (опоки, трепелы, диатомиты и другие) в растворах щелочей при атмосферном давлении и относительно невысокой температуре (температура кипения раствора щелочи).

Характеристикой химического состава жидкого стекла является силикатный модуль. Модуль показывает отношение содержащегося в жидком стекле оксида кремния к оксиду натрия или калия и характеризует выход кремнезёма в раствор. По величине силикатного модуля о качестве жидкого стекла не судят, но в некоторых технологических прописях присутствуют указания к использованию конкретного модуля, когда конечный продукт напрямую зависит от количественного соотношения данных оксидов.

Видео по теме

Свойства

Жидкое стекло растворимо в воде, вследствие гидролиза этот раствор имеет щелочную реакцию. В зависимости от концентрации водных растворов значение рН равно 10-13. Плотность и вязкость растворов жидкого стекла зависят от концентрации раствора, температуры и соотношения кремнекислоты к щелочи. Натриевое жидкое стекло (силикатная глыба) разжижается при температуре 590…670 °C. Отвердевшая плёнка жидкого стекла растворима в воде. Регидролиз снижается при реакции с ионами металлов (образуются нерастворимые силикаты), или при нейтрализации кислотой (образуется нерастворимый гель кремнекислоты). При химической реакции жидкого стекла с амфотерной металлической крошкой, базовыми оксидами металлов, алюминатами, цинкатами и плюмбатами образуется труднорастворимые силикаты в смеси с кремниевым гелем. Отвердевшая плёнка под воздействием влаги и углекислого газа воздуха теряет свои свойства и образуется белый осадок щелочного карбоната.

Растворы жидкого стекла несовместимы с органическими веществами (кроме сахара, алкоголя и мочевины), с жидкими искусственными смолистыми дисперсиями происходит коагуляция как органической коллоидной системы, так и силикатного раствора. Растворы спиртов, альдегидов, кетонов, аммиака и солевые растворы производят эффект «высаливания»[2].

Применение

Областей применения жидкого стекла очень много. Его, в частности, применяют для изготовления кислотоупорного и гидроупорного цемента и бетона, для пропитывания тканей, приготовления огнеупорных красок и покрытий по дереву (антипирены), укрепления слабых грунтов, в качестве клея для склеивания целлюлозных материалов, в производстве электродов, при очистке растительного и машинного масла и др.

В сочетании со спиртом и самым мелким песком используют для создания «керамических» или оболочковых форм, в которые после прокаливания до 1000 °C отливают металлические изделия.

Жидкое стекло используется в буровых растворах, образуя нерастворимые соединения (так называемая «силикатизация» поверхности).

Примечания

Ссылки

wiki2.red

Способ получения высокомодульного жидкого стекла

Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов. Способ получения высокомодульного жидкого стекла включает приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении. В качестве кремнеземсодержащего вещества используют регенерированный фильтровальный отработанный порошок кизельгура, который измельчают в шаровой мельнице до размеров частиц (0,1-10)·10-6 м. Полученный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м отсеивают. Готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе гидроксида натрия 400-450 кг/т порошка в течение 15-30 мин. Получают жидкое стекло с модулем 2,5-3,0. При непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения заданного модуля не менее 4,5. Изобретение позволяет получить высокомодульное жидкое стекло высокого качества с низким содержанием примесей: Al2O3, Fe2O3, СаО и водонерастворимых веществ менее 0,20 мас.%. 3 пр.

 

Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов и может быть использовано при изготовлении теплоизоляционных и других изделий.

Химический состав натриевого растворимого стекла может быть выражен формулой:

Na2O×nSiO2+mH2O, где Na2O - гидроксид натрия, SiO2 - диоксид кремния.

Из нее видно, что оно (растворимое стекло) не имеет постоянного состава, и соотношение между отдельными составными частями может меняться. Отношение SiO2:Na2O=M, показывающее, сколько кремнекислоты приходится на единицу оксида натрия, называется силикатным модулем стекла. Чаще всего производится и встречается стекло с модулем 2.6-2.8, но очень важно получать жидкое стекло с более высоким модулем.

К высокомодульным относятся водные силикатные системы с модулем примерно выше 4. Это те силикатные системы, которые нельзя получить растворением в воде безводного силикатного стекла соответствующего модуля или растворением кремнезема в щелочах. Высокомодульные щелочные силикатные системы условно делят на две группы. Системы с силикатным модулем выше 25 обычно называют золями. Это чисто коллоидные системы с частицами кремнезема определенных размеров, стабилизированные щелочами. Несмотря на полимерное происхождение, о кремнеземе уже говорят не как о полимере, а как о частицах кремнезема размерами от 2-3 нм и выше. Другая группа образует так называемые полисиликаты с модулем от 4 до 25 и является, по существу, переходной от истинных растворов к коллоидным системам. Известно, что растворы щелочных силикатов с модулем даже ниже 2 содержат сложные полисиликатные анионы. Это тем более справедливо для высокомодульных систем, где доля полисиликатных ионов высока. Поэтому название «полисиликатные растворы», не отражая нового их качества, является условным. Полисиликатные растворы натрия или калия характерны неустойчивостью по отношению к гелеобразованию или коагуляции. Устойчивость таких систем, помимо других факторов, зависит от концентрации кремнезема в системе. Время жизни полисиликатных растворов может быть настолько мало, что вынуждает использовать их по месту производства или производить на месте потребления.

Применение водорастворимых силикатов основано главным образом на использовании свойств кремнеземной составляющей. Технологические свойства водных растворов, богатых кремнеземом, существенно отличаются от свойств низкомодульных систем, так же как и свойства композиций, образующихся в результате высыхания или твердения полисиликатных растворов и золей. Поэтому высокомодульные системы имеют свои особые области применения, расширяющие возможности использования водных щелочных силикатов в хозяйственной деятельности.

Известен способ (Патент РФ №2220906) получения жидкого стекла путем взаимодействия кремнеземсодержащего вещества с водным раствором гидроксида натрия при температуре 200-250°C. В качестве исходного кремнеземсодержащего вещества используют кварцевый песок фракции 0,1-0,315 мм, содержащий 95,5-98,15 масс.% диоксида кремния. Недостатком способа является использование высокой температуры и, следовательно, высокие энергозатраты, а также трудности получения высокомодульного жидкого стекла, в связи с невозможностью уменьшения соотношения раствора гидроксида натрия к кремнеземсодержащему веществу без существенного повышения температуры нагрева смесей.

Известен способ получения жидкого стекла (Патент РФ RU 2285665) путем гидротермальной обработки кремнеземсодержащего вещества с водным раствором гидроксида натрия. В качестве исходного кремнеземсодержащего вещества используют остаток, полученный после обработки серпентинита (серпентиниты - породы, состоящие в основном из минерала серпентина состава 3MgO·2SiO2·2H2O, затем магнетита, хромита и остатков первичных минералов [Словарь по геологии нефти. Гостоптехиздат, Ленинград, 1958 г., с.600] соляной кислотой - аморфный диоксид кремния. Полученную суспензию фильтруют для удаления не прореагировавшего остатка, раствор концентрируют для получения жидкого стекла с заданными модулем и плотностью. Недостатком данного способа является использование исходного материала (серпентинита) сложного химического состава с невысоким процентным содержанием диоксида кремния, неширокое распространение месторождений серпентинита, необходимостью применения соляной кислоты и получение жидкого стекла невысокого модуля.

Известен также способ получения высокомодульного жидкого стекла для производства строительных материалов (патент РФ №2238242 C2) (прототип), включающий приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку. В качестве кремнеземсодержащего аморфного вещества используют кремнезем, который является отходом производства кристаллического кремния. В качестве добавки используют «карамель», которая является промежуточным продуктом сульфатно-целлюлозной переработки древесины. Соотношение твердой и жидкой фаз составляет 1:0,97-1,03 при расходе едкого натра (в пересчете Na2O) 76,2-81,4 кг/м3, а гидротермальную обработку проводят при температуре 85-95°C и атмосферном давлении в течение 10-15 мин.

Недостатком этого способа является трудность отделения чисто аморфного кремнеземсодержащего вещества в виде отходов при производстве кристаллического кремния.

Техническим результатом изобретения является расширение сырьевой базы для получения высокомодульного жидкого стекла за счет использования в качестве кремнеземсодержащего аморфного вещества регенерированного отработанного фильтровального порошка кизельгура, снижение себестоимости производства жидкого стекла при одновременном решении вопросов улучшения экологии окружающей среды.

Технический результат достигается тем, что в способе получения высокомодульного жидкого стекла, включающем приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении, согласно изобретению, предварительно дозируют исходные ингредиенты, для приготовления суспензии в качестве кремнеземсодержащего вещества используют регенерированный отработанный фильтровальный порошок кизельгура, содержащего (87÷92)% аморфного диоксида кремния, который после использования в производстве растительного масла регенерируют путем прокаливания порошка при температуре 550-650°C с целью полного удаления органических остатков и свободной влаги, измельчают в шаровой мельнице регенерированный порошок кизельгура до размера частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка в течение 15-30 мин, получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения заданного модуля не менее 4,5.

Способ состоит в следующем. Исходные компоненты (щелочь, воду и микрокремнезем) дозируют в заданных количествах, перемешивают до образования суспензии в течение 2-3 минут и помещают в емкость (реактор), снабженную механической мешалкой и электрообогревом. Содержимое реактора нагревают до температуры 70-75°C и отключают от сети. За счет экзотермии протекающих химических реакций, температура суспензии повышается до 85-95°C. Время варки жидкого стекла с низким силикатным модулем 2,5-3,0 при атмосферном давлении составляет 15-30 минут; затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5.

Аморфный кремнезем (кизельгур) распространен в природе гораздо меньше, чем кристаллический. Он образовался из SiO2, входившего в состав панцирей организмов диатомовых водорослей и некоторых инфузорий. Кизельгур обладает большой пористостью и малой плотностью. Высокая пористость кизельгура связана с особенностями его строения, состоящего из крошечных связанных между собой пор или ячеек, занимающих вплоть до 85% объема материала. Кизельгур используется в процессе производства растительных масел для их очистки от восков. После обезжиривания отработанного фильтровального порошка остаточное содержание жиров в нем составляет до 10% при влажности до 60%. Удаление такого порошка на промышленные свалки существенно ухудшает экологическую обстановку. Поэтому очень важно проводить глубокую регенерацию отработанного фильтровального порошка путем его прокаливания при температуре 550-650°C с целью полного удаления органических остатков и свободной влаги. В результате регенерированный порошок не содержит окисленных жировых остатков и может использоваться в производстве жидкого стекла. Для этого в шаровой мельнице измельчают регенерированный порошок кизельгура до размером частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, проводят гидротермальную обработку, разогревают до температуры 85-95°C и в течение 15-30 мин получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5. Получаемое при этом высокомодульное жидкое натриевое стекло имеет широкий диапазон плотности и модульного числа. Этим расширяется область безотходного производства растительного масла и применения кизельгура.

Проведенный заявителем анализ уровня техники по патентным и научно-техническим источникам информации позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем признакам прототипа, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения высокомодульного жидкого стекла, изложенных в формуле изобретения.

Сущность предлагаемого способа заключается в следующей совокупности существенных признаков: для получения высокомодульного жидкого стекла в качестве кремнеземсодержащего вещества используют измельченный аморфный диоксид кремния, полученный после регенерации отработанного при производстве растительных масел порошка кизельгура. Отличительными признаками также является то, что в шаровой мельнице измельчают регенерированный порошок кизельгура до размером частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, в течение 15-30 мин разогревают при температуре 85-95°C, проводят гидротермальную обработку, получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5. Предложенная совокупность признаков соответствует условию «новизна». Предложенный способ промышленно применим. Ниже приведены примеры осуществления данного способа.

Пример 1. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,72 SiO2, 3,34 MgO, 2,86 CaO, 1,86 Fe2O3, 0,22 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 175,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 330 см3 раствора гидроксида натрия концентрацией 230 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 95°C при перемешивании пульпы в течение 25 минут. Полученное жидкое стекло с плотностью 1,305 г/см3 и объемом 480 см3, содержащее, % мас.: 29,70 SiO2; 9,88 Na2O; 0,17 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 3,01. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 135 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас.: 54,60 SiO2; 8,78 Na2O; 0,18 водонерастворимых веществ, имеющее модуль 6,22.

Пример 2. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,72 SiO2, 3,34 MgO, 2,86 CaO, 1,86 Fe2O3, 0,22 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 195,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 360 см3 раствора гидроксида натрия концентрацией 250 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 93°C при перемешивании пульпы в течение 30 минут. Полученное жидкое стекло с плотностью 1,312 г/см3 и объемом 510 см3, содержащее, % мас.: 29,72 SiO2; 9,86 Na2O; 0,19 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 3,01. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 162 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас.: 54,80 SiO2; 8,63 Na2O; 0,16 водонерастворимых веществ, имеющее модуль 6,35.

Пример 3. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,44 SiO2, 3,34 MgO, 2,96 CaO, 1,90 Fe2O3, 0,21 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 180,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 340 см3 раствора гидроксида натрия концентрацией 210 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 97°C при перемешивании пульпы в течение 25 минут. Полученное жидкое стекло с плотностью 1,312 г/см3 и объемом 444 см3, содержащее, % мас.: 28,78 SiO2; 9,98 Na2O; 0,19 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 2,88. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 135 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас: 53,40 SiO2; 8,72 Na2O; 0,18 водонерастворимых веществ, имеющее модуль 6,12.

Таким образом, предлагаемый способ получения жидкого стекла позволяет получать высокомодульное натриевое жидкое стекло высокого качества с заданными силикатным модулем и плотностью, а также с низким содержанием примесей (Al2O3, Fe2O3, СаО) и водонерастворимых веществ (<0,20 мас. %) и соответствует требованиям «Стекло высокомодульное натриевое жидкое».

В производстве строительных материалов высокомодульное жидкое стекло, приготовленное предлагаемым способом, используют полностью, не отделяя от осадка. Осадок в виде тонкодисперсных частиц выполняет роль микронаполнителя, способствуя повышению механической прочности изделий. Таким образом, предлагаемый двухстадийный способ получения жидкого стекла является реально осуществимым методом гидротермального синтеза конечного продукта с заданными свойствами при предельно низких режимных параметрах реакции - давлении, температуре и времени - из регенерированного отработанного фильтровального диатомитового порошка кизельгура.

Способ получения высокомодульного жидкого стекла, включающий приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении, отличающийся тем, что предварительно дозируют исходные ингредиенты, при этом в качестве кремнеземсодержащего аморфного вещества используют регенерированный отработанный фильтровальный порошок кизельгура, который измельчают в шаровой мельнице до размеров частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, проводят гидротермальную обработку в течение 15-30 мин и получают промежуточный продукт - жидкое стекло с низким модулем 2,5-3,0, затем при непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения заданного модуля не менее 4,5.

www.findpatent.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *