Самый крепкий металл на планете: ТОП-20 самых твердых металлов в мире

Самый твердый металл в мире.Топ-10 металлов о которых неизвестно

Наш мир полон удивительных фактов, которые интересны множеству людей. Не являются исключением и свойства различных металлов. Среди этих элементов, которых в мире насчитывается 94, есть самые пластичные и ковкие, есть также с высокой электропроводностью или с большим коэффициентом сопротивления. В этой статье речь пойдет о самых твердых металлах, а также об их уникальных свойствах.

Иридий

Первенство в перечне металлов, отличающихся наибольшей твердостью, занимает иридий. Его открыл в начале XIX века химик из Англии Смитсон Теннант. Иридий обладает следующими физическими свойствами:

  • имеет серебристо-белый цвет;
  • температура его плавления – 2466 оС;
  • температура кипения – 4428 оС;
  • сопротивление – 5,3·10−8Ом·м.

Поскольку иридий является твердейшим металлом на планете, он с трудом поддается обработке. Но его все же применяют в различных промышленных сферах. К примеру, из него изготавливаются небольшие шарики, которые используются в перьях для ручек. Из иридия изготавливают комплектующие к космическим ракетам, некоторые детали для автомобилей и другое.

Иридий

В природе встречается очень мало иридия. Находки этого металла являются своего рода свидетельством того, что в месте, где он был обнаружен, падали метеориты. Эти космические тела содержат значительное количество металла. Ученые полагают, что наша планета также богата иридием, но его залежи находятся ближе к ядру Земли.

Самый радиоактивный металл

Единственным металлом, который может использоваться в качестве топлива в ядерных реакторах, является уран. Многие люди считают его очень опасным из-за высокой радиоактивности. Однако, природный уран безопасен для здоровья человека, а опасность представляет его разновидность под названием U-235 — именно она используется в ядерных реакторах.

Уран-235 использовался при ядерной бомбардировке Хиросимы, в бомбе «Малыш»

Когда-то давно из природного урана даже изготавливали посуду. Например, осколки желтого стекла с содержанием урана были найдены на территории итальянского города Неаполь — по расчетам ученых, стекло было изготовлено в 79 году нашей эры. Он был безопасен для людей и никаких намеков на радиацию вроде свечения не наблюдалось.

Обязательно к прочтению: Что такое Токамак? Просто о термоядерном реакторе

Природного урана U-235, пригодного для использования в ядерных реакторах, сегодня в природе очень мало — на протяжении долгих лет он просто улетучился. Зато, миллиарды лет назад его было очень много, и ядерные реакции могли запускаться прямо на природе,без участия человека. Так, на территории африканской страны Габон, около 1,8 миллиарда лет назад происходила естественная реакция деления ядер урана. Уран горел на протяжении сотен лет, но в итоге реакция прекратилась из-за истощения запасов металла.

Рутений

Вторая позиция в нашем списке достается рутению. Открытие этого инертного металла серебристого цвета принадлежит русскому химику Карлу Клаусу, которое было сделано в 1844 году. Этот элемент относится к платиновой группе. Он является редким металлом. Ученым удалось установить, что всего на планете имеется примерно 5 тыс. тонн рутения. В год удается добыть примерно 18 тонн металла.

Рутений

Из-за ограниченного количества и высокой стоимости рутений редко применяется в промышленности. Его используют в следующих случаях:

  • его небольшое количество добавляют в титан, чтобы улучшить коррозийные свойства;
  • из его сплава с платиной делают электрические контакты, отличающиеся высокой стойкостью;
  • рутений часто используют в качестве катализатора для химических реакций.

Избыток кремния

Передозировка этим полезным микроэлементов также возможна.

Отравление кремнием сопровождается следующими симптомами:

  • Учащенное мочеиспускание, что приводит к повышенному вымыванию кальция из организма и соответственно делает кости более ломкими;
  • Формирование камней в желчном пузыре, мочевом пузыре и почках, из-за чего у человека появляются периодические боли при мочеиспускании;
  • Резкое снижение уровня сахара в крови при сахарном диабете;
  • Повышенный уровень сахара в крови.

Причины переизбытка Si в организме

Злоупотребление препаратами, в которых содержится этот химический элемент;

Работа на производстве по обработке кремня – пылевые частицы с кремнием попадают на слизистые дыхательных путей и пищеварительного тракта, вызывая в местах оседания воспалительные процессы, а также развитие силикоза.

Тантал

Открытому в 1802 гуду металлу, названному танталом, достается третье место в нашем списке. Его обнаружил шведский химик А. Г. Экеберг. Долгое время считалось, что тантал тождественен ниобию. Но немецкому химику Генриху Розе удалось доказать, что это два разных элемента. Выделить тантал в чистом виде смог ученый Вернер Болтон из Германии в 1922 году. Это очень редкий металл. Больше всего залежей танталовой руды было обнаружено в Западной Австралии.

Тантал

Благодаря своим уникальным свойствам, тантал является очень востребованным металлом. Он применяется в различных сферах:

  • в медицине из тантала изготавливают проволоку и другие элементы, которые могут скреплять ткани и даже выступать заменителем кости;
  • сплавы с этим металлом устойчивы к агрессивной среде, благодаря чему они используются при изготовлении авиакосмической техники и электроники;
  • тантал также применяют для создания энергии в атомных реакторах;
  • элемент широко применяется в химической промышленности.

Самый стойкий металл

Самым стойким металлом считается иридий — его невозможно растворить ни в одной кислоте. Из-за стойкости, этот металл используется в Международном бюро мер и весов — из него создан эталон килограмма. Этот цилиндр из иридия необходим для того, чтобы у всех стран было единое представление о том, сколько именно должен весить килограмм. Это важно, потому что любое отклонение может стать причиной неисправности в самолётах и кораблях и, впоследствии, серьезной катастрофы.

Иридий — показатель того, сколько должен весить килограмм

Также иридий используется при изготовлении денег. Например, в африканской стране Руанде была выпущена иридиевая монета номиналом 10 руандийских франков. Можно сказать, что это самая устойчивая к химическому воздействию монета. Повредить ее можно разве что кину в сосуд со фтором — сильнейшим окислителем. Но разрушительная реакция начнется только при нагревании до 450 градусов Цельсия.

Хром

Одним из самых твердых металлов является и хром. Его открыли в России в 1763 году в месторождении Северного Урала. Он имеет голубовато-белый цвет, хотя бывают случаи, что его считают черным металлом. Хром нельзя назвать редким металлом. Его залежами богаты следующие страны:

  • Казахстан;
  • Россия;
  • Мадагаскар;
  • Зимбабве.

Хром

Месторождения хрома есть и в других государствах. Этот металл широко применяется в различных отраслях металлургии, науки, машиностроения и других.

Лонсдейлит

Лонсдейлит по своей структуре очень похож на алмаз, ведь они оба являются аллотропными модификациями углерода. Лонсдейлит был обнаружен в воронке метеорита, одним из компонентов которого являлся графит. По всей видимости от нагрузок, вызванных взрывом метеорите, графит превратился в лонсдейлит. При обнаружении лонсдейлит не продемонстрировал особых чемпионских показателей твёрдости, однако было доказано, что при отсутствии в нём примесей, он будет твёрже алмаза! Доказанный показатель твердости лонсдейлита — до 152 ГПа

Бериллий

Пятая позиция в списке наиболее твердых металлов досталась бериллию. Его открытие принадлежит химику Луи Никола Воклену из Франции, которое было сделано в 1798 году. Этот металл имеет серебристо-белый цвет. Несмотря на свою твердость, бериллий является хрупким материалом, что сильно усложняет его обработку. Его применяют для создания высококачественных громкоговорителей. Он применяется для создания реактивного топлива, огнеупорных материалов. Металл широко используется при создании аэрокосмической техники и лазерных установок. Он также применяется в атомной энергетике и при изготовлении рентгенотехники.

Бериллий

Взаимодействие кремния с другими веществами

  • o Усиливает антиоксидантную активность витаминов А, Е и С;
  • o Улучшает усвоение следующих макро- и микроэлементов – кальция, калия, магния, натрия, фосфора, фтора и серы;
  • o Является антагонистом молибдена, из-за чего при их одновременном применении, активность обоих снижается. Кроме того, прием повышенных дох молибдена снижает усвояемость кремния;
  • o При взаимодействии с алюминием и марганцем образовывает нерастворимые силикаты, которые могут оседать в организме;
  • o Нейтрализует вредное действие на организм нитратов, солей свинца, хлор, ртути и прочих тяжелых металлов.

h

Осмий

В список твердейших металлов также входит осмий. Он является элементом, входящим в платиновую группу, и по своим свойствам схож с иридием. Этот тугоплавкий металл устойчив к воздействиям агрессивной среды, имеют большую плотность, и плохо поддается обработке. Открыл его ученый Смитсон Теннант из Англии в 1803 году. Этот металл широко применяется в медицине. Из него изготовлены элементы электрокардиостимуляторов, он также применяется при создании клапана легочного ствола. Он широко применяется также в химической промышленности и в военных целях.

Осмий

Сталь и ее сплавы

Сталь — это прочный сплав железа и углерода, с добавками других элементов, таких как кремний, марганец, ванадий, ниобий и пр. Благодаря различным системам легирования стали можно получать совершенно разный комплекс свойств новых сплавов.

Так, высокоуглеродистая сталь — это сплав железа с высоким содержанием углерода — получается прочной, относительно дешевой, долговечной, она хорошо поддается обработке. Из недостатков стоит отметить низкую прокаливаемость и низкую теплостойкость, что делает углеродистую сталь уязвимой в агрессивной среде.

Сферы применения: из углеродистой стали изготавливают различные инструменты, детали машин и сложных механизмов, элементы металлоконструкций. Важным условием применения таких изделий является неагрессивная среда.

Сплав стали, железа и никеля – один из наиболее прочных сплавов. Существует несколько его разновидностей, но в целом легирование углеродистой стали никелем увеличивает предел текучести до 1420 МПа и при этом показатель предела прочности на разрыв доходит до 1460 МПа.

Сферы применения: сплавы на никелевой основе используют в конструкциях некоторых типов мощных атомных реакторов в качестве защитных высокотемпературных оболочек для предохранения от коррозии урановых стержней.

Нержавеющая сталь – коррозионностойкий сплав стали, хрома и марганца с пределом текучести до 1560 МПа и пределом прочности на разрыв до 1600 МПа. Как и все виды стали, этот сплав обладает высокой ударопрочностью и имеет средний балл по шкале Мооса.

Сферы применения: благодаря своим антикоррозийным свойствам нержавеющую сталь широко применяют в самых разных областях – нефтехимической промышленности, машиностроении, строительстве, электроэнергетике, кораблестроении, пищевой промышленности и для изготовления бытовых приборов.

Рений

Переходному серебристому металлу рению достается седьмая позиция в нашем списке. Предположение о существовании этого элемента были сделаны Д. И. Менделеевым в 1871 году, а открыть его удалось химикам из Германии в 1925 году. Уже через 5 лет после этого удалось наладить добычу этого редкого, прочного и тугоплавкого металла. На то время за год удавалось получить 120 кг рения. Сейчас количество ежегодной добычи металла увеличилось до 40 тонн. Он применяется для производства катализаторов. Из него также изготавливают электрические контакты, способные самоочищаться.

Рений

Как нитинол стал SM-100

Интерес к этому металлу пришел много лет спустя и, как водится, «оттуда откуда не ждали». Угадайте с одного раза, кого может заинтересовать высокотвердый и редкий сплав, который дает яркий и непредсказуемый узор в процессе термической обработки?

Ножевой дизайнер Дуэйн Двайер из Strider Knives заинтересовался нитинолом еще в 2005 году, когда искал сплав сверхтвердых металлов, который не ржавел бы. Он обратился к металлургу и другу Скотту Деванне, вице-президенту по технологиям SB Specialty Metals, и поинтересовался возможностью производства нитинола с использованием технологии, которая никогда не применялась.

Вскоре после этого Скотт познакомил Дуэйна с Эриком Боно, металлургом и производителем ножей, который также интересовался нитинолом, и они втроем начали изучать возможности создания клинков из этого сплава.

Обладая знаниями и опытом в области металлургии, Боно в 2006 году разработал рабочий вариант сплава, получивший название «SM-100», в виде порошкового металла. Еще несколько лет ушло на рафинирование сплава и процессов, и в 2009 году Боно и его деловой партнер Фред Йолтон создали компанию Summit Metals LLC для производства SM-100.

С тех пор SM-100 (60% никеля и 40% титана), который компания продает под названием «HIPTiNite», завоевал интерес не только у ножевой промышленности, но и у американского космического агентства NASA и у представителей различных команд Формулы-1.

Вольфрам

Серебристо-серый вольфрам является не только одним из наиболее твердых металлов, он также лидирует по тугоплавкости. Его удается расплавить только при температуре в 3422 оС. Благодаря такому свойству он используется для создания элементов накаливания. Сплавы из этого элемента обладают высокой прочностью и часто применяются в военных целях. Вольфрам также используется для производства хирургических инструментов. Из него также изготавливают контейнеров, в которых хранят радиоактивные материалы.

Вольфрам

Прочные сплавы и природные металлы

Сплавы представляют собой комбинации разных металлов. Потребность получить самые разные качественные характеристики металлов, среди которых и прочность, привела к появлению различных сплавов. Одним из важных в этом смысле сплавов является сталь, которая представляет собой комбинацию железа и углерода. Итак, какие же металлы принято считать самыми прочными на Земле?

Поскольку для определения прочности металла необходимо учесть очень много факторов, трудно однозначным образом упорядочить металлы от самого «крепкого» до самого «слабого». В зависимости от того, какое свойство считается наиболее важным в каждом конкретном случае, и будет складываться расстановка сил прочности среди металлов.

Уран

Одним из наиболее твердых металлов является уран. Его открыл в 1840 году химик Пелиго. Большой вклад в изучение свойств этого металла сделал Д. И. Менделеев. Радиоактивные свойства урана были выявлены ученым А. А. Беккерелем в 1896 году. Тогда химик из Франции выявленные излучения металла назвал лучами Беккереля. Уран часто встречается в природе. Странами, имеющими наибольшие месторождения урановой руды, являются Австралия, Казахстан и Россия.

Уран

Титан

Заключительное место в десятке твердейших металлов достается титану. Впервые этот элемент в чистом виде удалось получить химику Й. Я. Берцелиусу из Швеции в 1825 году. Титан является легким металлом серебристо-белого цвета, который отличается высокой прочностью и устойчивостью к коррозии и механическим воздействиям. Сплавы из титана применяются во многих отраслях машиностроения, медицины и химической промышленности.

Титан

Самый твердый металл — хром, титан.

Хром — элемент побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Менделеева Д.И., с атомным номером 24. Обозначается символом Cr (латин. Chromium). Простое вещество хром (CAS-номер: 7440-47-3) — твёрдый металл голубовато-белого цвета.

Хром в природе встречается в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом): FeO · Cr2O3 + 4C → Fe + 2Cr + 4CO↑

Хром относится к достаточно распространенным элементам, содержание его в земной коре составляет примерно 0,02% (22-е место). Феррохром применяют для производства легированных сталей. Чтобы получить чистый хром, реакцию ведут следующим образом: 1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе: 4Fe(CrO2)2 + 8Na2CO3 + 7O2 → 8Na2CrO4 + 2Fe2O3 + 8CO2↑ 2) растворяют хромат натрия и отделяют его от оксида железа; 3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат; 4) получают чистый оксид хрома восстановлением дихромата углём: Na2Cr2O7 + 2C → Cr2O3 + Na2CO3 + CO↑ 5) с помощью алюминотермии получают металлический хром: Cr2O3+ 2Al → Al2O3 + 2Cr + 130 ккал 6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса: восстановление шестивалентного хрома до трехвалентного с переходом его в раствор; разряд ионов водорода с выделением газообразного водорода; разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома; Cr2O72− + 14Н+ + 12е− = 2Cr + 7h3O

Получение хрома Сырьем для промышленного получения хрома служит хромистый железняк. Его химическая переработка приводит к Cr2O3. Восстановление Cr2O3 с помощью алюминия или кремния дает металлический хром невысокой степени чистоты: Cr2O3+Аl=Аl2O3+2Cr 2Cr2O3+3Si=3SiO2+4Cr Более чистый металл получают электролизом концентрированных растворов соединений хрома.

Тита́н — (лат. Titanium; обозначается символом Ti) — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура перехода α↔β 883 °C

Самые мягкие металлы — калий, рубидий, цезий.

Калий — элемент главной подгруппы первой группы, четвёртого периода периодической системы химических элементов Менделеева Д.И., с атомным номером 19. Обозначается символом K (латин. Kalium). Простое вещество калий (CAS-номер: 7440-09-7) — мягкий щелочной металл серебристо-белого цвета. В природе калий встречается только в соединениях с другими элементами, например, в морской воде, а также во многих минералах. Он очень быстро окисляется на воздухе и очень легко вступает в химические реакции, особенно с водой, образуя щёлочь. Во многих отношениях химические свойства калия очень близки к натрию, но с точки зрения биологической функции и использования их клетками живых организмов они все же отличаются.

Рубидий — элемент главной подгруппы первой группы, пятого периода периодической системы химических элементов Менделеева Д.И., с атомным номером 37. Обозначается символом Rb (лат. Rubidium). Простое вещество рубидий (CAS-номер: 7440-17-7) — мягкий щелочной металл серебристо-белого цвета.

Цезий — элемент главной подгруппы первой группы шестого периода периодической системы химических элементов Менделеева Д.И., атомный номер 55. Обозначается символом Cs (лат. Caesium). Простое вещество цезий (CAS-номер: 7440-46-2) — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой).

Из рубрики Почемучка…

— Для начала скажи-ка мне, Панамка, какие ты вообще знаешь металлы? — Железо. — А еще? — Еще? Нет, больше не знаю. — Знаешь, знаешь. Ты подумай хорошенько, вспомни. Ладно, подскажу. Вот ответь, из чего сделано грузило для удочки? — Из свинца. — А мамино колечко из чего? — Из золота. — Правильно. Но и свинец и золото — металлы. Кастрюля — алюминиевая, значит, металлическая, ступка и пестик — латунные, металлические провода, если соскоблить с них плас, — медные, металлические. Много еще на свете разных металлов! И у многих из них удивительнейшие свойства. Какие? А вот ответь на мои вопросы: обязательно ли металлы тонут в воде? — Обязательно. Даже иголка и та тонет. Я видел. — Так вот, есть, Панамка, такие легкие металлы, которые плавают в воде, как пробка. Один из них называется литием. Он легче воды… не помню, на сколько. Бумка, наверное, знает. — АЛЛО, ВКЛЮЧАЮСЬ. ЛИТИЙ ВДВОЕ ЛЕГЧЕ ВОДЫ И В 15 РАЗ ЛЕГЧЕ ЖЕЛЕЗА. ЛИТИЙ ВХОДИТ В СОСТАВ БОЛЕЕ 150 МИНЕРАЛОВ ОН ЕСТЬ ПОЧТИ В КАЖДОМ КАМНЕ И ПОЭТОМУ ПОЛУЧИЛ ТАКОЕ НАЗВАНИЕ: ГРЕЧЕСКОЕ СЛОВО «ЛИТОС» ОЗНАЧАЕТ «КАМЕНЬ». ЭТОТ СЕРЕБРИСТОБЕЛЫЙ МЕТАЛЛ В ЖАРКИХ ПЕЧАХ РАСПЛАВЛЯЮТ И СМЕШИВАЮТ С ДРУГИМИ МЕТАЛЛАМИ. ПОЛУЧАЮТСЯ СПЛАВЫ. АЛЮМИНИЙ НЕ ОЧЕНЬ ПРОЧЕН, НО, ЕСЛИ ЕГО СПЛАВИТЬ С ЛИТИЕМ, ПОЛУЧАЕТСЯ МЕТАЛЛ КУДА ПРОЧНЕЕ. — Спасибо, Бумка. Задаю новый вопрос: металлы болеют? — Болеют?! Вот смешно! Значит, у водопроводного крана бывает насморк, а у перочинного ножика — коклюш? Умора! — Металлы еще как болеют. Разве ржавчина, о которой мы недавно говорили, не болезнь металлов? Они от нее даже «умирают», разрушаются. Была сталь, а долго пролежала в воде — разрушилась, покрылась рыжей ржавчиной. Тронь — рассыплется в порошок. Недаром в народе говорят: ржа (тоесть ржавчина) железо ест. Вот и съела. Теперь ответь — бывает ли металл жидкий? Не когда его расплавят в жаркой печи, а всегда жидкий? — Жидкий металл, дедушка Знай? Да это все равно что «горячий лед»! — Значит, говоришь, не бывает? А ты разве забыл про ртуть, которая показывает температуру в градуснике? Это же самый настоящий жидкий металл! Случайно уронишь, разобьешь градусник — ртуть растечется по полу мелкими шариками. Соберешь их — мигом сольются в один. Твердеет этот жидкий металл лишь на очень сильном морозе. Кстати, ртуть нужна не только для градусников. Она необходима и для ламп-трубок, которые дают яркий дневной свет. Ртуть входит в состав красок, которыми покрывают днища кораблей. После этого корабли не так ржавеют даже в соленой морской воде и их днище меньше обрастает ракушками и водорослями. Ну а под конец давай ответим на вопрос: какой металл самый прочный, какой самый мягкий? Сперва о самом прочном. Он серебристо-белого цвета и называется титаном. Титан в 12 раз тверже алюминия, в 4 раза тверже железа и меди. Если раскалить другие металлы, они сразу потеряют прочность. Но титан… температура 500 градусов, а он все такой же прочный, как был. Не зря ведь многие части реактивных самолетов сделаны из титана. Этот металл такой прочный, что поддается только самым могучим машинам-молотам. Зато натрий (тоже серебристо-белый) , хоть он и металл, ничего не стоит сплющить пальцами. А магний знаменит тем, что хорошо горит. Да, да — металл, а горит! Поднес к тонкой стружке магния зажженную спичку — он и вспыхнул.

Вот вам ответ на вопрос: Какой металл самый твёрдый, какой — самый мягкий

8 критериев отбора + ТОП прочных элементов

Наш мир полон удивительных фактов, которые интересны множеству людей. Не являются исключением и свойства различных металлов. Среди этих элементов, которых в мире насчитывается 94, есть самые пластичные и ковкие, есть также с высокой электропроводностью или с большим коэффициентом сопротивления. В этой статье речь пойдет о самых твердых металлах, а также об их уникальных свойствах.

Иридий

Первенство в перечне металлов, отличающихся наибольшей твердостью, занимает иридий. Его открыл в начале XIX века химик из Англии Смитсон Теннант. Иридий обладает следующими физическими свойствами:

  • имеет серебристо-белый цвет;
  • температура его плавления – 2466 оС;
  • температура кипения – 4428 оС;
  • сопротивление – 5,3·10−8Ом·м.

Поскольку иридий является твердейшим металлом на планете, он с трудом поддается обработке. Но его все же применяют в различных промышленных сферах. К примеру, из него изготавливаются небольшие шарики, которые используются в перьях для ручек. Из иридия изготавливают комплектующие к космическим ракетам, некоторые детали для автомобилей и другое.

Иридий

В природе встречается очень мало иридия. Находки этого металла являются своего рода свидетельством того, что в месте, где он был обнаружен, падали метеориты. Эти космические тела содержат значительное количество металла. Ученые полагают, что наша планета также богата иридием, но его залежи находятся ближе к ядру Земли.

Твердые металлы с наибольшей плотностью

Одними из самых твердых металлов, так же, являются осмий и иридий. Это вещества из платиновой группы, у них самая высокая, почти одинаковая, плотность.
Иридий открыли в 1803 году. Обнаружил металл химик из Англии Смитсон Теннат, во время исследования природной платины из Южной Америки. Кстати, с древнегреческого «иридий» переводится как «радуга».

Иридий — редкий и твердый металл на планете

Самый твердый металл добыть довольно сложно, поскольку в природе его почти нет. И часто металл находят в метеоритах, которые упали на землю. По словам ученых, на нашей планете содержание иридия должно быть намного больше. Но из-за свойств металла – сидерофильности – он находится на самой глубине земных недр.

Иридий довольно сложно обработать и термическим, и химическим способом. Металл не вступает в реакцию с кислотами, даже сочетаниями кислот при температуре меньше 100 градусов. При этом, вещество подвержено процессам окисления в царской водке (это смесь соляной и азотной кислот).

Интерес, как к источнику электрической энергии, представляет изотоп иридия 193 m 2. Поскольку период полураспада металла составляет 241 год. Нашел широкое применение иридий в палеонтологии и промышленности. Его используют при изготовлении перьев для ручек и определение возраста разных слоев земли.

А вот осмий открыли на год позже, чем иридий. Этот твердый металл нашли в химическом составе осадка платины, которая была растворена в царской водке. И название «осмий» получилось из древнегреческого слова «запах». Металл не подвержен механическому воздействию. При этом, один литр осмия в разы тяжелее, чем десять литров воды. Впрочем, это свойство пока осталось без применения.

Осмий — один из самых твёрдых металлов

Осмий добывают на американских и российских рудниках. Богато его месторождение и в ЮАР. Довольно часто металл находят в железных метеоритах. Для специалистов представляет интерес осмий-187, который экспортируется только из Казахстана. С его помощью определяют возраст метеоритов. Стоит отметить, что всего один грамм изотопа стоит 10 тысяч долларов.

Ну а используют осмий в промышленности. И не в чистом виде, а в виде твердого сплава с вольфрамом. Производят из вещества лампы накаливания. Осмий является катализатором при изготовлении нашатырного спирта. Редко из металла изготавливают режущие части для нужд хирургии.

Рутений

Вторая позиция в нашем списке достается рутению. Открытие этого инертного металла серебристого цвета принадлежит русскому химику Карлу Клаусу, которое было сделано в 1844 году. Этот элемент относится к платиновой группе. Он является редким металлом. Ученым удалось установить, что всего на планете имеется примерно 5 тыс. тонн рутения. В год удается добыть примерно 18 тонн металла.

Рутений

Из-за ограниченного количества и высокой стоимости рутений редко применяется в промышленности. Его используют в следующих случаях:

  • его небольшое количество добавляют в титан, чтобы улучшить коррозийные свойства;
  • из его сплава с платиной делают электрические контакты, отличающиеся высокой стойкостью;
  • рутений часто используют в качестве катализатора для химических реакций.

Прочие по твердости металлы

Титан не является самым твердым металлом. У него достаточно соперников, если оценивать вещества чисто по прочности. Среди самых твердых металлов в мире известны:

Иридий. Этому металлу принадлежит первое место в списке твердости. Именно поэтому его очень редко используют, поскольку он с большим трудом подвергается обработке. В промышленности этот металл используется для изготовления некоторых деталей ракет, маленьких шариков для ручек, а также в машиностроении.

Температура плавления данного вещества — 2466° Цвет — светло-серебристый. Распространен в очень маленьких количествах, обычно метеоритного происхождения.

Рутений. Редкий металл, всего на планете его около 5 тысяч тонн. За один год добывается всего 18 тонн металла. Из-за малого количества металл применяется только в качестве катализатора химических реакций, а также добавляют в титан, чтобы повысить устойчивость к ржавчине.

Хром. Этот материал открыли еще в 1763 году. С тех пор этот голубовато-белый металл используется металлургии, некоторых отраслях науки, а также в машиностроении. Также, как и предыдущие относится к редким видам металлов.

Бериллий. Этот металл применяется в атомной энергетике, а также в изготовлении аппаратов для рентгена, громкоговорителей с высокими частотами, огнеупорных материалов. Сложен в обработке, поскольку вместе со своей твердостью может похвастаться и значительной хрупкостью.

Осмий. По своим свойствам и характеристикам близок к иридию. Это тугоплавкий металл, очень твердый и плохо поддающийся обработке. Получил разнообразное применение в медицине. Например, из этого металла производят детали большинства кардиостимуляторов.

Вольфрам. Серебристо-серый металл, занимает первое место по тугоплавкости. Поэтому и используется в элементах накаливания. Также применяется для изготовления тары, в которой хранят радиоактивные материалы, из вольфрама изготавливают многие хирургические инструменты, а также используют в военной промышленности.

Уран. В отличие от многих других твердых металлов, уран в природе встречается часто. Имеет радиоактивные свойства.

Тантал

Открытому в 1802 гуду металлу, названному танталом, достается третье место в нашем списке. Его обнаружил шведский химик А. Г. Экеберг. Долгое время считалось, что тантал тождественен ниобию. Но немецкому химику Генриху Розе удалось доказать, что это два разных элемента. Выделить тантал в чистом виде смог ученый Вернер Болтон из Германии в 1922 году. Это очень редкий металл. Больше всего залежей танталовой руды было обнаружено в Западной Австралии.

Тантал

Благодаря своим уникальным свойствам, тантал является очень востребованным металлом. Он применяется в различных сферах:

  • в медицине из тантала изготавливают проволоку и другие элементы, которые могут скреплять ткани и даже выступать заменителем кости;
  • сплавы с этим металлом устойчивы к агрессивной среде, благодаря чему они используются при изготовлении авиакосмической техники и электроники;
  • тантал также применяют для создания энергии в атомных реакторах;
  • элемент широко применяется в химической промышленности.

Железо

Удивительный металл, который составляет большую часть ядра Земли и является четвёртым по распространённости элементом земной коры.

Элемент в чистом виде является пластичным, но легко комбинируется с другими элементами для получения сплавов железа, таких как чугун и сталь. Широко используется в промышленности из-за прочности и относительно малой стоимости.

Современные стали можно разделить на четыре разновидности. Это углеродистая сталь, низколегированная, высокопрочная низколегированная и легированная сталь. В то время как углеродистая сталь состоит в основном из железа и углерода. Другие типы содержат различные количества других элементов, таких как молибден, марганец, хром или никель.

Сталь наиболее широко применяют в производстве тяжёлого оборудования машиностроения и в строительной индустрии. Несмотря на появление алюминия, сталь остаётся жизненно важной для производства автомобильных кузовов. Предел текучести сплавов с железом может достигать более 2 000 МПа.

1

Хром

Одним из самых твердых металлов является и хром. Его открыли в России в 1763 году в месторождении Северного Урала. Он имеет голубовато-белый цвет, хотя бывают случаи, что его считают черным металлом. Хром нельзя назвать редким металлом. Его залежами богаты следующие страны:

  • Казахстан;
  • Россия;
  • Мадагаскар;
  • Зимбабве.

Хром

Месторождения хрома есть и в других государствах. Этот металл широко применяется в различных отраслях металлургии, науки, машиностроения и других.

Бериллий

Пятая позиция в списке наиболее твердых металлов досталась бериллию. Его открытие принадлежит химику Луи Никола Воклену из Франции, которое было сделано в 1798 году. Этот металл имеет серебристо-белый цвет. Несмотря на свою твердость, бериллий является хрупким материалом, что сильно усложняет его обработку. Его применяют для создания высококачественных громкоговорителей. Он применяется для создания реактивного топлива, огнеупорных материалов. Металл широко используется при создании аэрокосмической техники и лазерных установок. Он также применяется в атомной энергетике и при изготовлении рентгенотехники.

Бериллий

Осмий

В список твердейших металлов также входит осмий. Он является элементом, входящим в платиновую группу, и по своим свойствам схож с иридием. Этот тугоплавкий металл устойчив к воздействиям агрессивной среды, имеют большую плотность, и плохо поддается обработке. Открыл его ученый Смитсон Теннант из Англии в 1803 году. Этот металл широко применяется в медицине. Из него изготовлены элементы электрокардиостимуляторов, он также применяется при создании клапана легочного ствола. Он широко применяется также в химической промышленности и в военных целях.

Осмий

Рений

Переходному серебристому металлу рению достается седьмая позиция в нашем списке. Предположение о существовании этого элемента были сделаны Д. И. Менделеевым в 1871 году, а открыть его удалось химикам из Германии в 1925 году. Уже через 5 лет после этого удалось наладить добычу этого редкого, прочного и тугоплавкого металла. На то время за год удавалось получить 120 кг рения. Сейчас количество ежегодной добычи металла увеличилось до 40 тонн. Он применяется для производства катализаторов. Из него также изготавливают электрические контакты, способные самоочищаться.

Рений

Что такое титан?

Самым твердым металлом является титан. Впервые чистый титан был получен в 1925 году. Это открытие произвело фурор в научных кругах. На новый материал сразу же обратили внимание промышленники и по достоинству оценили преимущества от его использования. По официальной версии, самый твердый металл на Земле получил свое название в честь несокрушимых Титанов, которые согласно древнегреческой мифологии были основателями мира.

По оценкам ученых суммарные мировые запасы титана на сегодняшний день составляют около 730 миллионов тонн. При нынешних темпах добычи ископаемого сырья хватит еще на 150 лет. Титан занимает 10 место по природным запасам среди всех известных металлов. Крупнейшим в мире производителем титана является российская , которая удовлетворяет до 35% мировых потребностей. Предприятие занимается полным циклом переработки от добычи руды до изготовления различной продукции. Оно занимает порядка 90% российского рынка по производству титана. Около 70% готовой продукции идет на экспорт.

Титан — легкий металл серебристого цвета с температурой плавления 1670 градусов по Цельсию. Проявляет высокую химическую активность только при нагревании, в нормальных условиях не реагирует с большинством химических элементов и соединений. В природе не встречается в чистом виде. Распространен в виде рутиловых (двуокись титана) и ильменитовых (сложное вещество, состоящее из двуокиси титана и оксида двухвалентного железа) руд. Чистый титан выделяется путем спекания руды с хлором, а затем вытеснения более активным металлом (чаще всего магнием) из полученного тетрахлорида.

Вольфрам

Серебристо-серый вольфрам является не только одним из наиболее твердых металлов, он также лидирует по тугоплавкости. Его удается расплавить только при температуре в 3422 оС. Благодаря такому свойству он используется для создания элементов накаливания. Сплавы из этого элемента обладают высокой прочностью и часто применяются в военных целях. Вольфрам также используется для производства хирургических инструментов. Из него также изготавливают контейнеров, в которых хранят радиоактивные материалы.

Вольфрам

Уран

Одним из наиболее твердых металлов является уран. Его открыл в 1840 году химик Пелиго. Большой вклад в изучение свойств этого металла сделал Д. И. Менделеев. Радиоактивные свойства урана были выявлены ученым А. А. Беккерелем в 1896 году. Тогда химик из Франции выявленные излучения металла назвал лучами Беккереля. Уран часто встречается в природе. Странами, имеющими наибольшие месторождения урановой руды, являются Австралия, Казахстан и Россия.

Уран

Титан

Заключительное место в десятке твердейших металлов достается титану. Впервые этот элемент в чистом виде удалось получить химику Й. Я. Берцелиусу из Швеции в 1825 году. Титан является легким металлом серебристо-белого цвета, который отличается высокой прочностью и устойчивостью к коррозии и механическим воздействиям. Сплавы из титана применяются во многих отраслях машиностроения, медицины и химической промышленности.

Титан

Алюминий

Этот металл обладает особыми качествами, которые делают его незаменимым в производстве и жизни современного общества. Это один из наиболее широко используемых цветных металлов в мире.

Около 8% земной коры состоит из алюминия, а его концентрация в Солнечной системе составляет 3,15 части на миллион. Из-за своей низкой плотности и устойчивости к коррозии, алюминий является ключевым элементом в аэрокосмической и инфраструктурной промышленности.

Примечательно, что чистый алюминий имеет предел текучести около 15–120 МПа, его сплавы намного прочнее и имеют предел текучести от 200 до 600 МПа.

9

Новое исследование раскрывает глубокие свойства простого металлического сплава — ScienceDaily

Ученые измерили самую высокую ударную вязкость из когда-либо зарегистрированных материалов при исследовании металлического сплава из хрома, кобальта и никеля (CrCoNi). Мало того, что металл чрезвычайно пластичен — что в материаловедении означает очень ковкий — и впечатляюще прочен (что означает, что он сопротивляется остаточной деформации), его прочность и пластичность улучшаются по мере того, как он становится холоднее. Это противоречит большинству других существующих материалов. .

Команда, возглавляемая исследователями из Национальной лаборатории Лоуренса в Беркли (Berkeley Lab) и Ок-Риджской национальной лаборатории, опубликовала исследование с описанием своих рекордных результатов в журнале Science 1 декабря 2022 года. «Когда вы проектируете конструкционные материалы, вы хотите, чтобы они были прочными, но в то же время пластичными и устойчивыми к разрушению», — сказал соруководитель проекта Исо Джордж, заведующий кафедрой передовых теорий и разработок сплавов в ORNL и Университете Теннесси. «Обычно это компромисс между этими свойствами. Но этот материал сочетает в себе и то, и другое, и вместо того, чтобы становиться хрупким при низких температурах, он становится более прочным».

CrCoNi относится к классу металлов, называемых высокоэнтропийными сплавами (ВЭС). Все сплавы, используемые сегодня, содержат большую долю одного элемента с добавлением меньшего количества дополнительных элементов, но ВЭС изготавливаются из равной смеси каждого составного элемента. Эти сбалансированные атомарные рецепты, по-видимому, наделяют некоторые из этих материалов необычайно высокой комбинацией прочности и пластичности при нагрузке, которые вместе составляют то, что называется «вязкостью». HEA были горячей областью исследований с тех пор, как они были впервые разработаны около 20 лет назад, но технология, необходимая для того, чтобы довести материалы до их предела в экстремальных испытаниях, была недоступна до недавнего времени.

«Ударная вязкость этого материала вблизи температур жидкого гелия (20 кельвинов, -424 по Фаренгейту) достигает 500 мегапаскалей квадратного метра. В тех же единицах ударная вязкость куска кремния равна единице, алюминиевого для самолетов составляет около 35, а прочность некоторых из лучших сталей составляет около 100. Таким образом, 500 — это ошеломляющая цифра», — сказал соруководитель исследования Роберт Ритчи, старший научный сотрудник отдела материаловедения лаборатории Беркли и профессор Чуа. инженерного дела в Калифорнийском университете в Беркли.

Ричи и Джордж начали экспериментировать с CrCoNi и другим сплавом, который также содержит марганец и железо (CrMnFeCoNi) почти десять лет назад. Они создали образцы сплавов, затем понизили температуру материалов до температуры жидкого азота (около 77 кельвинов или -321 F) и обнаружили впечатляющую прочность и ударную вязкость. Они сразу же захотели продолжить свою работу испытаниями в диапазонах температур жидкого гелия, но нашли оборудование, позволяющее проводить стресс-тестирование образцов в такой холодной среде, и наняли членов группы с аналитическими инструментами и опытом, необходимыми для анализа того, что происходит с материалом при атомный уровень занял следующие 10 лет. К счастью, результаты стоили ожидания.

Вглядываясь в кристалл

Многие твердые вещества, включая металлы, существуют в кристаллической форме, характеризующейся повторяющимся трехмерным рисунком атомов, называемым элементарной ячейкой, которая образует более крупную структуру, называемую решеткой. Прочность и ударная вязкость материала или их отсутствие зависят от физических свойств решетки. Ни один кристалл не совершенен, поэтому элементарные ячейки в материале неизбежно будут содержать «дефекты», ярким примером которых являются дислокации — границы, где недеформированная решетка встречается с деформированной решеткой. Когда к материалу прикладывается сила — представьте, например, сгибание металлической ложки, — изменение формы осуществляется за счет движения дислокаций через решетку. Чем легче дислокациям двигаться, тем мягче материал. Но если движению дислокаций препятствуют препятствия в виде неровностей решетки, то для перемещения атомов внутри дислокации требуется большее усилие, и материал становится прочнее. С другой стороны, препятствия обычно делают материал более хрупким, склонным к растрескиванию.

Используя дифракцию нейтронов, дифракцию обратного рассеяния электронов и просвечивающую электронную микроскопию, Ричи, Джордж и их коллеги из лаборатории Беркли, Бристольского университета, лаборатории Резерфорда Эпплтона и Университета Нового Южного Уэльса исследовали решетчатые структуры образцов CrCoNi, которые был разрушен при комнатной температуре и 20 К. (Для измерения прочности и пластичности образец чистого металла растягивают до тех пор, пока он не разрушится, тогда как для испытаний на вязкость разрушения в образец преднамеренно вводят острую трещину до того, как он будет вытянут, и необходимое напряжение затем измеряется рост трещины.)

Изображения и атомные карты, созданные с помощью этих методов, показали, что ударная вязкость сплава обусловлена ​​тремя препятствиями дислокации, которые действуют в определенном порядке, когда к материалу прилагается сила. Во-первых, движущиеся дислокации заставляют участки кристалла соскальзывать с других участков, лежащих в параллельных плоскостях. Это движение смещает слои элементарных ячеек так, что их рисунок больше не совпадает в направлении, перпендикулярном скользящему движению, создавая своего рода препятствие. Дальнейшее воздействие на металл создает явление, называемое нанодвойникованием, при котором области решетки образуют зеркальную симметрию с границей между ними. Наконец, если силы продолжают действовать на металл, подаваемая в систему энергия изменяет расположение самих элементарных ячеек, при этом атомы CrCoNi переключаются с гранецентрированного кубического кристалла на другое расположение, известное как гексагональная плотная упаковка.

Эта последовательность атомных взаимодействий гарантирует, что металл продолжает течь, но также продолжает встречать новое сопротивление препятствий, намного превышающее точку, в которой большинство материалов ломаются от напряжения. «Итак, когда вы тянете его, запускается первый механизм, затем запускается второй, затем запускается третий, а затем четвертый», — объяснил Ричи. «Теперь многие люди скажут, ну, мы видели нанодвойникование в обычных материалах, мы видели скольжение в обычных материалах. Это правда. В этом нет ничего нового, но факт в том, что все они происходят в этой волшебной последовательности. что дает нам эти действительно потрясающие свойства».

Новые результаты, полученные группой в сочетании с другой недавней работой над HEA, могут заставить сообщество материалистов пересмотреть давние представления о том, как физические характеристики влияют на производительность. «Это забавно, потому что металлурги говорят, что структура материала определяет его свойства, но структура NiCoCr самая простая, которую вы можете себе представить — это просто зерна», — сказал Ричи. «Однако, когда вы деформируете его, структура становится очень сложной, и этот сдвиг помогает объяснить его исключительную устойчивость к разрушению», — добавил соавтор Эндрю Майнор, директор Национального центра электронной микроскопии Молекулярного литейного завода в лаборатории Беркли. Профессор материаловедения и инженерии Калифорнийского университета в Беркли. «Мы смогли визуализировать это неожиданное преобразование благодаря разработке детекторов быстрых электронов в наших электронных микроскопах, которые позволяют нам различать различные типы кристаллов и количественно определять дефекты внутри них с разрешением в один нанометр — шириной всего несколько атомов, что, как оказалось, примерно равно размеру дефектов в деформированной структуре NiCoCr».

Сплав CrMnFeCoNi также был испытан при температуре 20 кельвинов и показал впечатляющие результаты, но не достиг такой же прочности, как более простой сплав CrCoNi.

Ковка новых продуктов

Теперь, когда внутреннее устройство сплава CrCoNi лучше изучено, он и другие HEA стали на один шаг ближе к внедрению для специальных применений. Хотя эти материалы дороги в производстве, Джордж предвидит их использование в ситуациях, когда экстремальные условия окружающей среды могут разрушить стандартные металлические сплавы, например, при низких температурах глубокого космоса. Он и его команда в Ок-Ридже также изучают, как сплавы, изготовленные из более распространенных и менее дорогих элементов (кобальта и никеля во всем мире не хватает из-за спроса на них в аккумуляторной промышленности), можно уговорить получить аналогичные свойства.

Хотя прогресс впечатляет, Ричи предупреждает, что по уважительной причине до реального использования еще далеко. «Когда вы летите на самолете, хотели бы вы знать, что то, что спасает вас от падения с высоты 40 000 футов, — это сплав корпуса, который был разработан всего несколько месяцев назад? Или вы хотели бы, чтобы материалы были зрелыми и понятными? Вот почему конструкционным материалам может потребоваться много лет, даже десятилетий, чтобы начать их реальное использование».

Это исследование проводилось при поддержке Управления науки Министерства энергетики. Низкотемпературные механические испытания и дифракция нейтронов были выполнены на установке ENGIN-X ISIS в лаборатории Резерфорда Эпплтона под руководством первого автора Донг Лю. Микроскопию выполняли в Национальном центре электронной микроскопии в Molecular Foundry, пользовательском центре Управления науки Министерства энергетики в лаборатории Беркли. Другими авторами этого проекта были Цинь Ю, Саурабх Кабра, Мин Цзян, Иоахим-Пол Форна-Крейцер, Рупенг Чжан, Мадлен Пейн, Флинн Уолш, Бернд Глудовац и Марк Аста.

Какой самый прочный металл в мире?

Последняя обновленная дата: 25 марта 2023 г.

Общее представление: 195,6K

Просмотры сегодня: 3,72K

Ответ

Проверено

195.6K+ виды

HINT: 9006. , нам сначала нужно понять, что такое металлы. Металл — это материал, который имеет глянцевый вид, когда он только что изготовлен, отполирован или разбит, и достаточно хорошо проводит электричество и тепло. Металлы обычно пластичны или ковки. Металлы могут быть химическими элементами, такими как железо, сплавами, такими как нержавеющая сталь, или молекулярными соединениями, такими как полимерный нитрид серы.

Полный пошаговый ответ:
Вольфрам. Вольфрам, часто известный как вольфрам, представляет собой химический элемент с атомным номером 74 и символом W. Вольфрам представляет собой редкий металл, который почти исключительно встречается в природе в виде соединений с другими металлами. . Он был открыт как новый элемент в 1781 году и впервые выделен как металл в 1783 году. Вольфрам, шеелит и вольфрамит являются одними из наиболее важных руд, причем последний дал этому элементу другое название.

Свободный элемент отличается своей прочностью, особенно потому, что он имеет самую высокую температуру плавления среди всех найденных элементов. Имеет плотность 190,25 грамма на кубический сантиметр, что близко к урану и золоту, но намного больше (примерно в 1,7 раза), чем у свинца.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *