Схема реверсивный магнитный пускатель: подключение и запуск, настройка реверса

220 В, 380 В, с кнопками, с реверсом

Питание на электродвигатели лучше подавать через магнитные пускатели (называются еще контакторы). Во-первых, они обеспечивают защиту от пусковых токов. Во-вторых, нормальная схема подключения магнитного пускателя содержат органы управления (кнопки) и защиты (тепловые реле, цепи самоподхвата, электрической блокировки и т.п.). С помощью этих устройств можно запустить двигатель в обратном направлении (реверс) нажатием соответствующей кнопки. Все это организуется при помощи схем, причем они не очень сложны и их вполне можно собрать самостоятельно.

Содержание статьи

  • 1 Назначение и устройство
    • 1.1 Состав и назначение частей
    • 1.2 Принцип работы
  • 2 Схема подключения пускателя с катушкой 220 В
    • 2.1 Самая простая схема
    • 2.2 Схема с кнопками «Пуск» и «Стоп»
  • 3 Подключение к трехфазной сети через контактор с катушкой на 220 В
  • 4 Схема подключения двигателя с реверсным ходом

Назначение и устройство

Магнитные пускатели встраиваются в силовые сети для подачи и отключения питания. Работать могут с переменным или постоянным напряжением. Работа основана на явлении электромагнитной индукции, имеются рабочие (через них подается питание) и вспомогательные (сигнальные) контакты. Для удобства эксплуатации в схемы включения магнитных пускателей добавляют кнопки Стоп, Пуск, Вперед, Назад.

Так выглядит магнитный пускатель

Магнитные пускатели могут быть двух видов:

  •  С нормально замкнутыми контактами. Питание на нагрузку подается постоянно, отключается только когда срабатывает пускатель.
  • С нормально разомкнутыми контактами. Питание подается только в то время, когда пускатель работает.

Более широко применяется второй тип — с нормально разомкнутыми контактами. Ведь в основном, устройства должны работать небольшой промежуток времени, остальное время находится в покое. Потому далее рассмотрим принцип работы магнитного пускателя с нормально разомкнутыми контактами.

Состав и назначение частей

Основа магнитного пускателя — катушка индуктивности и магнитопровод. Магнитопровод разделен на две части. Обе они имеют вид буквы «Ш», установлены в зеркальном отражении. Нижняя часть неподвижная, ее средняя часть является сердечником катушки индуктивности.  Параметры магнитного пускателя (максимальное напряжение, с которым он может работать) зависят от катушки индуктивности. Могут быть пускатели малых номиналов — на 12 В, 24 В, 110 В, а наиболее распространенные — на 220 В и на 380 В.

Устройство магнитного пускателя (контактора)

Верхняя часть магнитопровода — подвижная, на ней закреплены подвижные контакты. К ним подключается нагрузка. Неподвижные контакты закреплены на корпусе пускателя, на них подается питающее напряжение. В исходном состоянии контакты разомкнуты (за счет силы упругости пружины, которая удерживает верхнюю часть магнитопровода), питание на нагрузку не подается.

Принцип работы

В нормальном состоянии пружина приподнимает верхнюю часть магнитопровода, контакты разомкнуты. При подачи питания на магнитный пускатель, ток, протекающий через катушку индуктивности, генерирует электромагнитное поле. Сжимая пружину, оно притягивает подвижную часть магнитопровода, контакты замыкаются (на рисунке картинка справа). Через замкнутые контакты питание подается на нагрузку, она находится в работе.

Принцип работы магнитного пускателя (контактора)

При отключении питания магнитного пускателя электромагнитное поле пропадает, пружина выталкивает верхнюю часть магнитопровода вверх, контакты размыкаются, питание на нагрузку не подается.

Подавать через магнитный пускатель можно переменное или постоянное напряжение. Важна только его величина — оно не должно превышать указанный производителем номинал. Для переменного напряжения максимум — 600 В, для постоянного — 440 В.

Схема подключения пускателя с катушкой 220 В

В любой схеме подключения магнитного пускателя есть две цепи. Одна силовая, через которую подается питание. Вторая — сигнальная. При помощи этой цепи происходит управление работой устройства. Рассматривать их надо отдельно — проще понять логику.

В верхней части корпуса магнитного пускателя находятся контакты, к которым подключается питание для этого устройства. Обычное обозначение — A1 и A2. Если катушка на 220 В, сюда подается 220 В. Куда подключить «ноль» и «фазу» — без разницы. Но чаще «фазу» подают на А2, так как тут этот вывод обычно продублирован в нижней части корпуса и довольно часто подключать сюда удобнее.

Подключение питания к магнитному пускателю

Ниже на корпусе расположены несколько контактов, подписанных L1, L2, L3. Сюда подключается источник питания для нагрузки. Тип его не важен (постоянное или переменное), важно чтобы номинал не был выше чем 220 В. Таким образом через пускатель с катушкой на 220 В можно подавать напряжение от аккумулятора, ветрогенератора и т.д. Снимается оно с контактов T1, T2, T3.

Назначение гнезд магнитного пускателя

Самая простая схема

Если к контактам A1 — A2 подключить сетевой шнур (цепь управления), подать на L1 и L3 напряжение 12 В с аккумулятора, а к выводам  T1 и T3 — осветительные приборы (силовая цепь), получим схему освещения, работающую от 12 В. Это лишь один из вариантов использования магнитного пускателя.

Но чаще, все-таки эти устройства используют для подачи питания на элетромоторы. В этом случае к L1 и L3 подключается тоже 220 В (и снимаются с T1 и T3 все те же 220 В).

Простейшая схема подключения магнитного пускателя — без кнопок

Недостаток этой схемы очевиден: чтобы выключить и включить питание, придется манипулировать вилкой — вынимать/вставлять ее в розетку. Улучшить ситуацию можно, если перед пускателем установить автомат и включать/выключать подачу питания на цепь правления с его помощью. Второй вариант — в цепь управления добавить кнопки — Пуск и Стоп.

Схема с кнопками «Пуск» и «Стоп»

При подключении через кнопки изменяется только цепь управления. Силовая остается без изменения. Вся схема подключения магнитного пускателя изменяется незначительно.

Кнопки могут быть в отдельном корпусе, могут  в одном. Во втором варианте устройство называется «кнопочный пост». Каждая кнопка имеет два входа и два выхода. Кнопка «пуск» имеет нормально разомкнутые контакты (питание подается когда она нажата), «стоп» — нормально замкнутые (при нажатии цепь обрывается).

Схема подключения магнитного пускателя с кнопками «пуск» и «стоп»

Встраиваются кнопки перед магнитным пускателем последовательно. Сначала — «пуск», затем — «стоп». Очевидно, что при такой схеме подключения магнитного пускателя, работать нагрузка будет только пока удерживается кнопка «пуск». Как только ее отпустят, питание пропадет. Собственно, в данном варианте кнопка «стоп» лишняя. Это не тот режим, который требуется в большинстве случаев. Необходимо, чтобы после отпускании пусковой кнопки питание продолжало поступать до тех пор, пока цепь не будет разорвана нажатием кнопки «стоп».

Схема подключения магнитного пускателя с цепью самоподхвата — после замыкания контакта шунтирующего кнопку «Пуск», катушка становиться на самоподпитку

Данный алгоритм работы реализуется с помощью вспомогательных контактов пускателя NO13 и NO14. Они подключаются параллельно с пусковой кнопкой. В этом случае все работает как надо: после отпускания кнопки «пуск» питание идет через вспомогательные контакты. Останавливают работу нагрузки нажав «стоп, схема возвращается в рабочее состояние.

Подключение к трехфазной сети через контактор с катушкой на 220 В

Через стандартный магнитный пускатель, работающий от 220 В, можно подключить трехфазное питание. Такая схема подключения магнитного пускателя используется с асинхронными двигателями. В цепи управления отличий нет. К контактам A1 и A2 подключается одна из фаз и «ноль». Фазный провод идет через кнопки «пуск» и «стоп», также ставится перемычка на  NO13 и NO14.

Как подключить асинхронный двигатель на 380 В через контактор с катушкой на 220 В

В силовой цепи отличия незначительные. Все три фазы подаются на L1, L2, L3, к выходам T1, T2, T3 подключается трехфазная нагрузка. В случае с мотором в схему часто добавляют тепловое реле (P), которое не допустит перегрев двигателя. Тепловое реле ставят перед электродвигателем. Оно контролирует температуру двух фаз (ставят на самые нагруженные фазы, третья), размыкая цепь питания при достижении критических температур. Эта схема подключения магнитного пускателя используется часто, опробована много раз. Порядок сборки смотрите в следующем видео.

Схема подключения двигателя с реверсным ходом

Для работы некоторых устройств необходимо вращение двигателя в обе стороны. Смена направления вращения происходит при переброске фаз (надо поменять местами две произвольные фазы). В цепи управления также необходим кнопочный пост (или отдельные кнопки) «стоп», «вперед», «назад».

Схема подключения магнитного пускателя для реверса двигателя собирается на двух одинаковых устройствах. Желательно найти такие, на которых присутствует пара нормальнозамкнутых контактов. Устройства подключаются параллельно — для обратного вращения двигателя, на одном из пускателей фазы меняются местами. Выходы обоих подаются на нагрузку.

Сигнальные цепи несколько сложнее. Кнопка «стоп» — общая. Поле нее стоит кнопка «вперед», которая подключается к одному из пускателей, «назад» — ко второму. Каждая из кнопок должна иметь цепи шунтирования («самоподхвата»)  — чтобы не было необходимости все время работы держать нажатой одну из кнопок (устанавливаются перемычки на NO13 и NO14 на каждом из пускателей).

Схема подключения двигателя с реверсным ходом с использованием магнитного пускателя

Чтобы избежать возможности подачи питания через обе кнопки, реализуется электрическая блокировка. Для этого после кнопки «вперед» питание подается на нормально замкнутые контакты второго контактора. Аналогично подключается второй контактор — через нормально замкнутые контакты первого.

Если в магнитном пускателе нет нормально замкнутых контактов, их можно добавить, установив приставку. Приставки, при установке, соединяются с основным блоком и их контакты работают одновременно с другими. То есть, пока питание подается через кнопку «вперед», разомкнувшийся нормально замкнутый контакт не даст включить обратный ход. Чтобы поменять направление, нажимают кнопку «стоп», после чего можно включать реверс, нажав «назад». Обратное  переключение происходит аналогично — через «стоп».

принципы работы и структурные особенности

Всем нам известна пара слов – «аверс и реверс». Эти лексемы — латинского происхождения. Имеют семантику, противоположную друг другу, означая: «прямой и обратный», «лицевая сторона и оборотная сторона» и так далее. Эти понятия часто используют в нумизматике, но физика и математика не являются в этом плане исключением. Например, существует реверсивный пускатель, который просто незаменим в электромеханике, ему и будет посвящена данная статья. Но прежде чем разбираться, как устроен реверсивный пускатель, стоит понять принципы его работы. Для этого рекомендуем обратить внимание на ключевые понятия, связанные с магнитным пускателем.

Стандартный магнитный пускатель – это типичное электромеханическое устройство, которое нацелено на работу с трехфазными электродвигателями. Его целевое назначение – обеспечение непрерывной и безопасной работы двигателя, включая контроль отключения питания агрегата, если будут возникать внештатные или аварийные ситуации.

Используемая схема реверсивного пускателя позволяет успешно его применять для электрокотлов, тэнов, электродвигателей, то есть когда необходимо проявить функционал коммутационного аппарата или осуществить автоматическое подключение или отключение от электрического источника.

Определим основные задачи магнитного пускателя, а они следующие:

  • дистанционное управление агрегатами. Например, асинхронным двигателем. Созданная схема реверсивного пускателя с кнопками позволяет менять направление вращения вала.
  • контроль нагрузок агрегата. Применятся для разгрузки маломощных контактов. Даже есть возможность подключить магнитный пускатель к домашнему выключателю, подготавливая его к работе с большим количеством лампочек.

Стандартный магнитный пускатель состоит из следующих основополагающих элементов:

  • внешнего защитного кожуха;
  • основного инструмента управления;
  • специального контактора;
  • тепловогореле.

Конструктивные особенности реверсивного магнитного пускателя простые, но достаточно эффективные и надежные. Все агрегаты усовершенствованы и модифицированы настолько, что их компактность и функциональность переоценить просто нельзя. Они легкие и удобные в применении, особенно те виды оборудования, которые оснащены специальными тепловыми реле, отвечающими за аварийное отключение. С такой защитой работа выполняется бесперебойно и без отклонения от норм, так как просто не может произойти обрыва фаз, и следовательно, аварийная ситуация и долгий простой оборудования практически исключаются.

Имеющаяся в устройстве катушка отвечает за необходимую коммутацию всех силовых контактов и провоцирует замыкание силовой цепи, а когда выполняется отключение питания, то происходит, соответственно, размыкание созданной цепи. Существующая схема подключения реверсивного пускателя включает и блокировочные контакты, которые служат для управления силовыми элементами цепи, не исключая контроль. Причем все имеющиеся в схеме контакты могут находиться в двух состояниях: нормально-разомкнутом и нормально-замкнутом.

Пришло время более детально обсудить технические особенностии узнать, что же это такое реверсивный пускатель трехфазный. Как уже становится ясно, существует два вида магнитных пускателей. Первый – прямой или нереверсивный. Второй – реверсивный, о котором дальше пойдет в речь в статье.

Обычно стандартные реверсивные пускатели оснащаются двумя магнитными пускателями, собранными в одном корпусе и соединенными между собой. Если присмотреться к схеме, то можно рассмотреть место крепления и соединения на общем основании двух этих магнитных элементов.

Ну а теперь о главной особенности реверсивного пускателя – может работать только один из элементов, то если либо первый, либо второй. Такая переменность необходима, чтобы исключить межфазное замыкание.

По принятому режиму работы, да и по схеме реверсивного магнитного пускателя запуск происходит через замкнутые блокировочные контакты, которые обеспечивают попеременное, то есть неодновременное включение реверсивных и нереверсивных режимов. При этом реализуется главенствующая задача реверсивного пускателя – смена направлений вращения того или иного электрического двигателя, иными словами: все взаимосвязано, если изменился порядок чередования фаз, то, соответственно, выполняются преобразования имеющегося у оборудования ротора, меняется направление вращения.

Сфера применения реверсивных магнитных пускателей расширена. Например, при помощи бесконтактного реверсивного пускателя не обходится работа асинхронных двигателей, которые применяются в различных станках и мощных насосах.

Нередки случаи, что выполняется подключение реверсивного пускателя для расширенных систем вентиляции, для надежности запорной арматуры. Всегда ценится специалистами «беспроблемное оборудование», управлять которым несложно, а эксплуатация длительная и надежная. К современным бонусам относят дистанционное управление – это достаточно выгодная опция, которая может быть обеспечена применением магнитного пускателя. Многие виды надежных электрических замков используют специальные пускатели для управления, а также выполняется внедрение такого незаменимого электромеханического элемента в систему отопления, работу лифтов.

Представим, что появилась необходимость разобраться в особенностях устройства, в котором электрический двигатель способен работать в двух направления – прямом и обратном, то есть реверсивном. И если такая особенность очевидна, значит, в схеме агрегата предусмотрено наличиемагнитного реверсивного пускателя. Его использование не такое и простое, необходимо продумать режим работы, чтобы не допустить опасное замыкание фаз.

В схеме обязательно можно найти обозначение дополнительной цепи управления и кнопки запуска реверса. В виду такой продуманности, созданная схема отличается надежностью, так как защищена от короткого замыкания.

А за счет чего проходит реверс? Это легко объяснимо. — За счет переворачивания местами двух имеющихся в системе фаз: когда одна прекращает работу, а другая, наоборот, запускается. Для более надежной защиты, обязательно в схеме продумана блокировка, отвечающая за точную и своевременную остановку одного из пускателей, первого или второго. Все зависит от поставленных задач. Напомним, что в случае срабатывания двух пускателей мгновенно произойдет короткое замыкание на силовых контактах агрегата.

Отметим, что реверсивное движение запускается не мгновенно, так как требуется срабатывание нескольких важных пунктов. Во-первых, обязательно рекомендуется остановить работу двигателя, нажать кнопку «Стоп». Во-вторых, надо обратить внимание на состояние катушки, снять с нее напряжение, иначе процесс реверсивного запуска даст сбой. Если все сделано правильно, то пускатель вернется в исходное положение под действием пружины. Все, агрегат готов к реверсу. Нажимаем кнопку «Пуск», соответственно, подается нужное напряжение на катушку, значит, процесс запущен. С панели управления устройства можно считать информацию замыкании электрической цепи. А это значит, что в систему поступил ток, и он постепенно подается в катушку. Одновременно выполняется блокирование всех не вступивших в работу контактов. Этого требует безопасность.

Отметим, что в случае срабатывания теплового реле, произойдет остановка агрегата во избежание аварийной ситуации.

Таким образом, магнитный пускатель играет важную роль в работе двигателей. Свое место назначения также достойно занимаем и реверсивный пускатель, обеспечивая бесперебойную работу станков, тэнов, лифтов и другого электрического оборудования. Пускатели относятся в надежным и безопасным образцам, особенно если они дополнительно оснащены блокировочными системными механизмами. Они находятся внутри кожуха и не допускают срабатывание одновременно двух катушек, не доводя до замыкания фаз.

Обзор продуктов | Шнайдер Электрик

  • Жилой сектор и малый бизнес

  • Автоматизация и управление зданием

  • Низковольтные изделия и системы

  • Аккумулятор солнечной энергии и энергии

  • se.com/ww/en/work/products/access-to-energy/»>

    Доступ к энергии

  • Распределение среднего напряжения и автоматизация сети

  • Критическая мощность, охлаждение и стойки

  • Промышленная автоматизация и управление

Верхние диапазоны

Верхние диапазоны

Верхние диапазоны

Верхние диапазоны

Верхние диапазоны

Верхние диапазоны

Верхние диапазоны

Верхние диапазоны

  • Диапазоны: 77

  • Диапазоны: 57

  • Диапазоны: 39

  • Ассортимент: 24

    Откройте для себя широкий выбор кнопок, переключателей и сигнальных ламп для большинства промышленных применений. Ассортимент Harmony, доступный по всему миру в версиях из металла и пластика, отвечает вашим потребностям в надежной…

  • Диапазоны: 33

  • Диапазоны: 57

  • Диапазоны: 27

    Системы привода с регулируемой скоростью предлагают широкий спектр полностью протестированных и готовых к подключению решений для управления двигателем. Начиная от компактных предварительно спроектированных систем и заканчивая комплексными решениями, спроектированными по индивидуальному заказу…

  • Диапазоны: 34

    Являясь самой крупной продаваемой линейкой контакторов в мире, серия TeSys предлагает высокую надежность с длительным механическим и электрическим сроком службы, а также полную линейку принадлежностей для управления двигателем и нагрузкой…

Стартер NEMA, тип S, реверсивный, вертикальный, размер 1, 27A, 10 л.

с., Основной контент начинается здесь

Square D

Производитель: Schneider Electric

№ производителя: 8736SCO7V02S

UPC: 7854409

Артикул №: 181937

Schneider Electric

MFR #: 8736SCO7V02S

UPC: 7854409

Артикул #: 181937

Наличие

Местоположение Доступное количество
В наличии Доступно для заказа

$2602,28 каждый

Описание

Реверсивные магнитные пускатели NEMA типа S используются для пуска, останова и реверсирования двигателей переменного тока с короткозамкнутым ротором при полном напряжении. Реверсивные пускатели NEMA 8736 доступны в размерах NEMA от 00 до 7 и рассчитаны на ток до 810 ампер. Реверсивные пускатели NEMA состоят из двух контакторов 8502S NEMA, механически и электрически заблокированных, и реле перегрузки. Реверсивные пускатели размеров 0-5 доступны как в горизонтальном, так и в вертикальном исполнении. Этот реверсивный пускатель расположен вертикально. Этот 3-полюсный реверсивный пускатель NEMA размера 1 имеет номинальный ток 27 ампер. Этот трехфазный реверсивный пускатель NEMA размера 1 имеет мощность 7,5 л.с. при 200 и 230 В переменного тока и 10 л.с. при 460 и 575 В переменного тока. Этот реверсивный пускатель электродвигателя NEMA оснащен реле перегрузки из плавящегося сплава, в котором используются тепловые блоки типа B для определения условий перегрузки по току. Этот пускатель NEMA имеет максимальный SCCR (номинальный ток короткого замыкания) 5 кА в соответствии с UL508A, если он защищен соответствующим автоматическим выключателем или предохранителем. Пускатели электродвигателей типа S доступны со сменными катушками для различных напряжений. Этот пускатель имеет рабочую катушку 110/120 В переменного тока 50/60 Гц, подключенную для отдельного управления. Этот реверсивный пускатель NEMA представляет собой открытое устройство без корпуса. Этот стартер имеет высоту 11,52 дюйма, ширину 5,47 дюйма и глубину 5,31 дюйма. Для стартеров типа S предлагается широкий выбор принадлежностей. Реверсивные пускатели двигателей NEMA типа S внесены в список UL и сертифицированы CSA.

Технические характеристики

Каталожный номер 8736SCO7V02S
Производитель Шнайдер Электрик
Марка Квадрат D
Суббренд S
Описание гарантии Договорная гарантия: 18 месяцев
Страна происхождения Мексика
Сделано в США
Заявка ИСПОЛЬЗУЕТСЯ ДЛЯ РЕВЕРСИРОВАНИЯ ПРИ ПОЛНОМ НАПРЯЖЕНИИ, ЗАПУСКА И ОСТАНОВА ДВИГАТЕЛЕЙ ПЕРЕМЕННОГО ТОКА С КОРОБКОЙ Клеткой
Напряжение катушки 110 В перем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *