Редуктор в разрезе – Редуктор и все, что нужно о нем знать — описание,виды,фото,видео

Сборочный чертеж редуктора — Мегаобучалка

 

Сборочный чертеж редуктора выполняют на основании его эс­кизного проекта. Содержание эскизного проекта редуктора перено­сят на лист чертежной бумаги формата А1: разрез по плоскости разъема корпуса и крышки редуктора — в том же масштабе, а глав­ный вид и вид сбоку обычно уменьшают. Затем переходят к проек­тированию корпуса, который является ответственным узлом, так как воспринимает усилия, возникающие в зубчатых передачах, и силы, приложенные к выходным концам валов. Конструкция его должна быть прочной и жесткой, так как его деформации могут вызвать пе­рекос опор, валов и, следовательно, неравномерное распределение нагрузок по длинам зубьев. Корпус редуктора может быть как свар­ным, так и литым. Толщину стенки литого корпуса, отвечающую требованиям технологии литья и необходимой жесткости, определя­ют по формуле

 

,

где — крутящий момент на тихоходном валу редуктора, Н·м.

Толщину стенок сварного корпуса принимают равной 0,7 тол­щины стенок литого. На чертеже проводят штриховой линией на расстоянии δ от контура внутренней стенки корпуса след внешней стенки. Плоскости стенок, встречающиеся под прямым и тупым уг­лом, сопрягают дугами радиусами r и R, как показано на рисунке 12, а. Если стенки встречаются под острым углом, рекомендуется их соединять вертикальной стенкой, как на рисунке 12, б. В этих случа­ях принимают:

 

, .

Рисунок 12

 

В отдельных местах корпуса (например, в местах расположения обрабатываемых платиков, приливов, бобышек, во фланцах) толщи­ну стенки увеличивают до δ1. Если отношение толщины , то сопряжение стенок производят радиусом , как показано на рисунке 12, в.При одно сечение должно переходить в другое плавно, как на рисунке 12, г, д. При этом прини­мают , , .

При конструировании корпусных деталей отделяют обрабаты­ваемые поверхности (приливы под подшипники, смотрового люка, сливные пробки, рым-болты) от черных (необрабатываемых) с уче­том припуска на обработку. Обрабатываемые места выполняют в ви­де платиков (выступов) высотой



.

Корпуса редукторов обычно выполняют разъемными. Они со­стоят из двух частей: собственно корпуса и крышки. Разъемы чаще всего выполняют в плоскости, параллельной или перпендикулярной основанию корпуса. Реже применяются наклонные разъемы, как менее технологичные. Для крепления крышки к корпусу по их кон­турам предусматривают специальные фланцы, в которых выполняют отверстия для размещения крепежных болтов. Болты должны равно­мерно располагаться по фланцам для надежного обжатия и гермети­зации стыка. Герметичность разъема обеспечивается механической обработкой и смазыванием разъема перед сборкой герметикой, шел­лаком, жидким стеклом или суриком. Болты, расположенные у под­шипниковых узлов, назначаются больших диаметров.

Толщину верхнего фланца корпуса (для присоединения крыш­ки), а также толщину фланца на крышке определяют по формуле

.

Толщину нижнего фланца корпуса (для крепления редуктора к раме) устанавливают по зависимости

.

Ширина фланца определяется как сумма толщины δ стенки корпуса и величины, необходимой для размещения болтов и получе­ния наименьшего габарита, обязательного для работы стандартными гаечными ключами. Диаметры и число болтов выбирают по таблице 8 в зависимости от суммарного межосевого расстояния .

 

Таблица 8

 

Болт крепления редуктора к раме Диаметры болтов, стягивающих крышку и корпус
одноступенчатого двухступенчатого трехступенчатого
до d Кол. до d Кол. до d Кол. по фланцу
у подшипников
М14 MI6 M20    
MI6 М20 М24 0,6·d 0,75·d
М20 М24 М30    
  М30      

 

Расстояния от внешних стенок корпуса до осей размещения го­ловок болтов или гаек и от осей до краев фланцев должны соответ­ствовать рисунку 13 и таблице 9.

 

Рисунок 13

 

Таблица 9

 

d М8 М10 М12 M14 М16 М18 М20 М22 М24 М27 М30 М36
S
Е
Аmin
С

 

Вычертив фланцы, используя изложенные выше рекомендации, изображают приливы под подшипники на корпусе и на крышке ре­дуктора. Наружные диаметры приливов вычисляют по формуле

,

здесь D — наружный диаметр подшипника.

Для придания необходимой жесткости корпус усиливают реб­рами, расположенными чаще всего у приливов под подшипники. Кроме того, ребра увеличивают поверхность охлаждения корпуса, поэтому их следует ориентировать по направлению движения возду­ха: при естественном охлаждении ребра располагают вертикально, а при принудительном — горизонтально, так как принудительный поток воздуха обычно направляют горизонтально. Толщину ребер у их ос­нования принимают равной (0,9…1)·δ, а высоту – . Попе­речное сечение ребер жесткости выполняют с уклоном, как на ри­сунке 14.

Рисунок 14

 

Для подъема и транспортировки крышки корпуса и собранного редуктора применяют проушины, отливая их заодно с крышкой, как показано на рисунке 15На рисунке 15, а и б проушина выполнена в виде ребра с отверстием, а на рисунке в) — в виде сквозного отвер­стия в корпусе.

Для подъема и транспортировки корпуса предусматривают про­ушины или крючья, которые отливают заодно с корпусом, как изо­бражено на рисунке 16.

 

 

 

Рисунок 15

 

 

Рисунок 16

 

Чтобы при затяжке болтов (винтов) не происходило смещение крышки относительно корпуса, что может вызвать деформацию подшипников, перед расточкой отверстий под подшипники взаимное положение крышки и корпуса фиксируют двумя коническими штиф­тами, расположенными во фланцах. Их помещают на возможно большем расстоянии друг от друга. Обработка отверстий под штиф­ты в корпусе производится совместно с крышкой, поэтому все дан­ные для обработки этих отверстий (координаты расположения, ко­личество отверстий, шероховатость поверхностей, размеры) поме­щают на сборочном чертеже редуктора, как показано на рисунке 17.

 

Рисунок 17

 

При работе редуктора масло загрязняется продуктами износа и стареет, поэтому его периодически меняют. Днище корпуса и слив­ное отверстие должны быть спроектированы так, чтобы не было за­стойных зон, препятствующих полному сливу масла. С этой целью днище выполняют с уклоном 1-2° в сторону маслоспускного отвер­стия, а низ отверстия – ниже днища. Для выхода инструмента при обработке отверстия в отливке предусматривают местное углубле­ние. Варианты выполнения сливного отверстия изображены на ри­сунке 18.

 

Рисунок 18

 

 

Отверстие закрывают пробкой с цилиндрической или конической резьбой, как изображено на рисунке 19.

Рисунок 19

 

Размеры пробок с цилиндрической резьбой приведены в таблице 10.

 

Таблица 10

 

d D D1 L l b t
М16 1,5
21,9
1,9
M20 l,5 25,4 2,2

 

Размеры пробок с конической резьбой по ГОСТ 6211-81 даны в таблице 11.

 

Таблица 11

 

d D L b
R 1/2 20,9 7,5
R3/4 26,4 7,5

 

Для создания герметичности соединения под пробку с цилинд­рической резьбой ставят уплотняющие прокладки из алюминия или паронита. Для этой цели применяют также кольцо из маслостойкой резины, которое помещают в канавку глубиной t, чтобы оно не вы­давливалось пробкой при ее завинчивании. Коническая резьба созда­ет герметичное соединение без дополнительного уплотнения. По­этому желательно применение пробок с такой резьбой.

 

 

Контроль уровня масла производится жезловым, трубчатым или круглым маслоуказателем. Наиболее распространен, ввиду простоты конструкции, жезловый маслоуказатель.

Если крепление жезлового маслоуказателя расположено вблизи масляной ванны, то устанавливают его на резьбе с прокладкой (для предотвращения течи масла), а если далеко — то по посадке Н11/d11. Маслоуказатель устанавливают в специально выполненные на корпусе или крышке редуктора приливы, как показано на рисунке 20.

 

Рисунок 20

 

На стержень жезлового маслоуказателя следует нанести риски предельных уровней масла. Так как уровень масла контролируют по его следу на стержне вывернутого маслоуказателя при быстром его вытаскивании, то риски должны быть нанесены (на разрезе при за­вернутом маслоуказателе) ниже фактического уровня масла на вели­чину длины резьбы.

Жезловой маслоуказатель необходимо применять для цилинд­рических редукторов, выполненных по развернутой схеме, а также для червячных с межосевым расстоянием мм. Для чер­вячных редукторов с мм целесообразно использовать трубчатый маслоуказатель. Круглый маслоуказатель рекомендуется для планетарных редукторов, мотор-редукторов и редукторов (коробок скоростей) с принудительной смазкой (контролируют рабо­ту масляного насоса).

Для заливки масла в редуктор и контроля правильности зацеп­ления передач в крышке редуктора выполняют смотровой люк пря­моугольной или круглой формы с максимально возможными разме­рами. Люк закрывают крышкой, изготовленной из стального листа или литой из чугуна, алюминия, или прессованной из пластмассы. Под крышку ставят уплотняющие прокладки из технического карто­на марки А толщиной 1-1,5 мм или резины марки МБ толщиной 2-3 мм.

При работе редуктора (в связи с нагревом масла и воздуха) по­вышается давление внутри корпуса, что приводит к просачиванию масла через уплотнения и стыки. Чтобы избежать этого, внутреннюю полость корпуса сообщают с внешней средой путем установки от­душины в его верхней точке, чаще всего в крышке смотрового люка. Конструкции отдушин представлены на рисунке 21.

 

Рисунок 21

 

Конструкции подшипниковых узлов зависят от типа выбранных подшипников и способа их смазки.

При пластичной смазке подшипники закрывают мазеудержи-вающими шайбами, которые препятствуют вытеканию смазки в по­лость редуктора и попаданию жидкого масла от смазки зацеплений передач на подшипники. Для этого мазеудерживающие шайбы 1 должны выступать за стенку корпуса или торец стакана (при уста­новке подшипников в стакан), чтобы жидкое масло отбрасывалось центробежной силой, как показано на рисунке 22.

 

 

Рисунок 22

 

При смазке подшипников разбрызгиванием их следует защи­щать от избытка масла, вытекающего из зубчатого или червячного зацепления, расположенного вблизи подшипникового узла. В этих случаях для ограничения попадания масла в подшипник перед ним на валу устанавливается стальная или пластмассовая маслоотражательная шайба 1. Между этой шайбой и корпусом необходим зазор для небольшого поступления масляного тумана в подшипник. Кон­струкция такого узла представлена на рисунке 23.

 

Рисунок 23

 

Снаружи подшипник закрывают привертными, как на рисунке 23, или закладными, как на рисунке 22, крышками 2. Необходимый осевой зазор в подшипниках обеспечивают установкой набора тон­ких металлических прокладок 3 под фланцы привертных крышек, а в конструкциях с закладными крышками — установкой компенсаторного кольца 3 при применении шарикоподшипника или нажимною винта при применении конических роликоподшипников.

Для того, чтобы в последствии можно было нанести размеры на рабо­чие чертежи корпуса и крышки редуктора, нужно на его сборочном чертеже выполнить разрезы по сливной пробке, указателю уровня масла, отдушине, элементам крепления, рым-болту (при его нали­чии).

Вычерчивают разрезы по крепежным болтам и винтам для оп­ределения их размеров, которые заносятся в спецификацию. Следует обращать внимание на определение глубины завинчивания винтов, так как от этого зависят их размеры. Весь крепеж в редукторах при­меняют с пружинными шайбами.

Раскрывают прямоугольные (конические) контуры зубчатых и червячных колес, полученные еще на стадии эскизного проектирова­ния, то есть конструируют эти детали, используя рекомендации учебных пособий. Следует заметить, что форма зубчатых изделий зависит от типа их производства, простейшие формы имеют колеса, изготавливаемые в единичном и мелкосерийном производствах.

Длину посадочного отверстия колеса (ступицы) принимают не меньше ширины зубчатого венца.

 

.

 

Принятую длину ступицы lСТсогласуют с расчетной, полученной при расчете соединения шпоночного, шлицевого или с натягом, вы­бранного для передачи вращающего момента с колеса на вал, и с диаметром посадочного отверстия d.

Обозначают посадки зубчатых колес на валы. Для обеспечения установки колеса на шейку вала с гарантированным натягом преду­сматривают на этой шейке конусный или цилиндрический, как на рисунке 24, направляющий участок, выполненный по d11, который будет гарантировать зазор при сборке колеса с валом.

 

 

 

Рисунок 24

 

Для легкого совмещения шпоночного паза колеса со шпонкой вала граница допуска d11 должна перекрывать центр закругления шпон­ки.

 

 

megaobuchalka.ru

Редуктор одноступенчатый цилиндрический чертеж — Чертежик

Редуктор одноступенчатый цилиндрический чертеж выполнен на двух листах миллиметровой бумаги: общий вид и в разрезе. На листах указаны габаритные размеры. Элементы одноступенчатого цилиндрического редуктора были начерчены исходя из нормативных документов ГОСТ. Размеры валов, колеса, корпуса, отверстий и т.д. предварительно рассчитывались.

Редуктор одноступенчатый цилиндрический чертеж общего видаРедуктор одноступенчатый цилиндрический чертеж в разрезе

Методичка по которой производился расчет с дальнейшим черчением:методичка расчет редуктора

Навигация по записям

chertegik.ru

Цилиндрические редукторы

Редуктором (цилиндрическим) называют механизм, который преобразует высокую угловую скорость вращения входного вала в низкую на выходном валу. При этом крутящий момент на выходном валу возрастает пропорционально уменьшению скорости вращения.

Редуктор (цилиндрический) состоит из корпуса, в котором расположены зубчатые колеса, валы, подшипники валов, системы их смазки и др. Наличие корпуса обеспечивает безопасность, хорошую смазку и, следовательно, высокий КПД, в сравнении, например, с открытыми передачами.

Цилиндрический редуктор – самый распространенный тип редукторов за счет простоты передачи и максимального КПД. Основу редуктора составляют зубчатые передачи – прямозубые цилиндрические или конические или косозубые. Редуктор может состоять из одной или нескольких ступеней. Число ступеней выбирается исходя из требуемого передаточного отношения – чем оно выше, тем большее число ступеней необходимо.

Описание и принцип работы:

Цилиндрический редуктор представляет собой одну или несколько последовательно соединенных цилиндрических передач, заключенных в общий корпус. Редуктор имеет входной и выходной валы, которые посредством муфт или иных соединительных элементов соединяются с двигателем и рабочей машиной соответственно. В свою очередь цилиндрическая зубчатая передача представляет собой пару зубчатых колес, находящихся в зацеплении друг с другом.

Когда к входному валу прикладывается вращающий момент, он, как и закрепленное на нем зубчатое колесо, приводится в движение. Посредством цилиндрической передачи усилие передается от колеса входного вала к колесу, находящемуся с ним в зацеплении. Колеса изготавливаются разных диаметров и с разным количеством зубьев, причем колесо с меньшим числом зубьев называется шестерней, а с большим – колесом. Вращающий момент последовательно передается с входного вала на промежуточный, а с промежуточного на выходной (в случае двухступенчатого редуктора).

Основные характеристики редукторов

Основные характеристики редукторов: КДП, частота вращения входного и выходного валов, передаточное отношение, передаваемая мощность, количество ступеней и тип передач.

Передаточное отношение – это отношение скоростей вращений входного к скорости вращения выходного вала.

i = wвх/wвых

КПД редуктора определяется отношением мощности на входном валу к мощности на выходном валу

n = Pвх/Pвых

Классификация цилиндрических редукторов:

Цилиндрические редукторы могут классифицироваться по различным признакам, таким как количество ступеней, виды колес, виды резьбы и т.д. Рассмотрим основные варианты классификации.

В зависимости от типов зубьев колес:

  • прямозубые
  • косозубые
  • криволинейные
  • шевронные

Прямозубые колеса наиболее просты в изготовлении, однако именно они являются наиболее шумными по сравнению с косозубыми и шевронными. Кроме того, из-за постоянных ударов при контакте пар зубьев создается вибрация, являющаяся причиной повышенного износа.

Косозубые колеса более сложны по сравнению с прямозубыми, однако эксплуатационные характеристики у них выше, что выражается в меньшей шумности, меньшем износе и повышенной плавности работы. За это приходится расплачиваться возникновением осевой силы, негативные воздействия необходимо компенсировать. Последующим улучшением косозубого колеса можно считать колесо с криволинейными зубьями. У таких колес эксплуатационные характеристики еще выше, но вместе с тем возрастает сложность изготовления такого типа колес, для чего требуется специальное оборудование.

Недостаток косозубых колес в виде возникающей осевой силы может быть решен путем установки на валу второго такого же колеса, но имеющего противоположный наклон зубьев. Тем самым достигается взаимная компенсация осевых сил двумя половинками колеса, которое получило название шевронное. С их помощью можно достигнуть крайне высокой плавности хода. У шевронных колес угол зубьев, как правило, больше, чем у косозубых.

По взаимному расположению валов:

  • С параллельными осями валов
  • С перекрещивающимися осями валов

Большинство цилиндрических редукторов имеют параллельное расположение валов. В случае если оси входного и выходного вала редуктора совпадают, то такой редуктор называют соостным. Соостный редуктор должен состоять минимум из двух передач, чтобы было возможным размещение входного и выходного вала на одной оси. Если необходима компоновка цилиндрического редуктора с перекрещивающимися осями валов, то используются специальные винтовые колеса.

По количеству ступеней:

  • Одноступенчатые
  • Двухступенчатые
  • Трехступенчатые
  • Многоступенчатые

Выбор необходимого количества ступеней обуславливается передаточным числом, которое должен обеспечивать цилиндрический редуктор. Различной компоновкой ступеней в редукторе можно добиться различного положения относительно друг друга входного и выходного валов.

Варианты исполнения цилиндрических передач:

  • развернутая;
  • раздвоенная;
  • соосная.

Развернутая схема самая распространенная за счет рациональной унификации деталей редуктора. Например, одни и те же шестерни и зубчатые колеса можно использовать в разных редукторах, что приводит к удешевлению продукции в серийном производстве.

Также с целью унификации принимают левое направление зубьев для шестерни и правое для колеса. Однако в единичном производстве удобней принимать левое расположение для шестерни и правое для колеса второй ступени из-за того, чтобы уравновесить осевые силы на промежуточном валу и снизить осевые нагрузки на опоры.

Развернутую схему используют при межосевом расстоянии до 800 мм. Редукторы, изготовленные по развернутой схеме, имеют удлиненную форму, что приводит к перерасходу металла до 20% по сравнению с редуктором с раздвоенной схемой.

Раздвоенная схема может применяться для тихоходной и для быстроходной ступеней. Более рациональной является вариант с быстроходной ступенью, так как при нем возможно изготовить промежуточный вал как «вал-шестерню» и плавающий быстроходный вал.

Раздвоеная схема «разносится» за счет использования косозубых передач, фактически получая шевронную передачу.

Соосная схема предусматривает расположение входного и выходного вала на одной оси. Такие редукторы имеют массу и габариты близкие к редукторам с развернутой схемой. В данной схеме быстроходная ступень является недонагруженной, а тихоходная наоборот – перегруженой.

Двухступенчатые цилиндрические редукторы в среднем имеют диапазон передаточных отношений от 6,3, до 70.

Ресурс цилиндрических редукторов – 25 тысяч часов.

Достоинства и недостатки:

Они обладают рядом достоинств, обуславливающих столь широкое их применение:

Цилиндрические редукторы позволяют передавать усилие с высокой эффективностью, что обеспечивает их КПД в районе 98-99%. Во многом это обуславливается незначительными силами трения, возникающими в процессе работы. Это преимущество делает цилиндрические редукторы весьма экономичными, что способствовало их широкому распространению.

  • Низкое тепловыделение

Высокий КПД приводит к тому, что лишь малая часть передаваемой энергии теряется безвозвратно. Следствием этого является то, что лишь малая часть энергии идет на нагрев деталей передачи, что и обуславливает низкое тепловыделение. Это преимущество позволяет обходиться без установки на редукторы каких-либо дополнительных систем охлаждения, а также увеличивает эксплуатационную надежность редуктора.

  • Способность передавать высокие мощности

Из-за особенностей конструкции цилиндрические редуктора не склонны к заеданиям, высокому КПД и незначительному тепловыделению цилиндрические редукторы хорошо подходят для передачи больших мощностей. Если в отдельных случаях потерями можно пренебречь, когда использование другого типа редукторов более выгодно или единственно применимо, то в крупных агрегатах вопрос энергоэффективности выходит на первое место.

  • Надежность работы даже в условиях продолжительных период с частыми пусками-остановами

Данное преимущество во многом обусловлено небольшим трением скольжения в цилиндрической передаче, за счет чего обеспечивается малый износ рабочих деталей. В отличие от червячных редукторов цилиндрические также достаточно надежны в условиях режима работы с частыми пусками и остановами или пульсирующей нагрузкой, так как подобный режим не приводит к чрезмерному увеличению скорости износа.

  • Малый люфт выходного вала

В сравнении с червячными редукторами цилиндрические обладают значительно меньшим люфтом выходного вала, за счет чего достигается их высокая относительно других типов редукторов кинематическая точность, что позволяет использовать цилиндрические редуктора в системах, предъявляющих повышенные требования к точности, таких как приводы устройств позиционирования.

  • Возможность вращения валов в любую сторону

Данную особенность можно отнести как достоинствам, так и к недостаткам в зависимости от условий применения редуктора. Полная обратимость может быть как полезна, когда необходимо проворачивать выходной вал, так и нежелательна, если, к примеру, рассматривать подъемный механизм, в устройстве которого может возникнуть необходимость дополнительно устанавливать тормозной механизм.

Из недостатков цилиндрических редукторов обычно выделяют следующие пункты:

  • Ограничение по передаточному числу

Передаточное отношение одной ступени зубчатой цилиндрической передачи не рекомендуется делать больше 6,3. Соответственно, если от редуктора требуется большее передаточное число, то приходится вводить дополнительные ступени. Это влечет за собой непомерное увеличение габаритов цилиндрического редуктора и возрастание его металлоемкости. В большинстве случаев применение громоздких цилиндрических редукторов с большим передаточным числом является нерациональным.

  • Повышенная шумность

При работе цилиндрического редуктора линия контакта не постоянна, а возникает вновь при вхождении в контакт очередной пары зубьев. Это приводит к тому, что показатели шумности у цилиндрических редукторов оказываются выше, чем у аналогичных червячных редукторов.

Сфера применения:

Цилиндрические редукторы являются одним из наиболее распространенных типов редукторов. Сложно назвать область, где бы они ни применялись в большей и меньшей степени. Начиная от строительства и машиностроения, заканчивая робототехникой и военно-промышленным комплексом. Во многом такая распространенность объясняется тем, что цилиндрические редукторы чаще всего используются в электроприводах машин или входят в состав моторов-редукторов. Как упоминалось выше, одной из основных причин такого распространения является высокий КПД цилиндрических редукторов, что делает его использование наиболее экономически выгодным.

Расчет цилиндрического редуктора:

Как правило, перед началом проектирования часть характеристик редуктора уже задана. Положим, что передаточное число и вращающий момент на шестерне известны.

Предварительно определяется ориентировочное значение межосевого расстояния:

aw1 = K·(u∓1)·∛(Tш/u)

aw1 – предварительное межосевое расстояние, мм
K – поправочный коэффициент, зависящий от твердости зубьев колеса и шестерни
u – передаточное число редуктора
Tш – вращающий момент на шестерне, H·м
∓1 – знак плюс соответствует внешнему зацеплению, знак минус – внутреннему

Далее рассчитывается окружная скорость:

v = [2·π·aw1·n1]/[6·104·(u∓1)]

v – окружная скорость, м/с
aw1 – предварительное межосевое расстояние, мм
n1 – частота вращения шестерни, с-1
u – передаточное число редуктора
∓1 – знак плюс соответствует внешнему зацеплению, знак минус – внутреннему

Полученное значение проверяется по таблицам допустимой окружной скорости в зависимости от степени точности передачи.

После этого производят уточнение значения межосевого расстояния:

aw = K1·(u∓1)·∛((KН·Tш)/(ψab·u·σH²))

aw —  уточненное межосевое расстояние, мм
K1 – поправочный коэффициент (прямозубые колеса – 540; косозубые и шевронные — 410), МПа1/3
u – передаточное число редуктора
±1 – знак плюс соответствует внешнему зацеплению, знак минус – внутреннему
KН – поправочный коэффициент нагрузки
Tш – вращающий момент на шестерне, H·м
[δ] – допустимое напряжение, МПа
ψab – коэффициент ширины, зависящий от ширины колес

Полученное значение межосевого расстояния используют для нахождения предварительных геометрических размеров колес.

Делительный диаметр:

d2 = (2·aw·u)/(u∓1)

Ширина:

b2 = ψab·aw

Рассчитывается минимальное (из условий прочности) и максимальное (из условия неподрезания зубьев) значение модуля передачи:

mmin = [Km·KF·Tш·(u∓1)]/[aw·b2·σF]

Km – поправочный коэффициент (прямозубые колеса – 3400; косозубые — 2800)
KF – коэффициент нагрузки
σF – допустимые напряжения изгиба зубьев колеса или шестерни, МПа

mmax = [2·aw]/[17·(u∓1)]

Искомое значение модуля передачи выбирается из полученного диапазона, берется минимальное из стандартного ряда.

Полученное значение модуля зацепления используется для расчета минимального необходимого угла наклона зубьев (в случае косозубых или шевронных колес).

Для косозубых колес:

βmin = arcsin⁡((4·m)/b2)

Для шевронных колес:

βmin = 25°

Также с помощью модуля зацепления определяется общее число зубьев:

zоб = 2·aw·(cosβmin)/m

Полученное значение округляется в меньшую сторону, и с его помощью находится истинное значение угла наклона зубьев:

β = arccos[(zоб·m)/(2·aw)]

А также число зубьев шестерни и колеса

Для шестерни:

zш = zоб/(u∓1)

Полученное значение не должно быть меньше минимального. Для прямозубых колес оно составляет 17, а для косозубых и шевронных находится по формуле zмин=17·(cosβ)3. В случае, если получившееся значение оказывается меньше минимального, то передачу изготавливают со смещением, чтобы предотвратить подрез зубьев в ходе эксплуатации. Коэффициент смещения рассчитывается по следующей формуле:

x = (17-u)/17

Число зубьев колеса:

zк = zоб-zш

Фактическое передаточное число определяется на основе полученных чисел зубьев:

uитс = zк/zш

Получившееся значение не должно отличаться от первоначального более чем на 3% (в случае одноступенчатых), на 4% (в случае двухступенчатых) и 5% (в случае многоступенчатых).

Конечные геометрические параметры зубчатых колес:

Делительный диаметр шестерни:

d1 = (zоб·m)/cosβ

Делительный диаметр колесf:

d2 = 2·aw∓d1

«+» – для внутреннего зацепления
«-» – для внешнего зацепления

В завершение проводится проверочный расчет на прочность.

ence-gmbh.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *