С алюминий: Химические свойства алюминия — урок. Химия, 9 класс.

Реакции алюминия

Химические свойства алюминия

Химические свойства алюминия определяются его положением в периодической системе химических элементов.

Ниже представлены основные химические реакции алюминия с другими химическими элементами. Эти реакции определяют основные химические свойства алюминия.

С чем реагирует алюминий

Простые вещества:

  • галогены (фтор, хлор, бром и иодин)
  • сера
  • фосфор
  • азот
  • углерод
  • кислород (горение)

Сложные вещества:

  • вода
  • минеральные кислоты (соляная, фосфорная)
  • серная кислота
  • азотная кислота
  • щелочи
  • окислители
  • оксиды менее активных металлов (алюмотермия)

С чем не реагирует алюминий

Алюминий не реагирует:

  • с водородом
  • в обычных условиях – с концентрированной серной кислотой (из-за пассивации – образования плотной оксидной пленки)
  • в обычных условиях – с концентрированной азотной кислотой (также из-за пассивации)

См. подробнее по химии алюминия

Алюминий и воздух

Обычно поверхность алюминия всегда покрыта тонким слоем оксида алюминия, который защищает ее от воздействия воздуха, точнее, кислорода. Поэтому считается, что алюминий не вступает в реакцию с воздухом. Если же этот оксидный слой повреждается или удаляется, то свежая поверхность алюминия реагирует с кислородом воздуха. Алюминий может гореть в кислороде ослепительно белым пламенем с образованием оксида алюминия Al2O3.

Реакция алюминия с кислородом:

  • 4Al + 3O2 —> 2Al2O3

Алюминий и вода

Алюминий реагирует с водой по следующим реакциям [2]:

  • 2Al + 6H2O = 2Al(OH)3 + 3H2       (1)
  • 2Al + 4H2O = 2AlO(OH) + 3H2     (2)
  • 2Al + 3H2O = Al2O3 + 3H2            (3)

В результате этих реакций образуются, соответственно, следующие соединения алюминия:

  • модификация гидроксида алюминия байерит и водород (1)
  • модификация гидроксида алюминия богемит и водород (2)
  • оксид алюминия и водород (3)

Эти реакции, кстати, представляют большой интерес при разработке компактных установок для получения водорода для транспортных средств, которые работают на водороде [2].

Все эти реакции являются термодинамически возможными при температуре от комнатной до температуры плавления алюминия 660 ºС. Все они являются также экзотермическими, то есть происходят с выделением тепла [2]:

  • При температуре от комнатной до 280 ºС наиболее устойчивым продуктом реакции является Al(OH)3.
  • При температуре от 280 до 480 ºС наиболее устойчивым продуктом реакции является AlO(OH).
  • При температуре выше 480 ºС наиболее устойчивым продуктом реакции является Al2O3.        

Таким образом, оксид алюминия Al2O3 становится термодинамически более устойчивым, чем  Al(OH)3 при повышенной температуре. Продуктом реакции алюминия с водой при комнатной температуре будет гидроксид алюминия Al(OH)3.

Реакция (1) показывает, что алюминий должен самопроизвольно реагировать с водой при комнатной температуре. Однако на практике кусок алюминия, опущенный в воду, не реагирует с водой в условиях комнатной температуры и даже в кипящей воде.

Дело в том, что алюминий имеет на поверхности тонкий когерентный слой оксида алюминия Al2O3. Эта оксидная пленка прочно удерживается на поверхности алюминия и предотвращает его реакцию с водой. Поэтому, чтобы начать и поддерживать реакцию алюминия с водой при комнатной температуре необходимо постоянно удалять или разрушать этот оксидный слой [2].

Алюминий и галогены

Алюминий бурно реагирует со всем галогенами – это:

  • фтор F
  • хлор Cl
  • бром Br и
  • иодин (йод) I,

с образованием соответственно:

  • фторида AlF
  • хлорида AlCl3
  • бромида Al2Br
    6
    и
  • иодида Al2Br6.

Реакции водорода со фтором, хлором, бромом и иодином:

  • 2Al + 3F2 → 2AlF3
  • 2Al + 3Cl2 → 2AlCl3
  • 2Al + 3Br2 → Al2Br6
  • 2Al + 3l2 → Al2I6 

Алюминий и кислоты

Алюминий активно вступает в реакцию с разбавленными кислотами: серной, соляной и азотной, с образованием соответствующих солей: сернокислого алюминия Al2SO4, хлорида алюминия AlCl3 и нитрата алюминия Al(NО3)3.

Реакции алюминия с разбавленными кислотами:

  • 2Al + 3H2SO4 —> Al2(SO4)3 + 3H2
  • 2Al + 6HCl —> 2AlCl3 + 3H2
  • 2Al + 6HNO3 —> 2Al(NO
    3
    )3 + 3H2

С концентрированными серной и соляной кислотами при комнатной температуре не взаимодействует, при нагревании реагирует с образованием соли, окислов и воды.

Алюминий и щелочи

Алюминий в водном растворе щелочи – гидроксида натрия – реагирует с образованием алюмината натрия.

Реакция алюминия с гидроксидом натрия имеет вид:

  • 2Al + 2NaOH + 10H2O  —> 2Na[Al(H2O)2(OH)4] + 3H2

Все важнейшие реакции с алюминием

Для полноты информации приводим перечень основных реакций с участием алюминия из фундаментальной книги про алюминий [3]:

Важнейшие реакции с участием алюминия [3]

Источники:

1.  Chemical Elements. The first 118 elements, ordered alphabetically / ed. Wikipedians – 2018

2. Reaction of Aluminum with Water to Produce Hydrogen /John Petrovic and George Thomas, U.S. Department of Energy, 2008

3. Тринадцатый элемент: Энциклопедия / А. Дроздов – Библиотека РУСАЛа, 2007.

Что такое алюминий

Лёгкий, прочный, стойкий к коррозии и функциональный – именно это сочетание качеств сделало алюминий главным конструкционным материалом нашего времени. Алюминий есть в домах, в которых мы живем, автомобилях, поездах и самолетах, на которых мы преодолеваем расстояния, в мобильных телефонах и компьютерах, на полках холодильников и в современных интерьерах. А ведь еще 200 лет назад об этом металле мало что было известно.

Рубины, сапфиры, изумруды и аквамарин являются минералами алюминия.
Первые два относятся к корундам – это оксид алюминия (Al2O3) в кристаллической форме. Он обладает природной прозрачностью, а по прочности уступает только алмазам. Пуленепробиваемые стекла, иллюминаторы в самолетах, экраны смартфонов производятся именно с применением сапфира.
А один из менее ценных минералов корунда – наждак используется как абразивный материал, в том числе для создания наждачной бумаги.

На сегодняшний день известно почти 300 различных соединений и минералов алюминия – от полевого шпата, являющегося основным породообразующим минералом на Земле, до рубина, сапфира или изумруда, уже не столь распространенных.

Ханс Кристиан Эрстед (1777–1851) – датский физик, почетный член Петербургской академии наук (1830). Родился в городе Рудкёрбинге в семье аптекаря. В 1797 году окончил Копенгагенский университет, в 1806 – стал профессором.

Но каким бы распространенным ни был алюминий, его открытие стало возможным только, когда в распоряжении ученых появился новый инструмент, позволяющий расщеплять сложные вещества на простые, – электрический ток.

И в 1824 году с помощью процесса электролиза датский физик Ханс Кристиан Эрстед получил алюминий. Он был загрязнен примесями калия и ртути, задействованных в химических реакциях, однако это был первый случай получения алюминия.

Используя электролиз, алюминий производят и в наши дни.

Сырьем для производства алюминия сегодня служит еще одна распространенная в природе алюминиевая руда – бокситы. Это глинистая горная порода, состоящая из разнообразных модификаций гидроксида алюминия с примесью оксидов железа, кремния, титана, серы, галлия, хрома, ванадия, карбонатных солей кальция, железа и магния – чуть ли не половины таблицы Менделеева. В среднем из 4-5 тонн бокситов производится 1 тонна алюминия.

Бокситы в 1821 году открыл геолог Пьер Бертье на юге Франции. Порода получила свое название в честь местности Ле-Бо (Les Baux), где была найдена. Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов – в Гвинее, Австралии, Вьетнаме, Бразилии, Индии и на Ямайке.

Из бокситов получают глинозем. Это оксид алюминия Al2O3, который имеет форму белого порошка и из которого путем электролиза на алюминиевых заводах производят металл.

Производство алюминия требует огромного количества электроэнергии. Для производства одной тонны металла необходимо около 15 МВт*ч энергии – столько потребляет 100-квартирный дом в течение целого месяца.Поэтому разумнее всего строить алюминиевые заводы поблизости от мощных и возобновляемых источников энергии. Самое оптимальное решение – гидроэлектростанции, представляющие самый мощный из всех видов «зеленой энергетики».

Свойства алюминия

Алюминий имеет редкое сочетание ценных свойств. Это один из самых легких металлов в природе: он почти в три раза легче железа, но при этом прочен, чрезвычайно пластичен и не подвержен коррозии, так как его поверхность всегда покрыта тончайшей, но очень прочной оксидной пленкой. Он не магнитится, отлично проводит электрический ток и образует сплавы практически со всеми металлами.

В три раза легче железа

Сравним по прочности со сталью

Поддается всем видам механической обработки

Тонкая оксидная пленка защищает от коррозии

Алюминий легко обрабатывается давлением, причем как в горячем, так и в холодном состоянии. Он поддается прокатке, волочению, штамповке. Алюминий не горит, не требует специальной окраски и не токсичен в отличие от пластика.

Очень высока ковкость алюминия: из него можно изготовить листы толщиной всего 4 микрона и тончайшую проволоку. А сверхтонкая алюминиевая фольга втрое тоньше человеческого волоса. Кроме того, по сравнению с другими металлами и материалами он более экономичен.

Высокая способность к образованию соединений с различными химическими элементами породила множество сплавов алюминия. Даже незначительная доля примесей существенно меняет характеристики металла и открывает новые сферы для его применения. Например, сочетание алюминия с кремнием и магнием в повседневной жизни можно встретить буквально на дороге – в форме литых колесных дисков, двигателей, в элементах шасси и других частей современного автомобиля. А если добавить в алюминиевый сплав цинк, то, возможно, вы сейчас держите его в руках, ведь именно этот сплав используется при производстве корпусов мобильных телефонов и планшетов. Тем временем ученые продолжают изобретать новые и новые алюминиевые сплавы.

Сегодня существование строительной, автомобильной, авиационной, космической, электротехнической, энергетической, пищевой и других отраслей промышленности невозможно без алюминия. Более того, именно этот металл стал символом прогресса – все новейшие электронные устройства, средства передвижения изготавливаются из алюминия.

Если заменить всю медную проводку в автомобиле
на алюминиево-циркониевую, то его общий
вес уменьшится на 12 кг

По расчетам Международного института алюминия (IAI), в мире накопилось около 400 миллионов тонн алюминия в инфраструктуре, быту, транспорте.

Казалось бы, вышеперечисленный набор характеристик уже сам по себе достаточен для того, чтобы алюминий стал металлом приоритетного выбора в индустрии, однако есть еще одна, не менее значимая характеристика. Использование алюминия может быть бесконечно: этот металл и сплавы из него можно неоднократно переплавлять без утраты механических характеристик. Ученые подсчитали, что 1 кг собранных и сданных в переплавку алюминиевых банок позволяет сэкономить 8 кг боксита, 4 кг различных фторидов и 14 кВт/ч электроэнергии.

Около 75% алюминия, выпущенного за все время существования отрасли, используется до сих пор.

В статье использованы фотоматериалы © Shutterstock и © Rusal.

Алюминий | Использование, свойства и соединения

алюминий

Посмотреть все СМИ

Ключевые люди:
Ганс Кристиан Эрстед Эмиль Ратенау Фридрих Вёлер Чарльз Мартин Холл
Похожие темы:
химический элемент обработка алюминия элемент группы бора

Просмотреть весь связанный контент →

алюминий (Al) , также пишется как алюминий , химический элемент, легкий серебристо-белый металл основной группы 13 (IIIa, или группы бора) периодической таблицы.

Алюминий является самым распространенным металлическим элементом в земной коре и наиболее широко используемым цветным металлом. В силу своей химической активности А. никогда не встречается в природе в металлическом виде, но его соединения в большей или меньшей степени присутствуют почти во всех горных породах, растительности и животных. Алюминий сосредоточен во внешних 16 км (10 милях) земной коры, из которых он составляет около 8 процентов по весу; его превосходят по количеству только кислород и кремний. Название алюминия происходит от латинского слова 9.0025 alumen , used to describe potash alum, or aluminum potassium sulfate, KAl(SO 4 ) 2 ∙12H 2 O.

Element Properties
atomic number
13
atomic weight 26.9815384
melting point 660 °C (1,220 °F)
boiling point 2,467 °C (4,473 °F)
specific gravity 2. 70 (at 20 °C [68 °F])
valence 3
electron configuration 1 s 2 2 s 2 2 p 6 3 S 2 3 P 1

ИСТОРИЯ И ИСТОРИЯ

Алюминий встречается в мягких породах Главного, главное, как в элюминосилика, в FeldsArs, FELDSAID; в полученной из них почве в виде глины; и при дальнейшем выветривании в виде бокситов и богатых железом латеритов. Бокситы, смесь гидратированных оксидов алюминия, являются основной алюминиевой рудой. Кристаллический оксид алюминия (наждак, корунд), встречающийся в некоторых магматических породах, добывается как природный абразив или в виде его более тонких разновидностей, таких как рубины и сапфиры. Алюминий присутствует в других драгоценных камнях, таких как топаз, гранат и хризоберилл. Из многих других алюминиевых минералов алунит и криолит имеют некоторое коммерческое значение.

Викторина по Британике

Факты, которые вы должны знать: Викторина по периодической таблице

До 5000 г. до н.э. люди в Месопотамии изготавливали прекрасную керамику из глины, состоящей в основном из соединений алюминия, а почти 4000 лет назад египтяне и вавилоняне использовали соединения алюминия в различных химических веществах и лекарствах. Плиний ссылается на квасцы, теперь известные как квасцы, соединение алюминия, широко используемое в древнем и средневековом мире для закрепления красителей в текстиле. Во второй половине 18 века такие химики, как Антуан Лавуазье, признали глинозем потенциальным источником металла.

Сырой алюминий был выделен (1825 г.) датским физиком Гансом Христианом Эрстедом путем восстановления хлорида алюминия амальгамой калия. Британский химик сэр Хамфри Дэви приготовил (1809 г.) железо-алюминиевый сплав путем электролиза плавленого оксида алюминия (оксида алюминия) и уже назвал этот элемент алюминием; слово позже было изменено на алюминий в Англии и некоторых других европейских странах. Немецкий химик Фридрих Велер, используя металлический калий в качестве восстановителя, получил алюминиевый порошок (1827 г.) и небольшие глобулы металла (1845 г.), по которым он смог определить некоторые его свойства.

Новый металл был представлен публике (1855 г.) на Парижской выставке примерно в то же время, когда он стал доступен (в небольших количествах за большие деньги) путем восстановления натрием расплавленного хлорида алюминия в процессе Девиля. Когда электроэнергия стала относительно обильной и дешевой, почти одновременно Шарль Мартин Холл в Соединенных Штатах и ​​Поль-Луи-Туссен Эру во Франции открыли (1886 г.) современный метод промышленного производства алюминия: электролиз очищенного оксида алюминия (Al 9).0027 2

O 3 ), растворенные в расплавленном криолите (Na 3 AlF 6 ). В течение 1960-х годов алюминий вышел на первое место, опередив медь, в мировом производстве цветных металлов. Для получения более подробной информации о добыче, переработке и производстве алюминия, см. обработка алюминия.

Применение и свойства

Алюминий добавляют в небольших количествах к некоторым металлам для улучшения их свойств для конкретных целей, например, в алюминиевых бронзах и большинстве сплавов на основе магния; или, для сплавов на основе алюминия, к алюминию добавляются умеренные количества других металлов и кремния. Металл и его сплавы широко используются в авиастроении, строительных материалах, потребительских товарах длительного пользования (холодильники, кондиционеры, кухонная утварь), электрических проводниках, химическом и пищевом оборудовании.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Чистый алюминий (99,996%) довольно мягкий и непрочный; технический алюминий (чистота от 99 до 99,6%) с небольшими количествами кремния и железа отличается твердостью и прочностью. Ковкий и очень податливый алюминий можно вытягивать в проволоку или сворачивать в тонкую фольгу. Плотность металла составляет всего около одной трети плотности железа или меди. Несмотря на свою химическую активность, алюминий обладает высокой коррозионной стойкостью, так как на воздухе на его поверхности образуется прочная оксидная пленка.

Алюминий является отличным проводником тепла и электричества. Его теплопроводность примерно вдвое меньше, чем у меди; его электропроводность, около двух третей. Он кристаллизуется в гранецентрированной кубической структуре. Весь природный алюминий представляет собой стабильный изотоп алюминия-27. Металлический алюминий, его оксид и гидроксид нетоксичны.

Алюминий медленно подвергается воздействию большинства разбавленных кислот и быстро растворяется в концентрированной соляной кислоте. Однако концентрированную азотную кислоту можно перевозить в алюминиевых цистернах, поскольку она делает металл пассивным. Даже очень чистый алюминий подвергается энергичному воздействию щелочей, таких как гидроксид натрия и калия, с образованием водорода и иона алюмината. Из-за большого сродства к кислороду мелкодисперсный алюминий при возгорании сгорает в монооксиде или диоксиде углерода с образованием оксида и карбида алюминия, но при температурах до красного каления алюминий инертен к сере.

Алюминий может быть обнаружен в концентрациях до одной части на миллион с помощью эмиссионной спектроскопии. Алюминий может быть количественно проанализирован как оксид (формула Al 2 O 3 ) или как производное азоторганического соединения 8-гидроксихинолина. Производное имеет молекулярную формулу Al(C 9 H 6 ON) 3 .

Соединения

Обычно алюминий является трехвалентным. Однако при повышенных температурах было получено несколько газообразных одновалентных и двухвалентных соединений (AlCl, Al 2 О, AlO). В алюминии конфигурация трех внешних электронов такова, что в некоторых соединениях (например, в кристаллическом фториде алюминия [AlF 3 ] и хлориде алюминия [AlCl 3 ]) голый ион Al 3+ образован потеря этих электронов, как известно, происходит. Однако энергия, необходимая для образования иона Al 3+ , очень велика, и в большинстве случаев атому алюминия энергетически выгоднее образовывать ковалентные соединения путем sp 2 гибридизация, как это делает бор. Ион Al 3+ может быть стабилизирован гидратацией, а октаэдрический ион [Al(H 2 O) 6 ] 3+ встречается как в водном растворе, так и в некоторых солях.

Ряд соединений алюминия имеет важное промышленное применение. Глинозем, встречающийся в природе в виде корунда, также производится в промышленных масштабах в больших количествах для использования в производстве металлического алюминия, а также в производстве изоляторов, свечей зажигания и различных других изделий. При нагревании оксид алюминия образует пористую структуру, которая позволяет ему поглощать водяной пар. Эта форма оксида алюминия, известная как активированный оксид алюминия, используется для сушки газов и некоторых жидкостей. Он также служит носителем для катализаторов различных химических реакций.

Анодный оксид алюминия (ААО), обычно получаемый путем электрохимического окисления алюминия, представляет собой наноструктурированный материал на основе алюминия с очень уникальной структурой. AAO содержит цилиндрические поры, которые можно использовать для различных целей. Это термически и механически стабильное соединение, а также оптически прозрачное и электрическое изолятор. Размер пор и толщину AAO можно легко адаптировать для определенных приложений, в том числе в качестве шаблона для синтеза материалов в нанотрубки и наностержни.

Другим важным соединением является сульфат алюминия, бесцветная соль, полученная действием серной кислоты на гидратированный оксид алюминия. Коммерческая форма представляет собой гидратированное кристаллическое твердое вещество с химической формулой Al 2 (SO 4 ) 3 . Он широко используется в производстве бумаги в качестве связующего для красителей и в качестве поверхностного наполнителя. Сульфат алюминия соединяется с сульфатами одновалентных металлов с образованием гидратированных двойных сульфатов, называемых квасцами. Квасцы, двойные соли формулы MAl(SO 4 ) 2 ·12H 2 O (где M представляет собой однозарядный катион, такой как K + ), также содержат ион Al 3+ ; М может быть катионом натрия, калия, рубидия, цезия, аммония или таллия, а алюминий может быть заменен множеством других ионов М 3+ , например галлия, индия, титана, ванадия, хрома, марганца. , железо или кобальт. Наиболее важной из таких солей является сульфат алюминия-калия, также известный как квасцы калия или квасцы калия. Эти квасцы имеют множество применений, особенно в производстве лекарств, текстиля и красок.

Реакция газообразного хлора с расплавленным металлическим алюминием дает хлорид алюминия; последний является наиболее часто используемым катализатором в реакциях Фриделя-Крафтса, т. Е. Синтетических органических реакциях, связанных с получением самых разных соединений, включая ароматические кетоны, антрохинон и его производные. Гидратированный хлорид алюминия, широко известный как хлоргидрат алюминия, AlCl 3 ∙H 2 O, используется в качестве местного антиперспиранта или дезодоранта для тела, который сужает поры. Это одна из нескольких солей алюминия, используемых в косметической промышленности.

Гидроксид алюминия, Al(OH) 3 , используется для водонепроницаемости тканей и для производства ряда других соединений алюминия, включая соли, называемые алюминатами, которые содержат группу AlO 2 . С водородом алюминий образует гидрид алюминия, AlH 3 , полимерное твердое вещество, из которого получают тетрагидроалюминаты (важные восстановители). Алюмогидрид лития (LiAlH 4 ), образующийся при взаимодействии хлорида алюминия с гидридом лития, широко используется в органической химии, например, для восстановления альдегидов и кетонов до первичных и вторичных спиртов соответственно.

Эта статья была недавно отредактирована и обновлена ​​Эриком Грегерсеном.

Использование, дебаты о раке, исследования и многое другое

Многие люди используют дезодорант или антиперспирант каждый день. Эти два продукта являются эффективными способами борьбы с потливостью, но они работают по-разному:

  • Дезодоранты дезодорируют или улучшают запах пота.
  • Антиперспиранты заставляют вас меньше потеть.

Алюминий не содержится в дезодорантах.

С другой стороны, большинство антиперспирантов содержат алюминий. Продукты «два в одном» — это и дезодорант, и антиперспирант — также будут содержать алюминий.

Антиперспиранты помогают меньше потеть, блокируя поры — крошечные отверстия в коже, через которые выходит пот. Антиперспиранты содержат много ингредиентов, в том числе соли алюминия. Соли алюминия растворяются на коже и «тают» в порах. Это помогает закупорить поры и остановить потоотделение.

Врачи и дерматологи используют антиперспиранты, отпускаемые по рецепту, для лечения заболеваний, вызывающих чрезмерное потоотделение, таких как гипергидроз. Эти антиперспиранты могут содержать от 10 до 30 процентов хлоргидрата алюминия, распространенного типа соли алюминия. Это намного выше, чем количество алюминия в антиперспирантах, отпускаемых без рецепта.

Некоторые сторонники продуктов, не содержащих алюминий, утверждают, что алюминий препятствует выведению токсинов с потом, которые потенциально могут вызвать рак.

Но раковые токсины не выводятся из организма через подмышечные (подмышечные) лимфатические узлы. Почки и печень помогают выводить эти токсины из организма, и в конечном итоге они выводятся с мочой и фекалиями.

Наиболее распространенное опасение, что алюминий в антиперспирантах и ​​других продуктах для местного применения связан с раком молочной железы. Однако существует мало доказательств того, что обычное воздействие алюминия вызывает рак или любое другое заболевание.

Рак молочной железы

Американское онкологическое общество отмечает, что нет научных доказательств того, что использование антиперспирантов вызывает или усугубляет рак молочной железы.

Но некоторые исследования показали, что алюминий, по крайней мере в больших количествах, может быть вредным.

В ходе исследования, проведенного в 2017 году, сотни женщин спросили, как часто они пользуются антиперспирантами и как долго. Группа с раком груди сообщила о себе, что они использовали антиперспиранты несколько раз в день, начиная с возраста 30 лет.

Группа женщин без рака молочной железы сообщила о том, что они реже пользовались антиперспирантами. Обе группы имели соли алюминия в тканях молочной железы. Но у женщин, у которых был рак груди в верхнем внешнем квадранте и которые чаще использовали алюминиевые продукты, уровень алюминия в тканях груди был выше, чем у женщин без рака.

Исследователи не смогли исключить эффект обратной причинности. Это означает, что возможно, что алюминий просто накапливается в опухолях молочной железы и не обязательно вызывает или увеличивает риск возникновения опухолей молочной железы.

Исследование 2018 года предполагает, что слишком много алюминия может изменить то, как организм вырабатывает женский гормон эстроген или реагирует на него. Изменения в эндокринной (гормональной) системе со временем могут нанести вред вашему организму.

С другой стороны, другие исследования также показывают, что кожа поглощает очень мало (0,01–0,06 процента, согласно одному литературному обзору) алюминия, нанесенного на нее с помощью таких продуктов, как антиперспирант.

Необходимы более убедительные исследования влияния алюминия на рак.

Заболевание почек

Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) требует, чтобы производители антиперспирантов добавляли на этикетку предупреждение: «Если у вас заболевание почек, перед использованием проконсультируйтесь с врачом».

Это навело некоторых людей на мысль, что алюминий в этих продуктах также может повышать риск заболевания почек.

Но алюминий в антиперспиранте не представляет риска для почек для обычного человека. Ваши почки помогают избавиться от алюминия и других отходов в организме. Кроме того, Национальный почечный фонд (NKF) подтверждает, что невозможно поглощать достаточное количество алюминия через кожу, чтобы повредить почки.

Если у вас хроническая болезнь почек (ХБП)

NKF рекомендует людям избегать средств по уходу за кожей, содержащих алюминий, если у них уже есть 4 стадия болезни почек.

На этом этапе почки работают только на 30 процентов и не могут достаточно быстро выводить алюминий (также присутствующий в почечных препаратах и ​​диализирующей жидкости). Это может позволить ему накапливаться в вашем теле и вызывать проблемы со здоровьем.

Заболевание костей

Согласно исследованию 2018 года, повышенный уровень алюминия в результате хронического диализа может привести к ослаблению костей у людей с заболеваниями почек. Это заболевание костей известно как остеомаляция.

Нарушения памяти

Согласно обзору литературы 2016 года, хроническое воздействие алюминия может увеличить риск развития болезни Альцгеймера.

Обзор литературы 2018 года показал, что у взрослых с болезнью Альцгеймера более высокий уровень металлов, таких как алюминий, ртуть и кадмий, в крови. Но считалось, что эти металлы происходят из окружающей их среды.

Необходимы дополнительные исследования, чтобы выяснить, связаны ли алюминий или другие металлы в организме с нарушениями памяти.

Антиперспирантов, не содержащих алюминий, не существует, но если вы хотите уменьшить запах тела, вы можете сделать это без использования антиперспиранта.

Дезодоранты не содержат алюминия. Избегайте алюминия, попробовав один из следующих вариантов:

  • дезодорант без отдушек
  • гипоаллергенный дезодорант
  • дезодорант на основе пищевой соды, который можно приготовить дома

Другие продукты и ингредиенты, которые следует учитывать, включают:

  • низкоконцентрированные альфа-гидроксикислоты (AHA) и другие кислоты для лица, хотя они могут вызывать раздражение кожи
  • порошок аррорута
  • порошок кукурузного крахмала

Как читать этикетки алюминия

FDA требует от производителей антиперспирантов указывать алюминий на этикетках своих продуктов.

Проверьте этикетки дезодорантов и средств по уходу за кожей на наличие алюминия. Вы можете встретить его под любым из следующих названий:

  • соли алюминия
  • соединения алюминия
  • хлоргидрат алюминия
  • алюминий цирконий тетрахлоргидрекс гли

Было ли это полезно?

Антиперспиранты содержат алюминий, который помогает меньше потеть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *