Редуктор что это такое в автомобиле: Автомобильный блог | Обзоры, Тест-драйвы, ПДД и советы по обслуживание автомобилей

Содержание

Колесный редуктор

О проекте

Колесный редуктор предназначен для работы в составе комплекта тягового электрооборудования электромеханической трансмиссии современных большегрузных грузовых автомобилей или специальных платформ для перевозки грузов.

Колесный редуктор применяется в паре с электродвигателем образуя современное электромотор-колесо. Возможны варианты изготовления колесного редуктора с необходимым заказчику фиксированным передаточным отношением, максимальным входным крутящим моментом электродвигателя до 800 Н·м и частотой вращения до 4500 об/мин.

В зависимости от потенциального применения можно выбрать вариант комплектации колесного редуктора рабочей тормозной системой, стояночным тормозным механизмом и системой подкачки шин.

Колесный редуктор подходит для различных типов трансмиссий: гибридной, электрической, с накопителем или питанием от контактной сети, в которых основные элементы — это тяговые электромотор-колеса. Малый габарит колесного редуктора в осевом направлении позволяет осуществлять портальную компоновку заднего моста для городских низкопольных автобусов, а также использовать его для привода поворотных колес многоосных шасси и автопоездов с наименьшими ограничениями по углу поворота.

Такие современные типы трансмиссий активно развиваются, так как значительно облегчают конструкцию транспортных средств с точки зрения компоновки и высвобождают полезное пространство и вес для перевозимых грузов. Непосредственное управление каждым электромотор-колесом позволяет перераспределять крутящий момент и изменять вектор тяги для улучшения управляемости и, если необходимо, проходимости.

Колесный редуктор способен работать в прямом и реверсивном режиме, а также пропускать поток мощности в обратном направлении, это дает возможность использовать его в паре с электродвигателем не только для рекуперации энергии торможения, но и как тормоз-замедлитель на протяженных уклонах. Такая многофункциональность позволяет значительно уменьшить требования к устройству тормоза-замедлителя вплоть до его упразднения.

Редуктор заднего моста: устройство, типы, неисправности, замена

Как всем известно, классическим силовым агрегатов автомобиля является двигатель внутреннего сгорания. Разумеется, по ходу распространения электрического транспорта такой двигатель будет отходить в прошлое, но этот момент еще очень далек. А пока всем автолюбителям стоит разбираться, как работают основные узлы транспорта. Так вот, двигатель! Для движения автомобиля энергия от двигателя отбирается с коленчатого вала. Прямая передача энергии ведущим колесам нецелесообразна – они будут вращаться чрез чур быстро. Для этого в автотранспорте предусмотрено сразу два устройства – коробка передач и специальный редуктор моста. Об особенностях последнего, неисправностях и обслуживании – в материале Avto.pro.

Экскурс в историю

Изобретению редукторов мир обязан инженерам, работавшим над оснащением станков. В середине 19 века большое распространение получили паровые двигатели – довольно мощные, относительно надежные и недорогие агрегаты. Энергия стала дешеветь, а значит, появилась возможность использовать новые устройства в производстве. Одним из таких устройств стал текстильный станок, работающий в тандеме с паровым двигателем.


Так вот, о решенной инженерами проблеме: вращательный момент. Вал парового двигателя вращался со слишком большой скоростью, что делало невозможным прямое подключение станка. Редуктор же позволял изменить как крутящий момент, так и угловую скорость. Это чисто инженерные понятия, так что давайте упростим схему работы редуктора для понимая. Представьте:

  • На вращающемся вале двигателя находятся зубья шестерни;
  • С зубьями ведущего вала сцепляются зубья вала аналогичного диаметра. В идеальных условиях валы начинают вращаться синхронно;
  • С ведомым валом сцепляют уже другой, но большего диаметра. Малая шестеренка вращает большую – скорость вращения большой шестеренки оказывается меньше, чем малой!

Как было выяснено, любые зубчатые передачи имеют особую характеристику – передаточное число. Это отношение числа зубьев т.н. ведомой шестерни к числу зубьев у ведущей шестерни. Если, например, ведомая шестерня имеет

m зубьев, а ведущая n зубьев, то передаточное число у такой пары будет равно m/n. Исходя из значения передаточного числа можно понять, что будет происходить с передаваемым крутящим моментом – увеличится он или уменьшится.

Изобретение редуктора позволило создать надежные и производительные станка, однако со времен редуктор удалось применить и в автомобилестроении. Как вы наверняка знаете, зубчатые передачи используются практически во всех механических и многих электромеханических устройствах. В автомобиле такие передачи являются основой трансмиссии и позволяют быстро менять скорость, с которой движется транспортное средство.

Коротко о главном

Неправильно считать, будто для распределяния энергии с коленчатого вала достаточно одной лишь коробки передач. Почему многие в этом уверены? Дело в том, что ключевым узлом трансмиссии мотоциклов является именно коробка передач и более ничего. Логично предположить, что автомобиль тоже может работать с одной только КП – двигатель внутреннего сгорания у транспорта ведь построен по примерно одинаковым схемам. Однако у автомобилей имеется пара ведущих колес против одного и мотоциклов, вследствие чего вращение одного вала должно передаваться паре т.н.

выходных валов. Здесь-то и нужен редуктор. Грубо говоря, он представляет собой два узла в одном корпусе:

  • Непосредственно редуктор;
  • Дифференциал.

В будущем Avto.pro уделит больше внимания устройству дифференциала. В этом есть смысл, так как обычные описания дифференциалов из технических справочников не дадут автолюбителю четкого понимания того, что же это такое – без графики и подробного «разжевывания» здесь не обойтись. В данном материале мы уделим именно редукторам. Главная их задача в автомобильной трансмиссии – снижение скорости вращения выходных валов относительно скоростей входного вала. Здесь важно отметить, что вне зависимости от привода автомобиля редукторы мостов практически всегда имеют одинаковую конструкцию.

Устройство редуктора заднего моста

Современные автомобильные редукторы имеют довольно сложное устройство. Дело в том, что они эксплуатируется в очень жестких условиях, так что простые конструкции типа «шестерня-шестерня» сегодня не встречаются. Хотя, разумеется, пара шестеренок являются основой редуктора. Предлагаем взглянуть на редуктор заднего моста в разрезе:

В зависимости от конструкции и выполняемых задач ведущая и ведомая шестерни редукторов могут иметь различную геометрию. В зависимости от формы зубьев механизм будет иметь различный КПД, шумность работы и т.п. Среди основных вариантов выделяют следующие:

  • Коническая передача. Это пара конических шестерен, расположенных под углом 90° друг относительно друга. Применяются в авто как с задним, так и полным приводом;
  • Червячная передача. Это перпендикулярно расположенные и сцепление друг с другом шестерня и винт, называемый червяком. В трансмиссии уже не применятся, а вот в рулевых механизмах – очень широко;
  • Гипоидная передача. Пара шестерен, расположенных относительно друг друга под углом 45°. Такая передача используется в авто и с задним, и с полным приводом;
  • Цилиндрическая передача. Параллельно расположенные шестерни. Вариант исполнения передачи в переднеприводных автомобилях.

Уже упомянутое передаточное число является основной характеристикой редуктора заднего моста. Чем больше передаточное число, тем на более тяжелый автомобиль устанавливается редуктор. Так, например, грузовики имеют редуктора с большим передаточным числом – транспорт получает огромную грузоподъемность, но не выдает большой скорости. В свою очередь, спортивные автомобили имеют редуктор с

небольшим передаточным числом, да и сам механизм обычно (за исключением шестерен) изготовлен из легких материалов – это позволяет немного, но уменьшить вес транспорта. Кстати, если автомобиль полноприводный, то он имеют пару редукторов.

Неисправности редуктора заднего моста

В силу эксплуатации в жестких условиях редуктор периодически выходит из строя. Сама его конструкция создавалась с расчетом на высокую живучесть, однако механизм все равно нуждается в периодическом осмотре и обслуживании. На скорый выход редуктора заднего моста автолюбителю укажет следующее:

  1. Появление шумов при разгоне авто;
  2. Скрипы и шум при вхождении в поворот;
  3. Шум при торможении двигателем;
  4. Постоянный назойливый гул со стороны заднего моста;
  5. Появление стуков при начале движения.

В первом случае неисправность кроется в изношенных подшипниках дифференциале или же низком качестве смазки редуктора. Во втором случае имеет место аналогичный износ подшипников. В третьем случае стоит проверить подшипники главной шестерни и ее зубья. Классическим признаком износа редуктора является изменение зазоров между зубьями. В четвертом случае неисправность связана с деформацией балок или же истиранием шестеренок, полуосей. И, наконец, в пятом случае причиной появления шума может стать

увеличение зазоров в шлицевом соединении или же нарушение целостности отверстия под оси сателлитов. Более редкий случай: появление гула со стороны редуктора вследствие поломки его корпуса.

Как можно видеть, чаще всего редуктор выходит из строя по причине сильного износа подшипников и сальников, а также истирания зубьев шестерен. На практике основные компоненты редуктора быстро изнашиваются вследствие несоблюдения регламента замены масла. В идеале, маслу требуется замена каждые 40-55 тыс. км. пробега. Также не стоит экономить на масле – рекомендуем покупать или оригинальный смазочный материал, или же «аналоги» от серьезных производителей. Смазочным материалом для большинства современных редукторов является масло класса

API GL5. Его вязкость регламентируется автоконцерном.

Выбор нового редуктора

Подобрать новый редуктор заднего моста довольно просто. При этом в продаже встречаются почти идентичные оригиналу редукторы, которые отличаются лишь передаточным числом. Будьте особенно внимательны – если вы купите и установите редуктор с неподходящим передаточным числом, автомобиль будет вести себя странно. Данным компонент трансмиссии обычно ищут по параметрам транспорта, хотя автолюбитель может также искать его по:

  • VIN-коду;
  • Коду имеющегося редуктора.

Так как код детали обычно неизвестен до ее демонтажа, мы рекомендуем вести поиски по передаточному числу и параметрам автомобиля. Кстати, после того как вы найдете подходящий редуктор, внимательно осмотрите его. Часто в продаже можно увидеть редукторы с затертыми номерами заводской пары. Как правило, это оригинальные, но находившиеся в эксплуатации редуктора – они были восставлено (не всегда качественно) и пущены в розницу.

Отдельного упоминания стоят такие скрытые параметры редукторов, как… параметры металла. И вот почему мы заостряем на них внимание читателя: в продаже иногда встречаются не только восстановленные редукторы, но и изготовленные без соблюдения технологии. В идеале, шестерни редуктора должны быть на 1,5-2,0 мм насыщены углеродом, после чего закалены. Поверхность шестерней должна быть довольно твердой (около 55 ед.), а внутренность, напротив, вязкой. Обе шестерни должны иметь одинаковую твердость. Геометрия шестерен, как вы уже догадались, должна четко соблюдаться. После покупки редуктора имеет смысл отнести его на проверку к специалисту или воспользоваться твердомером, если он у вас есть.

Если вы не хотите «попасть» на некачественную деталь, то обращайтесь к проверенным продавцам или ищите ее в магазинах с хорошей репутацией. При покупке требуйте бумаги и требуйте выдачи гарантийного талона. Акцентируем ваше внимание: некачественные редуктора продаются очень часто, а выходят из строя такие автозапчасти довольно быстро. Как правило, в них стачиваются зубья шестерен или ломаются подшипники, так как качество используемых при их изготовлении материалов невысокого.

Снятие и замена узла

Мы не рекомендуем производить ремонт элементов заднего моста самостоятельно. Эту работу лучше доверить мастеру, однако если вы все же хотите попробовать, то вам понадобятся сами детали для замены, стандартный набор ключей, молоток, выколотка, новое масло редуктора, перчатки. Работа может занять до нескольких часов, особенно если вы делаете это в первый раз. И вот как выглядит алгоритм работы:

  1. Открутить сливную пробку и слить масло;
  2. Снять колеса автомобиля;
  3. Снять элементы тормоза;
  4. Выкрутить крепления полуосей с помощью торцевого ключа;
  5. Демонтировать полуоси;
  6. Разобрать карданный вал, не забывая проставить метки и подобрать новые гайки для дальнейшей обратной сборки;
  7. Выкрутить крепежи редуктора торцевым ключом;
  8. Снять редуктор и осмотреть его – по необходимости заменить сальники, фланцы, сателлиты или вовсе установить новый механизм;
  9. Провести очистные работы;
  10. Поставить редуктор на место, залить масло и провести обратный монтаж.

Отдельно стоит рассказать о диагностике и обслуживании снятого редуктора. Как только он оказался у вас в руках, снимите все подшипники, сателлиты, фланцы и оси, после чего внимательно их осмотрите. Как и было указано выше, изношенные детали нуждаются в замене. Оставшиеся детали промойте в бензине и протрите. При обратной сборке не забудьте о регулировке редуктора. Также не забывайте о том, что ведомая шестерня должна иметь небольшой люфт – при нагрузке вращающиеся детали слегка расширяются, так что присутствие люфта не будет проблемой.

Вывод

Редуктор – крайне живучий элемент трансмиссии, который, впрочем, вызывает много вопросов среди автолюбителей. Даже новый редуктор может работать не вполне нормально. Например, он может гудеть при достижении определенной скорости, после чего продолжает работать тихо. Если шумы появляются с определенной периодичностью, причин волноваться нет. А вот если шумы и ненормальная работа трансмиссии стали привычным делом, автолюбителю стоит как можно быстрее обратиться на СТО для проверки автомобиля. Новый редуктор может стоит немалых денег, однако мы не рекомендуем экономить на его замене. Некачественная или восстановленная деталь может выйти из строя в самый неподходящий момент, что может быть опасно.

Термины и определения по редукторам и мотор-редукторам

Термины и определения

Зубчатый редуктор — механизм для уменьшения частоты вращения и увеличения крутящего момента, в котором не менее двух звеньев сопряжены зубчатыми или червячными зацеплениями.

Редуктор общемашиностроительного применения — механизм, который выполнен в виде самостоятельного изделия, удовлетворяющий комплексу технических требований, общему для большинства случаев применения, выполненный без учета специальных требований, характерных для отдельных отраслей промышленности.

Редуктор с неподвижными осями — редуктор, геометрические оси зубчатых колес которого не имеют относительного перемещения в пространстве.

Редуктор с подвижными осями — редуктор, в котором геометрическая ось хотя бы одного из зубчатых колес подвижна.

Тип редуктора — единица классификационного деления, определяющая редуктор по конструктивному признаку.

Типоразмер редуктора — определяющий размер конкретного типа редуктора.

Цилиндрический редуктор — редуктор, который содержит только цилиндрические зубчатые передачи.

Конический редуктор — редуктор, который содержит только конические зубчатые передачи.

Червячный редуктор — редуктор, который содержит червячные передачи. По виду передач различают червячные цилиндрические редукторы и червячные глобоидные редукторы

Планетарный редуктор — редуктор, который содержит передачи с подвижными осями.

Волновой редуктор — редуктор, который содержит цилиндрическую передачу с деформируемыми зубчатыми колесами.

Комбинированный редуктор — редуктор, содержащий различные типы зубчатых передач. В наименованиях редукторов типы зубчатых передач указывают по порядку их расположения от входного вала.

Коническо-цилиндрический редуктор — редуктор, который содержит конические и цилиндрические передачи

Цилиндрическо-червячный редуктор — редуктор, который содержит цилиндрические и червячные передачи.

Цилиндрическо-планетарный редуктор — редуктор, который содержит цилиндрические передачи и планетарные механизмы.

Симметричный редуктор — цилиндрический редуктор с симметричным расположением пар колес в корпусе.

Несимметричный редуктор — цилиндрический редуктор с несимметричным расположением пар колес в корпусе.

Одноступенчатый редуктор — редуктор, имеющий одну зубчатую передачу.

Многоступенчатый редуктор — редуктор, имеющий две или более зубчатых передач.

Мотор-редуктор — самостоятельное изделие, состоящее из редуктора и двигателя, соединенных промежуточной муфтой или без нее.

Соосный редуктор — редуктор, в котором оси входного и выходного валов расположены соосно.

Горизонтальный редуктор — редуктор, оси концов валов которого расположены горизонтально.

Вертикальный редуктор — редуктор, оси концов валов которого расположены вертикально.

Универсальный редуктор — редуктор, допускающий работу в произвольном положении в пространстве.

Горизонтально-вертикальный редуктор — редуктор, ось входного вала которого расположена горизонтально, а ось выходного вала – вертикально.

Вертикально-горизонтальный редуктор — редуктор, ось входного вала которого расположена вертикально, а ось выходного вала – горизонтально.

Входной вал (редуктора) — вал редуктора, через который осуществляется вход потока, мощности на исполнительную машину.

Циклоидальная передача или циклоидальный редуктор — это механизм, понижающий частоту вращения, и имеющий фиксированное передаточное отношение. Циклоидальные редукторы при своей компактности имеют большие передаточные отношения.

Фланцевый редуктор — редуктор, который крепится при помощи находящегося на корпусе фланца, через который проходит выходной вал.

Насадной редуктор — редуктор, который связан с рабочей машиной при помощи выходного полого вала, насаживаемого на конец вала рабочей машины, и упором для восприятия реактивного крутящего момента.

Зубчатая передача — это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. Назначение: передача вращательного движения между валами, которые могут иметь параллельные, пересекающиеся и скрещивающиеся оси. преобразование вращательного движения в поступательное, и наоборот.

Механическая передача — механизм, служащий для передачи и преобразования механической энергии от энергетической машины до исполнительного механизма (органа) одного или более, как правило, с изменением характера движения (изменения направления, сил, моментов и скоростей). Как правило, используется передача вращательного движения.

Редуктор механический — механизм, передающий и преобразующий крутящий момент, с одной или более механическими передачами.

Турборедуктор — редуктор, работающий в режиме высокой скоростной (частотной) нагрузки. Средний диапазон частот вращения валов-шестерней турборедуктора 15—80 тыс. об/мин. Диапазон нагрузок 30—90 МВт. Высокие нагрузки предъявляют особые требования к материалу и обуславливают особенности конструкций турборедукторов.

Цилиндрический мотор-редуктор с параллельными валами — плоский редуктор, использующий цилиндрические косозубые колёса.

Электрический привод (сокращённо — электропривод, ЭП) — управляемая электромеханическая система, предназначенная для преобразования электрической энергии в механическую и обратно и управления этим процессом.

Корпус редуктора — сборочная единица редуктора, которая служит для установки в ней передачи, а также для удержания жидкой смазки.

Внутренний узел (редуктора) — узел, размещенный внутри корпуса редуктора.

Отдушина (редуктора) — элемент, обеспечивающий выравнивание давления воздуха внутри редуктора с атмосферным.

Маслоуказатель редуктора — элемент, непосредственно указывающий уровень масла в редукторе.

Узел охлаждения (редуктора) — совокупность конструктивных элементов для охлаждения редуктора.

Генератор (волн редуктора) — узел волнового редуктора для создания движущихся зон зацепления гибкого колеса с жестким колесом.

Гибкий подшипник — подшипник качения, у которого тонкостенная наружная обойма подвержена радиальной упругой деформации.

Длительность периода (работы редуктора) — время одного цикла работы редуктора, в течение которого он подвергается воздействию повторяющихся нагрузок.

Продолжительность включения (редуктора) — продолжительность работы редуктора в пределах длительности периода.

Относительная продолжительность включения (редуктора) — при периодическом режиме отношение продолжительности работы редуктора под нагрузкой к длительности периода с включением пуска и остановки редуктора.

Рабочая температура масла (в редукторе) — установившаяся температура масла в редукторе при непрерывном режиме работы.

Перепад температур в редукторе — различие между рабочей температурой масла в редукторе и температурой окружающей среды.

Время стабилизации процесса (в редукторе) — время, в течение которого при работе редуктора в непрерывном режиме, температура охлаждающего масла стабилизируется.

Промежуточный вал — вал, соединяющий коленчатый вал поршневого судового двигателя или вал судовой турбины с дейдвудным валом.

Муфта — устройство (деталь машины), предназначенное для соединения друг с другом концов валов и свободно сидящих на них деталей для передачи крутящего момента. Служат для соединения двух валов, расположенных на одной оси или под углом друг к другу.

Номинальный крутящий момент — допускаемый крутящий момент на тихоходном валу, при действии которого в сочетании с номинальными радиальными нагрузками на выходных концах валов редуктора, должен обеспечиваться 90%-ный ресурс передач валов и подшипников, не менее регламентируемого стандартом.

Электрический привод — (сокращённо электропривод) это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса.

Привод вибрационный механический — вибрационный привод, в котором возбуждение колебаний и передача их рабочему органу машины осуществляется движением механизма, отдельные звенья которого могут быть деформируемыми.

Подъемник гидравлический — подъемник (вышка) с гидравлическим приводом механизмов.

Подъемник электрический — подъемник (вышка) с электрическим приводом механизмов.

Подъемник механический — подъемник (вышка) с механическим приводом механизмов.

Механизм подъема — приводное устройство для подъема и опускания люльки (изменение угла наклона колен).

Механизм выдвижения — приводное устройство для изменения длины телескопического колена.

Механизм поворота — приводное устройство для вращения поворотной части подъемника в горизонтальной плоскости.

Сила приведения — сила, условно приложенная к одной из точек механизма, работа которой на ее элементарном перемещении равна сумме работ всех реальных сил на их элементарных перемещениях.

Сила полезного сопротивления — силы сопротивления, совершающие работу, требуемую от механизма.

Сила трения — сопротивление, возникающее на поверхности двух соприкасающихся тел при относительном их движении. Сопротивление возникает в результате шероховатости соприкасающихся тел, в зоне фактического контакта происходит сцепление, возникают упругие, вязкие и пластические деформации, развиваются силы молекулярного взаимодействия.

Маховик — вращающееся тело, характеризующееся добавочным моментом инерции и предназначенное для уменьшения коэффициента неравномерности движения механизма. Маховик выполняют в виде массивного сплошного диска или шкива с тяжелым ободом и спицами. Маховик аккумулирует энергию при увеличении угловой скорости и отдает ее при уменьшении скорости.

Механизм передаточный — механизм, обеспечивающий воспроизведение заданной функциональной зависимости между перемещениями входных и выходных звеньев.

Примеры передаточных механизмов (зубчатый и планетарный).

Неуравновешенность ротора — состояние ротора, характеризующееся таким распределением масс, которое во время вращения вызывает переменные нагрузки на опорах ротора и его изгиб.

Пневмомашина — энергетическая машина, предназначенная для преобразования механической энергии твердого тела в механическую энергию газа (или наоборот).

Привод машины — система, состоящая из двигателя и связанных с ним устройств для приведения в движение одного или нескольких твердых тел, входящих в состав машины.

Расстояние межосевое (передачи) — кратчайшее расстояние между осями вращения колес.

Режим разбега механизма — переходное движение между покоем и установившимся движением механизма.

Ротор — тело любой геометрической формы, имеющее свое основное движение – движение вращения (коленвал, колесо турбины и т.д.) и опирающееся на две опоры.

Основание корпуса (редуктора) — нижняя часть корпуса, с помощью которой редуктор крепится к плите.

Крышка (редуктора) – часть корпуса, которая расположена над основанием корпуса редуктора.

Поддон редуктора – часть корпуса редуктора, имеющая полость и служащая резервуаром для масла.

Вал-шестерня – вал с нарезанным зубчатым венцом. По виду зубчатого венца различают валы –шестерны, также, как зубчатые колеса.

Входной вал (редуктора) — вал редуктора, через который осуществляется вход потока мощности на исполнительную машину.

Выходной вал (редуктора) – вал редуктора, через который осуществляется выход потока мощности на исполнительную машину.

Промежуточный вал (редуктора) — вал редуктора, через который осуществляется изменение направления вращения.

Центральное колесо (редуктора) — колесо, геометрическая ось которого совпадает с основной осью планетарного редуктора.

Основное звено (редуктора) – неподвижное центральное колесо, ось которого совпадает с основной осью планетарного редуктора.

Сателлит – зубчатое колесо с подвижной геометрической осью.

Водило (редуктора) — деталь, в которой установлены ось и сателлитов планетарного редуктора.

Основная ось (редуктора) – геометрическая ось планетарного редуктора, вокруг которой вращается водило и центральные колеса.

Гибкое колесо – зубчатое тонкостенное колесо, которое подвержено радиальной упругой деформации , для создания движущихся волн зацепления.

Кулачок (редуктора) – деталь генератора волн редуктора с некруглой цилиндрической поверхностью, которая служит для деформации гибкого колеса.

Высота оси (редуктора) – расстояние между осью тихоходного вала и опорной плоскостью редуктора.

Внутренний диаметр гибкого колеса — диаметр сопряжения гибкого колеса с генератором волн.

Радиус расположения сателлитов – расстояние между основной осью и осью сателлитов.

Внешний делительный диаметр делительного колеса – произведение внешнего окружного модуля на число зубьев колеса.

Передаточное число редуктора – произведение передаточных чисел всех ступеней редуктора.

Передаточное отношение редуктора – отношение угловых скоростей входного и выходного валов редуктора.

Ступень (редуктора) – элемент редуктора, который содержит передачи с одним передаточным числом или одну передачу.

Редукторы цилиндрические с параллельными осями — редукторы данного типа отличаются высоким КПД, большой надежностью и длительным сроком службы при работе в тяжелых условиях.

Зубчатая передача со скрещивающимися осями — передача со скрещивающимися осями.

Редуктор давления воды — прибор, который стабилизирует и уменьшает давление в водопроводной сети.

Редуктор ацетиленовый предназначен для понижения и регулирования давления газа — ацетилена, поступающего из баллона, рампы или сети, и автоматического поддержания постоянным заданного рабочего давления газа.

Самый полный привод — ДРАЙВ

Этот материал мы задумывали как типичный «ликбез» из серии «Всё, что вы хотели знать о полном приводе, но не знали, у кого спросить». Чем дифференциальный привод отличается от подключаемого с помощью вискомуфт или агрегатов типа Haldex, для чего нужны самоблокирующиеся дифференциалы… Но чем больше мы изучали историческую сторону вопроса, тем больше удивлялись. Оказывается, первый легковой автомобиль с постоянным полным приводом был сделан в Голландии ещё сто лет назад! А в 1935 году, например, полноприводный американский гоночный автомобиль чуть было не спас человечество от Второй мировой войны…

Зачем легковому автомобилю полный привод? Сейчас, в начале XXI века, этот вопрос кажется риторическим. Конечно же, для лучшей реализации тяговых сил двигателя. Для того чтобы колёса при разгоне на скользком покрытии как можно меньше буксовали вхолостую. Четыре ведущих колеса лучше, чем два! Но человечество долго постигало эту азбучную истину. Спросите любого автознатока — и он вам ответит, что эра полного привода на массовых легковых автомобилях началась только в 1980-м с появлением Audi Quattro. Назовёт он и редких предшественников — например, английский суперкар Jensen FF 1966 года и Subaru Leone 4WD 1972 года. Впрочем, настоящий знаток тут же оговорится: первые полноприводные автомобили Subaru не имели постоянного полного привода — он был подключаемым. А это, как говорят в Одессе, две большие разницы.

Паллиатив

Подключаемый привод на одну из пар колёс — решение на легковых автомобилях паллиативное. Такую трансмиссию в англоязычном мире часто называют Part-Time 4WD, «временный полный привод», и пришла она из мира внедорожников и грузовой техники повышенной проходимости. Такой автомобиль, у которого одна из осей постоянно ведущая, а другая жёстко подключается в случае необходимости, способен проявить свои полноприводные качества только на время преодоления бездорожья. А для движения по дорогам с твёрдым покрытием жёсткий полный привод приходится отключать. Почему? Причина — в так называемой циркуляции мощности. Ведь в повороте передние колёса проходят больший путь, двигаясь по дугам большего радиуса, а значит, и вращаются быстрее задних. Причём чем круче поворот, тем разница больше. И на автомобилях с таким типом привода тяга на передних колёсах падает, а на задних — наоборот, растёт. В некоторых случаях тяговый момент может смениться тормозным, то есть передние колёса будут увеличивать сопротивление движению автомобиля. Когда под колёсами грязь или снег, в этом нет ничего страшного — разве что автомобиль станет хуже слушаться руля и пойдёт наружу «плугом» с вывернутыми колёсами.

На этой схеме хорошо видно, что при движении в повороте все колёса катятся по своим траекториям и вынуждены вращаться с разными угловыми скоростями. Поэтому для постоянного полного привода нужны три дифференциала: два межколёсных и один межосевой.

Тем не менее блокированный полный привод на легковых дорожных автомобилях применяли. Правда, это были скорее легковушки повышенной проходимости. Например, в СССР ещё в 1938 году небольшими партиями начали выпускать ГАЗ-61 — полноприводную «эмку» с шестицилиндровым мотором и с подключаемым передним мостом. После войны делали и «внедорожный» вариант «Победы», ГАЗ-М72, и «Москвич»-410 с аналогичной трансмиссией… Да и Subaru Leone 4WD 1972 года, кстати, тоже делали для преодоления внедорожья — клиренс у машин с подключаемым задним мостом был выше, чем у обычных переднеприводных Subaru.

Subaru Leone 4WD Station Wagon (1972–1979) — полноприводная версия переднеприводной машины с подключаемым вручную приводом на задние колёса. Двигатель — объёмом 1,4 л (72 л.с.) или 1,6 л (80 л.с.). Кроме универсала, полным приводом оснащались седан и пикап. До 1989 года на всех полноприводных Subaru привод на задние колёса подключался или вручную (на машинах с механическими коробками), или автоматически — многодисковой фрикционной муфтой (на машинах с «автоматом»).

Итак, на дорогах с твёрдым покрытием, где легковые автомобили проводят большую часть времени, подключаемый привод бесполезен — он лишь утяжеляет автомобиль. Ведь всё это время машине приходится «возить с собой» раздаточную коробку, в которой происходит отбор мощности к «временно ведущей» второй оси, ещё один карданный вал, главную передачу второго моста…

Меж тем превратить «временный» полный привод в постоянный, Full-Time 4WD, очень просто. Нужно лишь добавить в раздаточную коробку межосевой дифференциал.

Постоянный полный

Зачем нужен межосевой дифференциал? Два межколёсных дифференциала, передний и задний, позволяют каждой паре колёс в поворотах вращаться с разными скоростями. А межосевой выполняет эту работу для обоих ведущих мостов. Поэтому автомобиль с тремя дифференциалами легко может двигаться с постоянным полным приводом по любым дорогам!

Элементарно? Меж тем до начала 80-х годов считалось, что постоянный полный привод дорожным автомобилям не нужен. Мол, к чему двигателю на сухом асфальте постоянно вращать вторую пару колёс и соответствующие детали трансмиссии — это и шум, и повышенный расход топлива… И лишь после появления Audi Quattro общественное мнение стало меняться в сторону постоянного полного привода. Ведь тяга двигателя при этом постоянно распределяется не на два, а на все четыре колеса, оставляя больший запас по сцеплению для восприятия боковых сил. И в повороте такой автомобиль оказывается намного более устойчивым при разгоне или при торможении двигателем.

«Рентген» Аudi 80 Quattro второй половины восьмидесятых годов. Хорошо видно, насколько проще и компактней схема quattro, чем трансмиссия Ferguson. Самоблокирующийся дифференциал Torsen используется Audi начиная с 1984 года. В отличие от дифференциала, блокируемого вискомуфтой, Torsen реагирует на изменение крутящего момента, реализуемого колёсами каждой из осей, повышает устойчивость при торможении и позволяет использовать АБС, так как блокируется только под тягой.

Кстати, первыми массовыми автомобилями с межосевыми дифференциалами в трансмиссии считаются Range Rover (1970) и наша «Нива» (1976). Но так как обе эти машины всё-таки принадлежат к внедорожному племени, то лавры первопроходца среди легковушек пожинает Audi Quattro.

А что же конструкторы гоночных автомобилей — неужели они не применили постоянный полный привод раньше? Мы знали, что попытки сделать полноприводные гоночные машины предпринимались и до эпохи Quattro. Например, первым послевоенным проектом Фердинанда Порше был полноприводный гоночный болид Cisitalia 360 среднемоторной компоновки с 12-цилиндровым полуторалитровым двигателем. Но доподлинно известно, что привод на передние колёса у этого чуда техники был отключаемым — гонщик должен был задействовать его только на прямых участках трассы, а перед поворотом вновь переходить на задний привод.

А были ли предшественники у Чизиталии? Оказалось, например, что тот же Фердинанд Порше ещё в 1900 году построил электромобиль с четырьмя ведущими мотор-колёсами. Но настоящий шок у автознатока вызовет гоночный автомобиль голландской фирмы Spyker образца 1902 года. В те дремучие времена, когда даже тормоза делали только на задних колёсах, у этого автомобиля был самый что ни на есть постоянный полный привод — с межосевым дифференциалом!

Голландскую фирму Spyker по выпуску конных экипажей основали в 1880 году братья Спяйкеры (по-фламандски фамилия пишется Spijker). В 1900 году братья выпустили первый автомобиль собственной конструкции, а спустя два года с помощью бельгийского конструктора Жозефа Лявиолета был разработан полноприводный гоночный Spyker 4WD (1902–1907) удивительно прогрессивной конструкции — с тремя дифференциалами! Тормозных механизмов было тоже три — два действовали на задние колёса, а ещё один тормоз был установлен на карданном валу к передним колёсам.

Так что можно смело заявлять, что нынче схема Full-Time 4WD справляет своё столетие… Полноприводных Спайкеров было выпущено немного — они стоили сумасшедших денег и по разным причинам не смогли добиться успеха в гонках. Не намного удачнее оказались и другие полноприводные гоночные автомобили — Bugatti Tipo 53 и Miller FWD начала 30-х годов. Что касается Bugatti, то инициатива принадлежала фиатовскому инженеру Антонио Пикетто, который в 1930 году предложил Этторе Бугатти построить гоночную машину с колёсной формулой 4×4. И в 1932 году были сделаны три полноприводных Bugatti Tipo 53 — с мощными компрессорными трёхсотсильными моторами, с постоянным полным приводом и с тремя дифференциалами.

Полноприводный Bugatti Tipo 53 (1932–1935). Трансмиссия с тремя дифференциалами распределяла тягу 300-сильной компрессорной «восьмёрки» на все четыре колеса. Коробка передач, как обычно на Бугатти, стояла отдельно от двигателя, раздаточная коробка с межосевым дифференциалом составляла с ней одно целое. Приводные валы на передний и задний мосты проходили по левой стороне автомобиля, гонщик сидел справа. Несмотря на рекомендации конструктора переднеприводных машин того времени Альбера Грегуара, в приводе передних колёс Bugatti T53 были использованы не шарниры равных угловых скоростей типа Tracta, а обычные карданные сочленения. Кроме того, для Tipo 53 пришлось использовать нетипичную для Бугатти независимую переднюю подвеску на поперечной рессоре. Всё это привело к повышенным нагрузкам на руль — управлять автомобилем в поворотах было чрезвычайно тяжело, хотя скорости прохождения гравийных виражей были выше, чем у заднеприводных машин того времени. Всего было построено три Bugatti T53, которые выступали в разных гонках до 1935 года.

Интересно, что перед созданием полноприводного Bugatti итальянцы тщательно изучили приобретённый специально под разборку переднеприводный американский гоночный Miller. В свою очередь американец Гарри Миллер заинтересовался затеей Бугатти и тоже решил построить полноприводную версию своего автомобиля, заручившись спонсорством фирмы FWD (Four Wheel Drive — «Четыре ведущих колеса»), выпускавшей грузовики с колёсной формулой 4×4. Так появились полноприводные гоночные болиды Miller FWD.

Американский конструктор Гарри Миллер прославился в 20–30-х годах своими гоночными автомобилями для 500-мильных состязаний на треке в Индианаполисе, а его рядные «восьмёрки» с двумя верхними распредвалами брал за основу своих моторов Этторе Бугатти. Интересно, что Миллер строил машины как с передним, так и с задним приводом, а в 1932 году сделал несколько полноприводных шасси Miller FWD (на снимке) с тремя дифференциалами в трансмиссии. Один из полноприводных Миллеров лидировал в гонке Инди 500 1934 года, но из-за технических проблем финишировал девятым.

Именно с этими машинами связан любопытный эпизод: во время гонки на берлинском треке Avus в 1935 году полноприводный Miller шёл третьим, когда его рядная «восьмёрка» не выдержала и буквально взорвалась. При этом куски мотора лишь немного не долетели до трибуны, на которой среди прочих важных персон из национал-социалистической партии сидел сам Гитлер! Право, редкий случай, когда об отсутствии человеческих жертв стоит пожалеть. Прилетел бы осколок поршня в голову одного человека — и ход мировой истории был бы совсем другим…

Но Bugatti Т53 и Miller FWD не получили должной оценки — подвели «сырая» конструкция и постоянные поломки. Зато следующий эпизод в истории легковых машин с постоянным полным приводом оказался воистину судьбоносным.

Формула Фергюсона

Чтобы оценить всю важность того, что происходило в Англии на рубеже 50–60-х годов, вернёмся к теории. Межосевой дифференциал создан для того, чтобы «развязать» обе ведущие оси. Например, задние колёса бешено буксуют, а передние стоят на месте. И дифференциал этому никак не препятствует!

Лекарство от этого недуга впервые придумали конструкторы внедорожников — это принудительная блокировка. В нужный момент водитель дёргает за рычаг, механизм намертво фиксирует шестерни межосевого дифференциала — и трансмиссия из дифференциальной, «свободной», становится жёстко замкнутой. Именно по этой схеме были сделаны и первые поколения автомобилей Range Rover, и наша «Нива», и множество других внедорожников. И, кстати, первые автомобили Audi Quattro тоже — в этих машинах до 1984 года водителю приходилось самостоятельно включать блокировку межосевого дифференциала.

Но это решение опять-таки паллиативное: блокировку на дорожной машине можно задействовать только на бездорожье. А на асфальте её нужно выключать. И если автомобиль внезапно попадёт на скользкий участок, колёса одной из осей при подаче тяги начнут буксовать раньше других.

А можно ли сделать так, чтобы дифференциал при пробуксовке блокировался сам, автоматически? Внедрение самоблокирующегося межосевого дифференциала связано с именем англичанина Тони Ролта, гонщика и конструктора. Он и его друг Фред Диксон, тоже гонщик и страстный любитель повозиться с автомобильными железками, ещё до войны открыли собственное бюро Rolt/Dixon Developments по подготовке гоночных автомобилей. После войны два друга увлеклись идеей постоянного полного привода. Построив экспериментальную полноприводную «тележку» под названием «Краб», Ролт и Диксон в 1950 году перешли под крыло Гарри Фергюсона, преуспевающего тракторного фабриканта. Так возникла фирма Harry Ferguson Research.

Фергюсона мало интересовали гоночные болиды, зато он мечтал о безопасном дорожном автомобиле, колёса которого не буксовали бы при разгоне и не блокировались при торможении. И Ролт с Диксоном решили спроектировать такую машину «с нуля» — полностью, включая кузов, трансмиссию и силовой агрегат!

Знаний друзьям не хватало, и на должность компетентного главного конструктора пригласили Клода Хилла, который ради столь интересной работы покинул Aston Martin. Но несмотря на финансы Фергюсона, работа шла неспешно — экспериментальный седан Ferguson R4 был готов только через шесть лет. Зато какой: полноприводный, с оппозитной «четвёркой», с дисковыми тормозами на всех колёсах и с электромеханической антиблокировочной системой Dunlop MaxaRet, позаимствованной из авиации!

Ferguson R4 (1956) — экспериментальный автомобиль с трансмиссией по Формуле Фергюсона. Вместо коробки передач у прототипа был гидротрансформатор.

Но самое интересное для нас заключалось внутри раздаточной коробки прототипа. Разобрав её, помимо дифференциала мы бы увидели ещё дополнительный «набор» шестерёнок, две шариковые обгонные муфты и два пакета фрикционов. Пока колёса не скользили, всё это хозяйство мирно вращалось вхолостую. Но когда начиналась пробуксовка колёс одной из осей и разность частот вращения выходных валов достигала определенной величины, одна из муфт срабатывала, сжимала «свой» пакет фрикционов — и те тормозили шестерни дифференциала, моментально блокируя его и превращая дифференциальный привод в жёсткий!

Следующий прототип Ferguson R5 1962 года, на подготовку которого снова ушло шесть лет, оказался ещё интереснее — это был легковой полноприводный универсал. Эксперты журнала Autocar, которые позже испытывали Ferguson R5, делились впечатлениями: «Автомобиль достигает предела скольжений на невероятно высоких скоростях!»

Ferguson R5 был подготовлен к серийному производству в 1962 году.

Но никто из автомобилестроителей так и не взялся за выпуск первого в мире полноприводного универсала с межосевым самоблокирующимся дифференциалом и с АБС — слишком сложным и дорогим получился бы серийный Ferguson. Однако в 1962 году Ролту всё-таки удалось заинтересовать руководство компании Jensen — он предложил адаптировать полноприводную трансмиссию для купе Jensen CV8 с трёхсотсильным крайслеровским мотором V8, которое тогда готовили к серийному производству. Полный привод оказался мощному и скоростному купе как нельзя кстати!

Схема раздаточной коробки FFD с цилиндрическим несимметричным межосевым дифференциалом и механизмом автоматической блокировки с помощью фрикционных муфт экспериментального автомобиля Jensen CV8 FF. 1 — входной вал; 2 — промежуточный полый вал; 3 — полый вал с солнечной шестернёй дифференциала и ведущей шестернёй блокирующего механизма; 4 — водило межосевого дифференциала; 5 — вал привода задних колёс; 6 — цепной привод; 7 — вал привода передних колёс; 8 — многодисковая муфта, включающаяся при буксовании задних колёс; 9 — многодисковая муфта, включающаяся при буксовании передних колёс; 10 — электромагнитная система MaxaRet.

Через три года был построен экспериментальный полноприводный Jensen CV8 FF. А в 1966 году появилась следующая модель — Jensen Interceptor, с ещё более мощной 325-сильной «восьмёркой». Кроме заднеприводного купе предлагался и вариант со скромным шильдиком JFF. Это был знаменитый Jensen FF — первый в мире полноприводный серийный автомобиль с самоблокирующимся межосевым дифференциалом и с АБС! Буквы FF — это Formula Ferguson, обозначение запатентованной Ролтом и коллегами трансмиссии.

Схема трансмиссии FFD в экспериментальном автомобиле Jensen CV8 FF 1965 года. Разместить узлы и агрегаты привода на передние колёса помогла особенность компоновки: двигатель находился за осью передних колёс, поэтому оказалось возможным расположить главную передачу переднего моста между мотором и радиатором. Карданный вал для привода передних колёс поместили слева от силового агрегата (машина с «правым рулём»). 1 — двигатель; 2 — автоматическая коробка передач; 3 — раздаточная коробка; 4 — АБС MaxaRet; 5 — главная передача заднего моста; 6 — главная передача переднего моста.

Все без исключения автомобильные журналисты того времени упоминали выдающуюся устойчивость полноприводных Дженсенов и «практически неограниченный запас тяги на мокром асфальте». Жаль, что самого Фергюсона к тому времени уже не было в живых — он умер в 1960-м…

Почему мы столь подробно рассказываем о Формуле Фергюсона? Да потому, что именно фирма Harry Ferguson Research впервые в мире уделила столь серьёзное внимание полному приводу как средству повышения активной безопасности!

Мы уже говорили, что привод на четыре колеса оставляет больший запас по сцеплению для восприятия боковых сил. И это плюс. Но есть и минус — теряется однозначность реакций на подачу топлива. Если на мощном заднеприводном автомобиле в скользком повороте резко нажать на газ, это вызовет занос задней оси. На переднеприводной машине, наоборот, при подаче тяги в скольжение сорвутся передние колёса. Хорошо это или плохо — не в том дело. Главное, что водитель всегда знает, как поведёт себя автомобиль в таком случае.

А какая ось сорвётся в скольжение на полноприводном автомобиле? На этот вопрос ответить непросто. Если в данный момент больше разгружен передок или под передними колёсами более скользкое покрытие, то начнётся снос. А если худшие условия по сцеплению имеют задние колёса, то машина уйдёт в занос. Реакция может быть неоднозначной! И это небезопасно.

Jensen FF (1966–1971) — полноприводная версия купе Jensen Interceptor. Первый серийный полноприводный автомобиль с самоблокирующимся межосевым дифференциалом. Двигатель Chrysler V8 с «большим блоком» рабочим объёмом 6,3 л развивал 325 л.с. и приводил все колёса через трёхступенчатый «автомат» TorqueFlite или 4-ступенчатую механическую коробку. На диагональных шинах размерностью 6,70–15 (как у «Волги» ГАЗ-21) Jensen FF снаряжённой массой 1800 кг развивал 212 км/ч и набирал 100 км/ч за 7,7 с. Другие технические особенности: реечный рулевой механизм с гидроусилителем, дисковые тормоза всех колёс, одноканальная АБС Dunlop MaxaRet (от английского maximum retardation — максимальное замедление), независимая передняя подвеска на двойных поперечных рычагах и зависимая рессорная с тягой Панара сзади. В 1968 году в Великобритании Jensen FF стоил 6000 фунтов стерлингов — примерно столько же, сколько самый дешёвый Rolls-Royсe. Всего было выпущено 318 полноприводных машин.

К счастью, Тони Ролт сам был гонщиком, причём очень хорошим — однажды, в начале 50-х, он даже выиграл 24-часовую гонку в Ле-Мане. Поэтому Ролт с коллегами с самого начала попытались избежать неоднозначности полного привода, применив несимметричный межосевой дифференциал. На задние колёса всех машин с фергюсоновскими трансмиссиями подавалось 63% крутящего момента, на передок — 37%. Таким образом реакция на увеличение тяги была приближена к заднеприводной.

Самоблокирующийся дифференциал позволил Дженсену взять лучшее от обоих типов трансмиссий. Лёгкий вход в поворот и отсутствие циркуляции мощности в штатных режимах движения без пробуксовки — от дифференциального привода. А лучшую реализацию тяги двигателя при пробуксовке — от жёсткого.

Но обгонные муфты механизма блокировки работали жёстко, в пульсирующем режиме, моментально превращая несимметричный дифференциальный привод в блокированный и обратно. Поэтому при пробуксовке неоднозначность увеличивалась! Был нужен механизм, который бы более гибко и плавно изменял степень блокировки межосевого дифференциала. И в конце 60-х годов Тони Ролт вместе с Дереком Гарднером, который позже был главным конструктором болидов Tyrrell, занялись странными, на первый взгляд, экспериментами с силиконовой жидкостью, что использовалась в муфтах привода вентиляторов радиаторов. Да-да, именно Ролт с Гарднером вошли в историю как изобретатели вискомуфты!

Самоблокирующиеся развиваются

Цилиндр с пакетами фрикционов внутри, заполненный силиконовой жидкостью, отлично подходил для намеченной Ролтом цели — тормозить шестерни межосевого дифференциала при пробуксовке колёс. Пока скорости вращения всех колёс примерно равны, вискомуфта никак не вмешивается в работу межосевого дифференциала. Но вот колёса одной из осей забуксовали. Шестерёнки межосевого дифференциала тут же начинают раскручиваться, связанные с ним пакеты фрикционов вискомуфты «взбивают» силиконовую жидкость, и муфта «схватывается», блокируя межосевой дифференциал частично или полностью.

Такое устройство блокировало дифференциал плавнее и мягче, что положительно сказывалось на управляемости. После оформления патентов на вискомуфту Тони Ролт в 1971 году образовал фирму FF Developments — специально для того чтобы оснащать автомобили полноприводными трансмиссиями своей разработки. Например, среди первых заказов фирмы были полноприводные версии фургончиков Bedford для английских лесничеств, партия автомобилей Ford Zephyr FF для полиции или седаны Opel Senator 4×4 для британской военной миссии в Берлине. Но самым главным достижением FFD стала трансмиссия для американского автомобиля AMC Eagle, который выпускался с 1979 по 1988 год. Это был обычный легковой AMC Concord, но с поднятым на 75 мм кузовом и с увеличенными «внедорожными» шинами. И конечно же, с полноприводной трансмиссией. Причём впервые в мире серийный автомобиль был оснащён межосевым дифференциалом, блокирующимся вискомуфтой!

Конечно, создавался AMC Eagle главным образом для тех, кто периодически штурмует бездорожье, — полный привод появился на этих машинах не из-за желания добиться более уверенного разгона или лучшей устойчивости и управляемости, как в случае с суперкаром Jensen FF или с Audi Quattro. Но с трансмиссионной точки зрения прямыми наследниками AMC Eagle стали такие драйверские автомобили, как Subaru Impreza Turbo или Mitsubishi Lancer Evo с первого по шестое поколения. Ведь их межосевые дифференциалы тоже блокируются встроенными вискомуфтами.

Раздаточная коробка автомобиля AMC Eagle разработки FFD. Обратите внимание на вискомуфту — это встроенный в межосевой дифференциал цилиндрический корпус с фрикционными дисками, заполненный вязкой кремнийорганической жидкостью (силоксан). При пробуксовке колёс одной из осей ведущий и ведомый пакеты дисков в вискомуфте проворачиваются относительно друг друга, давление и температура внутри возрастают, изменяется вязкость силоксана — и вискомуфта тормозит одну из выходных шестерён, не позволяя ей вращаться относительно корпуса и блокируя межосевой дифференциал.

Серийное купе Audi Quattro, которое появилось в 1981 году, через два года после дебюта AMC Eagle, оснащалось обычным «свободным» межосевым дифференциалом с принудительной блокировкой. Правда, Фердинанд Пьех, который в начале 80-х был начальником инженерного департамента Audi, выбрал для Quattro очень изящную схему, отлично подходившую для компоновки ингольштадтских машин. Продольно расположенный силовой агрегат переднеприводного автомобиля прямо-таки указывал торцом коробки передач на задние колёса — осталось лишь встроить в корпус трансмиссии межосевой дифференциал. Но для привода на передние колёса конструкторы Пьеха не стали городить традиционный для полноприводников огород с отдельной «раздаткой». Немцы сделали вторичный вал коробки полым — и сквозь него пропустили приводной вал передних колёс. Воистину, всё гениальное просто…

С самого начала на Audi, в отличие от FFD, выбрали симметричное распределение крутящего момента по осям — 50 : 50. А в 1984 году из салонов полноприводных Audi наконец-то исчезли архаичные ручки принудительной блокировки «центра» — в трансмиссиях Quattro появился привычный нам самоблокирующийся дифференциал Torsen. Название Torsen происходит от английских слов torque sensing и отражает способность этого чисто механического устройства мгновенно и плавно увеличивать степень своей блокировки в ответ на изменение крутящего момента на выходных валах. Поэтому Торсену не нужна вискомуфта — он блокируется сам. Причём срабатывает не от разности скоростей вращения уже после начала пробуксовки, а ещё до начала скольжения: Torsen способен реагировать на изменение сцепных условий в пятне контакта шин с дорогой!

Кстати, когда в последнее время конструкторы больших внедорожников стали задумываться о достижении «легковой» управляемости, они тоже вспомнили про Torsen — он используется в трансмиссиях таких автомобилей, как новый Range Rover, VW Touareg/Porsche Cayenne и Toyota Land Cruiser Prado.

Но вернёмся в 80-е. Триумфальный выход Audi Quattro на раллийную сцену послужил началом полноприводного бума — все раллийные команды группы В бросились создавать версии 4×4. Один за другим появились Peugeot 205 T16, Metro 6R4, Lancia Delta S4, Ford RS200… Все как один — с вискомуфтами в самоблокирующихся дифференциалах разработки FFD. За работу с раллийными командами на FFD отвечал Стюарт Ролт, сын Тони…

В начале 90-х годов обращался к FFD и завод АЗЛК, когда было решено проектировать раллийную полноприводную модификацию «Москвича»-2141. С помощью англичан была создана трансмиссия с тремя самоблокирующимися дифференциалами — передним, задним и межосевым (точь-в-точь как на болидах Ford RS200). Управляемость экспериментальных полноприводных «Москвичей» в предельных режимах заслуживала самых лестных оценок — поведение машин в скольжении было предсказуемым и удобным для гонщиков. Оказалось, что, подбирая «жёсткость» блокирующих вискомуфт во всех трёх дифференциалах, можно в широком диапазоне настраивать управляемость автомобиля. Например, более «строгая» блокировка заднего межколёсного дифференциала повышает склонность автомобиля к заносу задней оси. Увеличение коэффициента блокировки переднего или межосевого дифференциала, наоборот, повышает запас устойчивости — автомобиль менее охотно заезжает в поворот из-за проскальзывания и сноса передних колёс.

Однако такая настройка актуальна только в одном случае — при раллийном стиле езды со скольжениями. Поэтому три самоблокирующихся дифференциала — это прерогатива болидов группы WRC. Причём на этих машинах, как правило, внутрь дифференциалов встроены уже не вискомуфты, а пакеты многодисковых фрикционов с гидроприводом и с электронным управлением. Таким образом конструкторы получают широчайшие возможности по настройке управляемости в режиме реального времени. Например, при входе в поворот бортовой компьютер может «распустить» муфты во всех трёх дифференциалах, превратив их в «свободные» — чтобы автомобиль легче заходил в вираж. А когда пилот начнёт ускоряться при выходе на прямую, электроника даст команду, и сервопривод «зажмёт» муфты в дифференциалах таким образом, чтобы добиться минимальной пробуксовки всех колёс и в то же время не перейти грань приемлемой недостаточной поворачиваемости, за которой болид вынесет наружу виража.

Кстати, первыми применили управляемые муфты в Daimler-Benz — в трансмиссии автомобиля Mercedes-Benz Е-класса 4Matic с кузовом W124 образца 1986 года. Причём муфт там было три — при необходимости электроника сперва подключала привод на передние колёса, а потом последовательно задействовала блокировки межосевого и заднего межколёсного дифференциалов. Но такая трансмиссия оказалась неоправданно сложной. Кроме того, на нестабильном покрытии электроника то подключала передние колёса, то отключала…

Ещё одним пионером применения электронноуправляемых муфт в скоростных автомобилях стала фирма Porsche — на модели Porsche 959 1986 года было две муфты, а электроника работала в четырёх режимах, которые мог выбирать водитель. Позже серийные автомобили с трансмиссиями подобной сложности начали выпускать японцы — это, например, Mitsubishi Lancer Evo, наиболее совершенный полноприводный дорожный автомобиль из всех, что когда-либо проходили испытания Авторевю. Эволюция с межосевым управляемым дифференциалом ACD и задним дифференциалом с активным распределением крутящего момента AYC способна творить чудеса…

Вместо дифференциала

Пока раллийные инженеры колдовали с механизмами самоблокировки, конструкторы массовых легковушек, наоборот, пошли по пути упрощения — и вообще отказались от межосевого дифференциала, заменив его вискомуфтой. Первым европейским легковым автомобилем с такой трансмиссией стал Volkswagen Golf II Syncro 1985 года — его трансмиссию разрабатывали инженеры фирмы GKN, которая ещё в 1969 году приобрела FFD. Преимуществами такой схемы были простота и унификация полноприводной модели с базовой. В нормальных условиях автомобиль сохранял характеристики и управляемость переднеприводного, а при пробуксовке передних колёс уже через 0,2 секунды срабатывала вискомуфта, способная подавать назад до 70% крутящего момента.

Компоновка трансмиссии VW Golf III Syncro. «Раздатка» пристыкована к коробке передач, а вискомуфта установлена в блоке с главной передачей заднего моста и подключает привод на задние колёса при пробуксовке передних. На автомобилях VW Golf IV место вискомуфты заняла муфта Haldex.

Но такой «упрощенный» привод задних колёс обладал существенным недостатком — даже небольшая задержка в срабатывании вискомуфты усугубляла неоднозначность реакций. При подаче газа в скользком повороте автомобиль сначала сносило наружу, как переднеприводный, а потом, с подключением задних колёс, он резко менял характер — и мог уйти в занос.

Здесь отличились японцы — они неоднократно пытались сгладить этот недостаток, подбирая характеристики вискомуфт и используя их не только для включения привода на задние колёса, но и для блокировки межколёсных дифференциалов. На некоторых моделях (например Nissan Sunny/Pulsar 1988 года) было аж три вискомуфты: одна включала привод на задние колёса, а две другие служили для блокировки межколёсных дифференциалов. В автомобилях Ноnda Concerto 4WD вискомуфты заменяли не только межосевой, но и задний межколёсный дифференциал…

Но потом оказалось, что вместо вискомуфты в приводе задних колёс гораздо удобнее использовать просто фрикционную муфту, пакеты которой сжимаются гидроприводом. А управлять сжатием фрикционов и, соответственно, регулировать величину подаваемого к задним колёсам крутящего момента отлично может электроника.

Нынче большинство легковых полноприводников и паркетников имеют в приводе одной из осей управляемую муфту — будь то Haldex на автомобилях гольф-платформы концерна VW, система VTM-4 фирмы Honda или xDrive на BMW. Причём быстродействие современных муфт сделало задержку в подключении колёс практически незаметной — теперь всё зависит только от того, как настроена управляющая электроника. Например, трансмиссии автомобилей Golf 4Motion и Audi A3 Quattro совершенно идентичны конструктивно. Но разное программное обеспечение позволяет фольксвагеновцам выбирать симметричное распределение момента по осям, а инженеры Audi предпочитают подавать назад только 40% тяги, придавая своим машинам более переднеприводный характер. Дело вкуса…

А какие из этих схем предпочитаем мы? Легковые дорожные автомобили с подключаемым вручную приводом на вторую ось ныне, слава богу, не выпускаются. А что касается остальных трёх схем…

Конечно же, самые интересные, с нашей точки зрения, автомобили — это наследники Формулы Фергюсона, в трансмиссиях которых есть самоблокирующийся межосевой дифференциал. И неважно, какими путями осуществляется блокировка — вискомуфтой, как на автомобилях Subaru, механическим дифференциалом Torsen, как на моделях Audi A4-A6-A8 Quattro, VW Phaeton, или электронноуправляемыми муфтами (Mitsubishi Lancer Evo). Главное, что автоматически блокирующийся «центр» при грамотной настройке может значительно улучшить управляемость автомобиля — сделать его более безопасным и приятным для искушённого водителя.

Главная тенденция сегодня — изменяемый вектор тяги, когда момент превентивно по команде электроники подаётся на то колесо, что способно максимально эффективно его реализовать. Пока самая сложная полноприводная трансмиссия в мире — у седана Mitsubishi Lancer Evo X. Дополнительные редукторы способны перебрасывать момент между задними колёсами, центр блокируется электронноуправляемой муфтой, а спереди — обычный механический самоблок.Эпоха полного привода таким, как мы его знаем, закончится с приходом электромобиля о четырёх мотор-колёсах.

Но машины с автоматически подключаемым приводом на задние колёса мы тоже не сбрасываем со счетов — их становится всё больше. Муфту Haldex в последнее время активно используют Volvo и Saab. Трансмиссии со «свободными» межосевыми дифференциалами тоже находят своё применение — причём на таких скоростных автомобилях, как Мерседесы 4Matic всех классов. Но на этих машинах вместе с дифференциальным полным приводом в обязательном порядке «работает» неотключаемая антипробуксовочная электроника, которая в какой-то мере компенсирует отсутствие механизма самоблокировки.

Многодисковая муфта Haldex срабатывает от малейшего рассогласования скоростей вращения валов (1 и 5). Вращение любой из кулачковых шайб приводит к тому, что ролики начинают обкатываться по рабочим поверхностям (12) и перемещаться взад-вперёд, толкая поршни (10) в кольцевых цилиндрах насоса (на рисунке не показаны). Поршни накачивают масло в исполнительный цилиндр с поршнем (11), который и сжимает пакет дисков. Но электроника с помощью электромагнитного клапана может стравливать давление, тем самым гибко регулируя величину подводимого к колёсам момента. 1 — приводной вал; 2 — наружные фрикционные диски; 3 — внутренние фрикционные диски; 4 — уравновешивающая пружина; 5 — выходной вал; 6 — ступица; 7 — корпус; 8 — кулачковая шайба; 9 — ролики; 10 — кольцевые нагнетательные поршни; 11 — кольцевой рабочий поршень; 12 — профилированная рабочая поверхность.

Однако в последнее время мы замечаем, что по реальным ездовым свойствам автомобили с разными полноприводными трансмиссиями становятся все ближе друг к другу — естественно, при движении по дорогам общего пользования, а не на раллийных трассах. И чем более совершенными будут становиться электронные антипробуксовочные системы и программы управления муфтами типа Haldex, тем меньше будет различаться управляемость оснащённых ими автомобилей. Очевидно, это и есть прогресс.

Материал адаптирован к публикации с разрешения ООО «Газета «Авторевю». Все права на перепечатку принадлежат Авторевю.

Чем отличается кроссовер от настоящего внедорожника?

Говорим «кроссовер», подразумеваем «почти внедорожник». Но уравнивать «паркетники» и вездеходы между собой неправильно! Настоящий внедорожник отличается от кроссовера массой важных особенностей – величиной клиренса, типом привода, понижающей передачей… Впрочем, давайте расскажем обо всём по порядку.

Конструкция кузова

Конечно, бывают исключения, но настоящий внедорожник обычно имеет рамную (или полурамную) конструкцию. Эта простая, но проверенная схема лучше несущего кузова приспособлена для буксировки и бездорожья, благодаря равномерному распределению нагрузок и высокой общей прочности.

Машина, которая всегда готова сопротивляться стихии, должна иметь и соответствующую компоновку агрегатов – у рамного внедорожника большинство узлов упрятаны «внутрь» рамы, чтобы не повредить их на буераках. При этом плоское днище вдобавок можно защитить прочными стальными листами (как это сделано на внедорожниках DW Hower).

Особенности трансмиссии

У серьёзного вездехода привод может и должен быть только полным! Постоянным или подключаемым. (Об особенностях трансмиссий 4WD рассказывает материал «Каким бывает полный привод».) Однако, если трансмиссия построена вокруг многодисковой муфты, это точно кроссовер.

Коротко поясним, в чём заключается разница. При движении по тяжёлому бездорожью – например, по глубокому снегу или песку – муфта через некоторое время, скорее всего, перегреется, и автомобилист окажется перед препятствием на обычной переднеприводной машине. Внедорожник себе такого позволить не может.

Кстати, почему перегревается муфта? В аварийный режим трансмиссия кроссовера переходит из-за перегрева трущихся дисков, и электроника, спасая механизм от поломки, отключает привод на вторую ось. Именно поэтому автоматически подключаемый полный привод применяется на «паркетниках» – кроссоверах и легковушках.

Дорожный просвет

Многие знают, что этим термином называется расстояние от поверхности земли до нижней точки автомобиля (например, до картера двигателя). Другое название дорожного просвета – клиренс. И именно на этот показатель нужно обращать внимание, выбирая надёжного партнёра для езды по бездорожью!

Каким должен быть клиренс? Если для кроссовера 16 сантиметров под днищем – уже хороший показатель, то обязательный минимум для внедорожника – 20 сантиметров! Скажем, у внедорожников DW Hower под защитой двигателя – те самые 20 сантиметров, а лонжероны рамы от земли отделяют все 23 сантиметра.

Понятно, что чем больше клиренс, тем больше сможет позволить себе водитель автомобиля – проще говоря, с маленьким дорожным просветом машина раньше «сядет на брюхо». И, кстати, «брюхо» – не обязательно днище: это могут быть элементы подвесок, выхлопная система, запасное колесо и топливный бак.

Геометрическая проходимость

Мы уже отдельно упомянули, что одной из главных характеристик внедорожника является клиренс. Но большой дорожный просвет – это ещё не всё! Не менее важным показателями являются угол въезда, угол съезда и угол рампы, которые также отвечают за геометрическую проходимость.

Угол въезда – это максимальный угол рампы (наклонной площадки), на которую может въехать автомобиль, не коснувшись ее передней частью кузова. Чем больше клиренс и меньше передний свес, тем выше угол въезда.

Угол съезда – это максимальный угол рампы, на которую может въехать автомобиль при движении задним ходом, не коснувшись ее задней частью кузова. Чем больше клиренс и меньше задний свес, тем больше угол съезда.

Угол рампы (продольный угол проходимости) – это максимальный угол, который может преодолеть автомобиль, не коснувшись поверхности днищем. Чем больше клиренс и короче база, чем больше угол рампы.

Глубина преодолеваемого брода – это максимальная глубина водного препятствия, которое автомобиль может преодолеть без негативных последствий для техники. Прежде всего, глубина брода ограничена местом забора воздуха двигателем.

Проектируя внедорожник, инженеры сразу ставят перед собой задачу максимально улучшить геометрическую проходимость. Именно поэтому настоящий вездеход отличают короткие свесы, высокий клиренс и грамотное расположение воздухозаборника. А вот создатели кроссоверов могут легко отступать от этих правил.

Понижающая передача

Демультипликатор – ещё один обязательный атрибут настоящего внедорожника. Это двухступенчатый редуктор, нижняя ступень которого сделана понижающей, чтобы увеличить тяговое усилие автомобиля – то есть при тех же оборотах двигателя момент на колёсах будет выше.

У кроссоверов – в силу конструкции и концепции – демультипликатора быть не может. В редких случаях роль «понижайки» отчасти играет «короткая» первая ступень коробки передач. Это вынужденное решение, которое, разумеется, не может стать полноценной заменой «настоящей» понижающей передаче.

………

Таким образом, при выборе автомобиля нужно четко представлять, где и как он будет использоваться. И если машине предстоит преодолевать броды, штурмовать косогоры и пробираться по снегу, песку или грязи, лучше остановить свой выбор именно на внедорожнике, а не на кроссовере.

все жалобы владельцев за 5 лет эксплуатации — Российская газета

Сопливый

Увы и ах, хорошо поездивший Skoda Kodiaq оказался слаб на всевозможные потеки как масла, так и других рабочих жидкостей. В зоне риска оказались старшие 2.0-литровые двигатели. Владельцы дизеля жалуются на появление масляных пятен на стыке двигателя и коробки передач. Проблема заключается в болтах крепления маховика и применяемого герметика, который даже в случае замены все равно через некоторое время начинает «сопливить».

У бензинового мотора на контроле должна быть помпа системы охлаждения, которая из-за повышенных температур может получить повреждения корпуса, что приводит к просачиванию антифриза.

Еще один узел, склонный к протечкам — угловой редуктор полноприводных версий. Через какое-то время владельцы (чаще всего те, кто не стеснялся эксплуатировать Kodiaq на бездорожье) на очередном ТО обнаруживали протечки трансмиссионной жидкости. Одно хорошо: многие отметили, что при выявлении этой проблемы дилеры без вопросов меняли узел по гарантии.

Скрипучий

Фото: Пресс-служба Skoda.

Несмотря на то, что Kodiaq является недешевым флагманом кроссоверной линейки чешской марки, не стоит забывать, что все модели Skoda позиционируются как народные, а потому уровень применяемых материалов не самый высокий, что со временем отражается на эксплуатации.

Проще говоря, в салоне Skoda Kodiaq с возрастом заводятся сверчки и появляются скрипы.

Главный источник беспокойства — дверные карты: довольно быстро начинают скрипеть ручки и резонировать аудиоколонки. Также владельцы отмечают «музыкальность» передних кресел и верхней крышки пассажирского бардачка, которая лечится смазкой.

Кроме того, любители выездов на бездорожье отмечают слабость салонного пластика при проверках кузова на кручение: проще говоря, убранство интерьера начинает поскрипывать при проезде крутых неровностей. Не самую лучшую услугу оказали и всевозможные полочки и кармашки: разбросанная в них мелочевка постоянно дребезжит.

Скребущий и потеющий

Фото: Юрий Зубко/РГ

Распространенная претензия владельцев — дубеющие и скребущие щетки стеклоочистителей. Особенно жалуются на маленький задний дворник, резинку которого приходится регулярно обрабатывать силиконом.

Кроме того, отметился Kodiaq и регулярным запотеванием фар. Хотя производитель не признает это проблемой. И она при включении фар через некоторое время исчезает, владельцев сей факт часто раздражает.

Глючный

Фото: Юрий Зубко/РГ

Не удалось избежать Skoda Kodiaq и мелких болезней по электрике, хотя закономерностей в выходе из строя тут нет.

Чаще всего владельцы жалуются на перманентные выходы из строя парктроника, датчики которого то и дело «кричат» без повода, а также глюки отечественной системы ГЛОНАСС.

Зимой может подмерзнуть замок двери багажника и механизм складывания зеркал. Из более серьезных проблем отмечается выход из строя датчика температуры охлаждающей жидкости, а из мелких — зависание штатной мультимедийной системы, что лечится либо перезапуском машины, либо сбросом клемм аккумулятора.

Не оправдавший ожиданий

Фото: Пресс-служба Skoda.

Еще один раздел претензий к Skoda Kodiaq касается не то сколько технических нюансов, сколько завышенных ожиданий от ездовых характеристик.

Например, многие владельцы ждали от машины большей экономичности со стартовым мотором 1.4TSI, а также лучших скоростных показателей от версий с двигателями объемом 2.0.

Кроме того, практически все отмечают средний уровень шумоизоляции и не самую комфортную подвеску, при том, что управляемость кроссовера всегда относится к плюсам.

Выводы

Но на самом деле подавляющее большинство владельцев Skoda Kodiaq своим выбором довольны и менять машину не хотят. На известном сайте автомобильных объявлений Kodiaq уверенно держит 4,5 балла из 5 возможных и рекомендацию к покупке. Учитывая количество продаваемых экземпляров, несмотря на постоянно растущую цену, можно однозначно говорить, что модель чехам явно удалась.

Виды дифференциалов | Справочная информация

Дифференциал является частью трансмиссии – системы, которая связывает мотор с ведущими колесами автомобиля. Этот механизм участвует в передаче вращательных усилий (крутящего момента) от двигателя к колесам, но главная его функция состоит в том, что он обеспечивает вращение колес при повороте авто с различной угловой скоростью.

В отсутствие дифференциала колеса автомобиля при прохождении поворота вращаются с одной и той же скоростью, что приводит к пробуксовке колеса, которое перемещается по большему внешнему диаметру поворотной дуги. Такой эффект крайне отрицательно сказывается на управляемости авто и приводит к быстрому износу покрышек.

В современном автомобилестроении используется три варианта размещения дифференциальной коробки в блоке трансмиссии:

  • в авто с ведущими задними колесами (задним приводом) — в зоне задней оси;
  • в машинах с передним приводом — непосредственно в самой коробке перемены передач;
  • в полноприводных автомобилях (4WD) дифференциальное устройство может располагаться как в самой раздаточной коробке, так и в зонах обоих осей.

Устройство дифференциала

Базой конструкции дифференциального устройства является планетарный редуктор. В зависимости от того, какие зубчатые шестерни (передачи) используются для вращения колес, дифференциал делится на три разных вида:

  • конический;
  • цилиндрический;
  • червячный.

Наибольшее распространение получила коническая зубчатая передача и, соответственно, конический дифференциал. Он традиционно монтируется между двух осей автомобилей с полным приводом, а не между колесами, как это возможно с иными видами.

Основные элементы конструкции одинаковы у всех типов дифференциалов, поэтому рассмотрим строение узла на примере конического механизма.

Дифференциальный механизм конического типа состоит из следующих элементов:

  • планетарный редуктор;
  • шестерни с сателлитами;
  • корпус устройства.

На профессиональном сленге инженеров автомобилестроения и специалистов сервисных центров корпус дифференциального устройства называется «чашкой». Его основное назначение — принять вращательные усилия двигателя и передать их через сателлиты на шестерни. К поверхности чашки прикреплена ведомая шестерня ведущей передачи, а внутри чашки смонтированы оси, на которых перемещаются сателлиты. Собственно говоря, именно они и выполняют сцепление чашки (корпуса) и шестеренок. В легковых транспортных средствах традиционно применяется всего одна пара сателлитов, в грузовых — две, так как требуется передавать особенно высокий крутящий момент.

Получив энергию от сателлитов, шестерни начинают движение по оси и передают тот же крутящий момент без изменений на ведущую пару колес. В результате транспортное средство приходит в движение.

Шестерни, расположенные на осях, могут иметь равное или разное количество зубцов (шлицев). Если число зубцов равное, то шестерня образует симметричный дифференциал – крутящий момент распределяется по осям в равных соотношениях. Если же количество зубьев не равное, то происходит несимметричная раздача энергии на колеса, что обеспечивает повышенную проходимость в сложных дорожных условиях.

Функциональность дифференциального устройства

Симметричный дифференциал может функционировать в одном из трех доступных режимов.

Основной режим — это езда в направлении «прямо». В данном режиме колеса встречают одинаковую силу дорожного сопротивления и, соответственно, получают одинаковый крутящий момент.

При вхождении в поворот режим работы дифференциала изменяется. Даже незначительный поворот влево или вправо ведет к тому, что внутреннее колесо испытывает большее сопротивление, нежели внешнее. Чтобы сгладить этот дефект, внутренняя шестеренка замедляет свой ход и, тем самым, заставляет сателлиты двигаться в другом направлении, что увеличит амплитуду вращения наружной полуосевой шестерни. Из-за этого изменяется угловая скорость вращения двух ведущих колес, за счет чего осуществляется плавное вхождение в поворот

Третий режим в работе дифференциального устройства включается при езде по льду или иной скользящей поверхности. Одно из ведущих колес начинает испытывать сопротивление, а второе — нет. Дифференциал в таких случаях заставляет двигаться проскальзывающее колесо с максимальной скоростью, а на второе колесо подача крутящего момента приостанавливается. После прохождения препятствия требуется уравнять подачу энергии на колесную пару, для чего может потребоваться блокировка дифференциала.

Как отмечают специалисты в ГК Favorit Motors, сегодня крупные европейские и американские автопроизводители используют собственные разработки в области дифференциалов. Например, предлагаемые модели автомобилей Cadillac (система Controlled), Chevrolet (дифференциал Positraction) и Ford (механизмы Equa-Lock и Traction-Lok) применяют в трансмиссии исключительно свои модели распределяющих механизмов.

Подборка б/у автомобилей Cadillac

Виды современных дифференциалов

Это одно из самых конструктивно простых устройств, которое составлено из планетарного редукторного механизма (в плоском исполнении) и схемы со сдвоенными сателлитами, которые при работе сцепляются между собой. Используется косозубое сцепление, которое под большой нагрузкой выдает осевые мощности и передает их на пары сателлитов. Благодаря дополнительному вращению нужного ряда сателлитов при поворотах или пробуксовке на скользкой поверхности удается достигнуть торможения одного колеса и придать энергию другому.

Дифференциал Quaife подразумевает использование сразу пяти пар сателлитов для максимальной надежности сцепления косых зубьев между собой. Это, с одной стороны, позволяет эффективно использовать механизм в самых сложных дорожных условиях. А, с другой стороны, говорит о том, что со временем будет наблюдаться обширный износ всей конструкции в целом.

Тип дифференциального механизма Quaife был запатентован еще в 1965 году. Сегодня он преимущественно используется в гоночных или спортивных автомобилях, а также некоторых моделях переднеприводных машин.

Это довольно старый вид червячного дифференциального устройства, он был изобретен еще в 1950-х годах. На сегодняшний день автопроизводители используют 3 усовершенствованных разновидности дифференциала Torsen, однако все они имеют примерно одинаковый принцип работы. Шестерни, которые расположены на ведущих полуосях, образуют так называемую червячную пару с сателлитами. При этом, что существенно, на каждой полуоси располагаются свои сателлиты, которые парами сцепляются в некоторых положениях с сателлитами другой полуоси.

При движении вперед по прямой червячные пары находятся в остановленном положении, а при движении в повороте они проворачиваются. Очередной проворот по оси обеспечивает изменение угла колеса при поворотах и разворотах. Дифференциал Torsen считается самым мощным и износостойким, он работает при максимальной нагрузке и соотношениях крутящего момента.

  • Механизм с дисковой блокировкой

Этот вид дифференциального устройства состоит из симметричного планетарного редукторного механизма, который закреплен на шестеренках конической формы. Шестерни имеют две маленькие муфты той же формы и два диска. Частично диски могут цепляться за саму чашку дифференциала, а частично — соприкасаться со сцеплением, которое работает при воздействии ведомой шестеренки.

Суть блокировки дифференциала заключается в том, что при возрастании механической силы на шестерни появляются вторичные осевые мощности. Дополнительные силы стремятся разъединить стыки между шестернями. В тот момент, когда им это удается, выравнивается скорость каждого из колес в связи с тем, что угловые скорости приобретают одно и то же значение.

Дифференциал с дисковой блокировкой появился еще в конце 1930-х годов, однако после значительной модернизации используется и сегодня — обычно на внедорожниках и спорткарах.

  • Дифференциал кулачкового типа

Кулачковый дифференциал может иметь 2 варианта исполнения. Первый подразумевает расположение кулачковой муфты между двумя ведомыми шестеренками. В кулачковом механизме второго типа зубчатых колес нет в принципе – водилом здесь является сепараторное кольца, а функцию сателлитов выполняют «сухари» (специальные клинья). Ведомыми шестернями в этом случае являются кулачковые диски.

Принцип конструкции кулачкового дифференциала второго типа понятен из нижеприведенной схемы, где 1 – это корпус, 2 – обойма, 3 –сухарь, 4 и 5 – полуосевые звездочки. «Сухари» могут располагаться горизонтально (рисунок а) или радиально (рисунок б)

Суть блокировки дифференциального устройства заключается в том, что как только начинает наблюдаться разница между скоростными углами, кулачковая муфта (или кулачковые диски — во втором варианте исполнения) сразу же блокируют дифференциал.

Начальные разработки такого типа механизмов появились в 1940-х годах. В легковых транспортных средствах такой тип дифференциалов сегодня практически не используется. Основная сфера применения кулачкового типа — в военном автомобилестроении.

  • Вискомуфта (вязкостная муфта)

Дифференциал конструктивно имеет на одной из ведущих полуосей емкость, наполненную вязкой жидкостью. В ней находятся 2 дисковых блока, первый из которых соединен с ротором, а второй — с другой полуосевой. Соответственно, чем больше будет разница в наборе скорости между колесами, тем больше будет становиться разница и в скорости движениях блоков дисков. Из-за вращения вязкость жидкости увеличивается.

Это самая простая и в то же время бюджетная конструкция дифференциального устройства. По оценкам специалистов ГК Favorit Motors устройство преимущественно устанавливается на городские паркетники, так как в условиях бездорожья вискомуфта не может обеспечить требуемую управляемость и проходимость.

Два типа принудительной блокировки дифференциала

В современных транспортных средствах используется как ручной, так электронный вариант блокировки дифференциала. У каждого из них есть свои преимущества. Ручная блокировка дифференциального механизма осуществляется непосредственно из салона авто. По команде водителя ступорятся вращающиеся шестерни и колеса начинают двигаться в одном темпе.

Такой тип применим перед преодолением разного рода дорожных препятствий в виде глубокого снега, грязи, ям или горок. После прохождения сложных участков можно проводить разблокировку. Традиционно ручная блокировка дифференциального устройства применяется на вездеходных транспортных средствах и внедорожниках.

Если автомобиль снабжен новой системой TRC, то автоматика сама производит электронную блокировку. В том случае, если одно из ведущих колес начинает буксовать, то оно будет слегка подтормаживаться тормозом авто. Удобство такого типа неоспоримо, однако не всегда блокировка будет включаться в нужный момент.

Вне зависимости от того, какой именно тип дифференциального устройства установлен на вашем автомобиле, специалисты ГК Favorit Motors могут предложить диагностику и обслуживание машины с учетом конструктивных особенностей механизма блокировки. Грамотный подход сочетается с опытностью мастеров, а стоимость профессиональных услуг считается одной из самых привлекательных по Москве.

Самые распространенные симптомы неисправности дифференциала – повышенная шумность, посторонний стук и удары, появление подтеков масла. Мастера автосервиса Favorit Motors отмечают, что важно незамедлительно обратиться в техцентр, чтобы устранить проблемы в работе устройства и избежать его дальнейшего разрушения. Какой бы сложной ни была неисправность, мастера сервисного центра Favorit Motors обладают всем необходимым диагностическим оборудованием и огромным опытом работы, что позволяет быстро и качественно устранить поломку. Сотрудники регулярно проходят переобучение в учебных центрах автопроизводителей, что позволяет им выполнять ремонтно-восстановительные работы любой сложности.


Как работают механические коробки передач | Как работает автомобиль

Двигатели внутреннего сгорания работают на высоких скоростях, поэтому необходимо уменьшить передачу, чтобы передать мощность на ведущие колеса, которые вращаются намного медленнее.

Коробка передач обеспечивает выбор шестерни для различных условий движения: старт с места, подъем на холм или круиз по ровной поверхности. Чем ниже передача, тем медленнее вращаются опорные колеса по отношению к двигатель скорость.

Коробка передач постоянного зацепления

Коробка передач вторая ступень в коробка передач система, после сцепление .Обычно он прикручивается к задней части двигатель , с схватить между ними.

Современные автомобили с МКПП передачи иметь четыре или пять скоростей переднего хода и одну заднюю, а также нейтральное положение.

Синхронизатор отключен

Шестерня свободно вращается на втулке, вращаемой за счет зацепления на промежуточном валу. Блок синхронизатора, соединенный шлицами с главным валом, лежит рядом.

Синхронизатор включен

Вилка перемещает синхронизатор в сторону выбранной передачи.Поверхности трения синхронизируют скорости вала, а синхронизатор и шестерня блокируются вместе.

Шестерня рычаг , управляемый водителем, соединен с рядом штоков переключения передач в верхней или боковой части коробки передач. Штоки переключения расположены параллельно валам, несущим шестерни.

Самая популярная конструкция — редуктор постоянного зацепления. Имеет три вала: Входной вал промежуточный вал и главный вал, которые обкатываются подшипники в кожухе коробки передач.

Также имеется вал, на котором вращается промежуточная шестерня задней передачи.

Двигатель приводит в движение первичный вал, который приводит в движение промежуточный вал. Промежуточный вал вращает шестерни на главном валу, но они вращаются свободно, пока не будут заблокированы с помощью синхронизирующего устройства, которое насажено на вал.

Это синхронизатор, который фактически приводится в действие водителем через тягу переключения с вилкой на нем, которая перемещает синхронизатор для включения передачи.

Упорное кольцо, устройство задержки синхронизатора, является последним усовершенствованием современной коробки передач.Он предотвращает включение шестерни до тех пор, пока скорости вала не будут синхронизированы.

На некоторых автомобилях дополнительная передача, называемая перегрузка , подогнан. Он выше, чем высшая передача, и поэтому обеспечивает экономичное вождение на крейсерских скоростях.

Четырехступенчатая коробка передач с постоянным зацеплением

Передачи выбираются системой тяг и рычагов, управляемых рычагом переключения передач. Привод передается через первичный вал на промежуточный вал, а затем на главный вал, за исключением прямого привода — высшей передачи — когда первичный вал и главный вал заблокированы вместе.

Как работают передаточные числа

Нейтраль

Все шестерни, кроме необходимых для заднего хода, постоянно находятся в зацеплении. Шестерни выходного вала свободно вращаются вокруг него, а шестерни промежуточного вала зафиксированы. Привод не передается.

Первая передача

На первой передаче самая маленькая шестерня промежуточного вала (с наименьшим количеством зубцов) блокируется с ней, передавая привод через самую большую шестерню на главном валу, обеспечивая высокий крутящий момент и низкую скорость для запуска с места.

Вторая передача

На второй передаче разница в диаметрах шестерен на двух валах уменьшается, что приводит к увеличению скорости движения и меньшему увеличению крутящего момента. Соотношение идеально подходит для лазания по очень крутым холмам.

Четвертая передача

На четвертой передаче входной вал и главный вал заблокированы вместе, обеспечивая «прямой привод»: один оборот карданного вала на каждый оборот коленчатого вала.Нет увеличения крутящего момента.

Реверс

Для реверсирования промежуточная шестерня вставляется между шестернями на двух валах, заставляя главный вал реверсировать направление. Передача заднего хода обычно не синхронизирована.

Синхронизация шестерен

Устройство синхронизатора представляет собой кольцо с зубьями на внутренней стороне, установленное на зубчатом центр который насажен на вал.

Когда водитель выбирает передачу, соответствующая конусообразная трение поверхности на ступице и шестеренчатом передающем приводе, от поворотного механизма через ступицу к валу, синхронизируя скорости двух валов.

При дальнейшем перемещении рычага переключения передач кольцо перемещается вдоль ступицы на короткое расстояние до тех пор, пока его зубцы не зацепятся со скошенными зубцами упора на стороне шестерни, так что шлицевая ступица и шестерня заблокируются вместе.

Современные конструкции также включают в себя уплотнительное кольцо, расположенное между поверхностями трения. Кольцо сруба также имеет собачьи зубы; он сделан из более мягкого металла и более рыхлый соответствовать на валу, чем на ступице.

Запорное кольцо должно быть расположено точно сбоку от ступицы с помощью выступов или «пальцев», прежде чем его зубцы совпадут с зубцами на кольце.

За время, необходимое для определения своего местоположения, скорости валов были синхронизированы, так что водитель не мог вызвать столкновения зубьев, а синхронизатор считается «непревзойденным».

Как работает механическая коробка передач

Трансмиссия вашего автомобиля — один из самых важных элементов. Он соединяет двигатель с трансмиссией и определяет, сколько мощности вы используете в каждый момент времени. Однако для большинства людей остается загадкой, как это работает. Популярность автоматических трансмиссий уменьшила потребность в понимании того, как действует эта волшебная коробка под нашими ногами.Мы более чем готовы позволить компьютерам справиться с этим, чтобы мы могли сосредоточиться на другом (надеюсь, на самой дороге).

В Leith мы думаем, что можно многое сказать для понимания основных функций вашего автомобиля. Во многих случаях это может помочь вам лучше заботиться о своем автомобиле, что, надеюсь, означает, что он прослужит дольше. В этой серии мы научим вас основам работы трансмиссии. Сначала мы расскажем, как работает механическая трансмиссия, затем поговорим о том, как работают автоматические трансмиссии, и, наконец, сравним эти две, обсуждая плюсы и минусы каждой.

Как работает механическая коробка передач?

Если вы управляли автомобилем с механической коробкой передач, или если вы ездили на автомобиле с механической коробкой передач, или если вы смотрели приличный боевик со сценой автомобильной погони (в фильмах никто не водит автоматику), то вы знать о педали сцепления и переключателе передач. Это два входа, с помощью которых водитель управляет механической коробкой передач, хотя, если говорить технически, рычаг переключения передач — единственная часть всей этой головоломки, которая управляется вручную (т.е. рукой).

Под всем этим скрывается сложный механизм — жужжащая совокупность валов и шестерен, которые каким-то образом преобразуются в поступательный (или обратный) импульс. Хотя диаграммы могут показаться устрашающими, трансмиссия — обманчиво простая часть механизма. Все, что вам нужно сделать, это разбить его на основные компоненты.

Что такое сцепление?

Картер трансмиссии содержит три вала, взаимодействующих друг с другом.Один из них прикреплен к двигателю (входной вал), другой — к дифференциалу (выходному валу), а третий вал, часто называемый промежуточным валом или промежуточным валом, взаимодействует с двумя другими через систему шестерен. Когда ваша машина включена, вал двигателя всегда вращается, даже когда он остановлен. Он должен продолжать движение, иначе двигатель не будет работать.

Изображение: HowStuffWorks.com

Когда вы нажимаете педаль сцепления, вы активируете фрикционную муфту, которая расположена между маховиком двигателя и входным валом.Муфта сцепления предназначена для отсоединения двигателя от трансмиссии. Пока педаль нажата, двигатель и трансмиссия продолжают вращаться, но вращаются независимо друг от друга, без передачи крутящего момента от двигателя на коробку передач. Это то, что позволяет вам переключать передачи. Без фрикционной муфты и средств, позволяющих разъединить эти две системы, все могло бы сломаться.

Поскольку в его работе используется трение, если вы держите машину достаточно долго, вам придется заменить сцепление.Это похоже на замену тормозных колодок, при которой фрикционные материалы просто изнашиваются со временем. Вы можете продлить срок службы сцепления, если у вас много практики с руководствами и вы сможете избежать резкого переключения передач и агрессивного вождения.

Что происходит, когда я перемещаю рычаг переключения передач?

Промежуточный вал и выходной вал взаимодействуют через систему блокирующих шестерен. Разница между ними в том, что шестерни на промежуточном валу зафиксированы и вращаются вместе с самим валом, в то время как шестерни на выходном валу не зафиксированы и свободно вращаются без проворачивания вала.Это позволяет автомобилю работать на нейтрали без движения вперед. Сами шестерни соединены в пары разных размеров, создавая разные передаточные числа. Точные передаточные числа различаются, но вы будете знать их чаще как первую передачу, вторую передачу и так далее.

Переключатель передач отвечает за физическое включение шестерен на выходном валу, фиксацию их на месте, чтобы они поворачивали вал и передавали крутящий момент на ведущие колеса. Вот где действительно полезны визуальные эффекты.

Изображение: Источник

При перемещении переключателя в положение задействуются вилки переключателя передач.Эти вилки, в свою очередь, соединены с серией кулачковых муфт (не путать с фрикционной муфтой), которые отвечают за приведение в действие каждой передачи.

Современные трансмиссии оснащены системами синхронизации, которые предотвращают царапание зубцами кулачковой муфты о шестерню, которая может вращаться с другой скоростью. Синхронизирующие кольца были разработаны, чтобы упростить управление механической коробкой передач и устранить ужасный скрежет, который обычно случался, когда зубья кулачковой муфты ударялись о зубчатые колеса.

Все это происходит в одно мгновение. Когда вы убираете ногу с педали сцепления, энергия может перемещаться от двигателя через трансмиссию к ведущим колесам, продвигая ваш автомобиль вперед. Когда двигатель приближается к пределу диапазона оборотов, вы переключаетесь на более высокое передаточное число, чтобы оставаться в наиболее эффективном диапазоне.

На этом мы завершаем наше объяснение механической коробки передач. Если вы в большей степени визуально обучаетесь (не волнуйтесь, мы тоже), мы встроили пару видео ниже, которые покажут вам все движущиеся части.Такие сайты, как HowStuffWorks, также отлично подходят для предоставления деталей и диаграмм.

В следующей части этой серии мы расскажем, как работают автоматические трансмиссии, и вернемся к последней части, когда мы будем сравнивать руководства и автоматику.

Если вы энтузиаст ручного управления, сообщите нам об этом, когда в следующий раз позвоните или посетите один из наших представительств. Каждый сотрудник Leith с радостью поможет вам сесть в любой автомобиль с механической коробкой передач, имеющийся у нас на складе.

Отличная визуализация, забавный акцент.

Фантастическое объяснение старой школы.

Наконец, представление из Лего. Потому что это круто.

Теги: Видео
Размещено в Учебники | Комментарии к записи Как работает механическая коробка передач

отключены

Что такое трансмиссия в автомобиле?

Автомобиль состоит из множества частей, и современный двигатель внутреннего сгорания работает так красиво, как только благодаря синхронизированному и сложному набору компонентов.Трансмиссия — одна из самых важных частей типичного автомобильного двигателя. Давайте разберемся, что такое трансмиссия и что она делает каждый раз, когда вы нажимаете на педаль газа.

Трансмиссия автомобиля: обзор

Проще говоря, трансмиссия автомобиля — это коробка передач автомобиля . Это примерно аналогично системе переключения передач и цепи, которую используют велосипеды.

Эти компоненты всегда устанавливаются прямо на двигателе, так что прикрепленный к ним ремень и зубчатая передача могут эффективно преобразовывать мощность сгорания, производимую двигателем, в физический импульс.

Вспомните, как работает двигатель автомобиля:

  • Топливо (бензин) воспламеняется в камере сгорания двигателя вашего автомобиля.
  • Когда топливо воспламеняется, расширяющийся газ и тепло от миниатюрного взрыва толкают множество поршней внутри цилиндров вашего двигателя.
  • Когда поршни толкаются, они перемещаются вверх и вниз, и вращают коленчатый вал вашего двигателя.
  • Коленчатый вал затем поворачивает ведущие колеса вашего автомобиля.Благодаря этому механизму энергия взрыва превращается в механическую.

Итак, где в игру вступает трансмиссия? В вакууме (без трансмиссии) взрывная мощность, производимая типичным автомобильным двигателем внутреннего сгорания, была бы просто слишком высокой для запуска или остановки вашего автомобиля или если вам нужно было двигаться относительно медленно.

Типичная автомобильная трансмиссия состоит из пяти-шести зубчатых передач и ряда зубчатых передач (в основном ремней или цепей, которые проходят по внешней стороне двух или более шестерен), что позволяет водителю контролировать, сколько мощности передается на автомобиль без изменения скорости работы двигателя.

Другими словами, автомобильная трансмиссия помогает гарантировать, что ваш двигатель вращается с правильной скоростью , не двигаясь слишком быстро или слишком медленно в соответствии с вашими потребностями. Это также гарантирует, что ваши колеса получают правильную мощность. Без трансмиссии любой автомобиль было бы трудно заводить и останавливать, и он был бы совершенно ненадежным.

Что делает трансмиссия ?

Коробки передач необходимы любому автомобилю, чтобы двигатель не разрушился.Без коробки передач автомобильные двигатели вращались бы слишком быстро для устойчивости конструкции, а это означало бы, что большинство двигателей разлетелось бы на куски или перегрелось. Кроме того, любой автомобиль без трансмиссии не смог бы использовать скорость двигателя, ограничивая его максимальную скорость.

Трансмиссия переключает передачи в зависимости от скорости автомобиля и нажатия педали акселератора (т. Е. От того, насколько сильно вы нажимаете педаль автомобиля), так что обороты двигателя или «обороты в минуту» поддерживаются на должном низком уровне. Это дает два преимущества:

  • Снижение расхода топлива.
  • Поворотные механизмы не перегружают ваш двигатель.

Кроме того, трансмиссия позволяет при необходимости использовать энергию двигателя вашего автомобиля. Когда вы едете медленно, вы можете оставаться на пониженной передаче и не повредить двигатель. Когда вам нужно двигаться быстрее, вы можете переключиться на более высокий уровень. Таким образом трансмиссия позволяет использовать больше мощности вашего автомобиля, быстрее вращая колеса.

Механическая коробка передач вместо автоматической

Современные автомобильные трансмиссии бывают двух типов: механическая и автоматическая .

Механические коробки передач не входят в стандартную комплектацию современных автомобилей, так как автоматические коробки передач работают точно так же, но имеют меньшую частоту ошибок. Поскольку водителям не требуется переключать передачи при изменении скорости или адаптации к дорожным условиям, они могут сосредоточиться на вождении в одиночку, а машины переключают передачи автоматически и плавно.

Как работает трансмиссия автомобиля?

Независимо от того, есть ли у вашего автомобиля механическая или автоматическая коробка передач, все автомобильные коробки передач работают по сути одинаково.Единственная разница заключается в том, должен ли водитель вручную нажимать на сцепление, чтобы отключить двигатель и трансмиссию и перевести автомобиль на новый уровень передачи.

  • Рычаг переключения передач выбирает и перемещает шестерни для соединения друг с другом. Водитель управляет рычагом переключения передач с помощью рычага сцепления / педали (если ручной). В противном случае это выполняется автоматически.
  • При включении сцепление или рычаг переключения передач перемещает «буртик» (также называемые дисками сцепления) на место для соединения с более крупными шестернями, которые, в свою очередь, связаны с дифференциалом вашего автомобиля.
  • Когда рычаг переключения передач перемещается, разные шестерни могут включаться в разное время. Это изменяет набор шестерен и передаточное число, передаваемое от двигателя к колесам.

Вы когда-нибудь задумывались, почему двигатель вашего автомобиля может издавать ужасный звук, если вы неправильно включаете сцепление? Дело не в том, что зубья шестерни несовместимы, как это принято считать.

В современных трансмиссиях зубья шестерни расположены так, чтобы всегда полностью входить в зацепление — даже шестерни, которые технически не находятся в рабочем состоянии (состояние, называемое «свободным ходом»).

Вместо этого, этот ужасный скрежет возникает, когда «собачьи зубцы» (соединительные выемки) на воротниковой пластине не совпадают с правильными отверстиями на боковой стороне шестерни трансмиссии.

Механическая коробка передач

В механической коробке передач сцепление должно быть включено таким образом, чтобы пластина с буртиком полностью отсоединялась от шестерен трансмиссии. Вот почему при включении механической коробки передач и переключении с одной передачи на другую может показаться, что автомобиль отстает или прыгает.

Затем необходимо повернуть сцепление так, чтобы пластина с буртиком точно совпала с передачей трансмиссии, которую вы хотите выбрать.Если все сделано правильно, ваша машина сразу же начнет движение на выбранной вами передаче.

Автоматическая коробка передач

Автоматическая коробка передач также оснащена автоматическим сцеплением. Вместо того, чтобы полагаться на человеческий контроль, встроенные датчики, процессоры и исполнительные механизмы управляют сцеплением в идеальный момент в зависимости от вашей текущей скорости, давления в акселераторе и других факторов. Это позволяет водителям сосредоточиться на других задачах на дороге.

Вы действительно можете слышать работу автоматической коробки передач, когда ведете автомобиль, оборудованный такой коробкой передач.Когда вы нажимаете на педаль акселератора, ваш двигатель становится громче, а встроенный преобразователь крутящего момента улавливает изменение и автоматически переключается на более высокую передачу.

Напротив, автомобиль с механической коробкой передач начнет замедляться и сопротивляться, когда его переводят на более высокие скорости, пока вы не переключите передачу.

Резюме

В конечном счете, автомобильные трансмиссии — лишь одна часть увлекательного и сложного процесса, который происходит каждый раз, когда вы запускаете двигатель, чтобы отправиться на прогулку.Для получения дополнительной информации и полезных руководств по автомобильной тематике посетите наш сайт jdpower.com.

Что такое трансмиссия? Подробнее о трансмиссиях читайте здесь.

Мы предполагаем, что все автомобилисты в значительной степени знают, для чего используется коробка передач в автомобиле, но, вероятно, это далеко не тот, кто знает, как она работает на самом деле. Кроме того, существует множество различных видов и установок коробки передач. Прочтите здесь и узнайте, как работают шестерни.

Трансмиссия — основная часть вашего автомобиля.Он установлен непосредственно на двигателе и преобразует мощность сгорания двигателя в импульс, приводящий в движение колеса.

Коробка передач отвечает за эффективное вождение. Переключая передачи, вы обеспечиваете низкие обороты (оборотов в минуту), чтобы двигатель не перегружался и расход топлива снижался. Трансмиссия отвечает за преобразование скорости и импульса в мощность, которая затем приводит в движение весь автомобиль, и ее главная цель — сделать двигатель максимально эффективным за счет снижения расхода топлива при максимальной мощности.

Другими словами, трансмиссия работает, передавая мощность, исходящую от двигателя, на колеса вдоль ведущего вала и оси, позволяя вам управлять автомобилем.

Все это достигается за счет использования передач и передаточных чисел, которые автоматически или вручную выбираются водителем.

В автомобиле с механической коробкой передач сцепление соединяет двигатель и трансмиссию, поэтому вы можете переключать передачи, нажимая на педаль сцепления. В автоматической коробке передач это происходит полностью автоматически.

В руководстве по обслуживанию вы можете увидеть, когда наступит время , чтобы заменить масло в коробке передач . Это неотъемлемая часть любого технического обслуживания автомобиля и обычно включается в сервисный осмотр . Даже мелочи могут серьезно повредить коробку передач. Так что, если вы заметили, что он ведет себя иначе, чем раньше, вам нужен механик, чтобы его осмотреть.

Вы, , подумываете отремонтировать трансмиссию самостоятельно, вот инструкция .

Если вы собираетесь купить автомобиль, было бы неплохо подумать, какую коробку передач вам следует выбрать — потому что это опция в некоторых классах автомобилей.В этой статье мы поможем вам начать работу, чтобы вы могли принять правильное решение. Мы также поможем вам получить представление о многих типах коробок передач, используемых в современных автомобилях, и о том, как они работают.

Механическая коробка передач и автоматическая коробка передач

В автомобиле с механической коробкой передач имеется 5 или 6 передач переднего хода и 1 передача заднего хода, между которыми водитель автомобиля переключает, в то время как автомобили с автоматической коробкой передач осуществляют необходимые переключения передач автоматически.

Британские автовладельцы традиционно использовали преимущественно механическую передачу.По оценкам механиков Autobutler, около 80% всего британского автопарка оснащено механической коробкой передач. Однако за последние 30 лет количество автомобилей с автоматической коробкой передач на дорогах значительно увеличилось.

В 1985 году только 5% британских автомобилей имели автоматическую коробку передач, а сегодня 20% имеют автомобили с автоматической коробкой передач. В 2017 году . 40% автомобилей, проданных на британском рынке, имели автоматическую коробку передач , поэтому британцы все больше привыкают к такой трансмиссии.

Преимущества вождения автомобиля с автоматической коробкой передач заключаются, конечно, в том, что вам совсем не нужно переключать передачи.Дело в комфорте. Особенно при движении в очередях невероятно приятно иметь автоматическую коробку передач, поэтому вам не нужно концентрироваться на переключении передач.

Однако, если вы покупаете автомобиль с механической коробкой передач, вам понравится ощущение контроля и сцепления с дорогой при переключении передач. Многим автовладельцам нравится управление механической коробкой передач. Кроме того, для некоторых автомобилей кажется, что механическая коробка передач дешевле в обслуживании в долгосрочной перспективе.

Автоматическая коробка передач — как это работает

«Обычная» автоматическая коробка передач имеет электронное управление в коробке передач и работает от гидравлической системы.А поскольку коробка передач предназначена для переключения на новую передачу при изменении оборотов автомобиля, это также означает, что автоматическая коробка передач обеспечивает хорошую экономию топлива.

Как следует из названия, водителю автомобиля не нужно переключать передачи вручную. Наиболее распространенные настройки рычага переключения передач: P для парковки, R для заднего хода, N для нейтрали и D для движения.

Подробнее читайте в нашем блоге о , как водить машину с автоматической коробкой передач .

Автоматические коробки передач часто проектируются так, что в центре шестерен находится большое зубчатое колесо — «солнечные шестерни», которые передают мощность от двигателя.Вокруг зубчатого колеса расположено несколько маленьких шестерен, называемых планетарными шестернями (как планеты вокруг Солнца). Они имеют разные размеры, а также могут быть соединены между собой и разделены. А вокруг них находится еще одно большое зубчатое колесо, которое передает мощность от планетарных шестерен, а затем передает мощность на колеса. Переключение передач происходит плавным переходом между различными планетарными передачами, что делает вождение более плавным и тихим, чем при отключении и включении через сцепление с ручными передачами.

Многие автомобили, например, Ford имеет версию автоматической коробки передач под названием Power Shift. Он работает за счет того, что шестерни еще лучше реагируют на давление на акселератор и, следовательно, получают лучшее сцепление с дорогой — поэтому, если вы сильно наступите на спидер, автомобиль сможет ускоряться относительно лучше и быстрее.

Кроме того, на рынке имеется коробка передач CVT (бесступенчатая трансмиссия). Он отличается наличием одной цепи или ремня, который регулируется между двумя барабанами, в зависимости от скорости и числа оборотов.Таким образом, в этой автоматической коробке передач переход происходит еще более плавно, чем в коробке передач с шестернями и валами.

Важно помнить о регулярном обслуживании полностью автоматической трансмиссии автомобиля. Это связано с тем, что коробка передач более подвержена прямым повреждениям и износу с течением времени, чем механические коробки передач, где сцепление и более подвержено износу. Для проведения сервисного осмотра полностью автоматическую коробку передач необходимо очистить от отложений и других загрязняющих примесей, содержащихся в трансмиссионном масле.

Полуавтоматическая коробка передач

В полуавтоматической коробке передач сцепление по-прежнему является частью трансмиссии (но не педалью сцепления), а компьютер автоматически поддерживает переключение передач.

Принцип работы полуавтоматической коробки передач на практике сильно различается от машины к машине. В некоторых автомобилях вы вообще ничего не делаете при переключении передач и можете позволить двигателю и электронике делать всю работу за вас.

В других случаях вам нужно «сказать» двигателю, когда вы хотите увеличить или уменьшить передачу.Вы нажимаете рычаг переключения передач в нужном вам направлении, а затем электроника переключает передачи за вас. Фактическое изменение произведено в так называемом «приводе ».

Наконец, другие автомобили дают вам возможность самостоятельно выбирать, хотите ли вы полностью освободить руки или использовать рычаг переключения передач для переключения передач.

С финансовой точки зрения покупка автомобиля с полуавтоматической трансмиссией может быть выгодной, поскольку в долгосрочной перспективе она требует меньшего обслуживания. Если что-то сломается в полностью автоматической коробке передач, механику придется полностью залезть в коробку передач, чтобы отремонтировать ее, а это может быть дорого.С полуавтоматическими коробками передач у вас есть сцепление, которое в большей степени подвержено износу, чем коробка передач, и сцепление несколько дешевле ремонтировать, чем коробка передач.

Наиболее часто полуавтоматическими коробками передач оснащаются: Peugeot , Citroën , Volkswagen , Audi , Škoda и Seat . Конечно, каждая марка может разработать коробку передач по-своему, но это типичные автомобильные марки, использующие полуавтоматическую систему.

Коробка передач DSG

Коробка передач DSG представляет собой смесь механической и автоматической коробки передач, поскольку в автомобиле есть сцепление. В этом отличие от других полностью автоматических коробок передач. Педали сцепления нет, но функция сцепления сохраняется в двойном сцеплении, что обеспечивает легкое и быстрое переключение передач.

Эта коробка передач чаще всего используется в автомобилях Audi, Škoda и Volkswagen и, следовательно, обычно в большем немецком автопарке.

Некоторые проблемы с коробкой передач DSG заключаются в том, что нужно быть внимательнее при ее обслуживании.Если вы не получите обслуживание коробки передач DSG и убедитесь, что в заменено масло коробки передач и масляный фильтр , это может длиться относительно короткое время по сравнению с механическими коробками передач. Желательно, чтобы производил сервисный осмотр на каждые 38000 миль пройденного пути, потому что шестерни в коробке передач могут быть подвержены воздействию пыли и отложений, связанных с износом.

Секвентальная коробка передач

В некоторых автомобилях также есть секвентальная коробка передач, где, как следует из названия, вы должны переключать каждую передачу независимо от того, повышаете вы или понижаете передачу.Таким образом, вы переключаете передачи последовательно на паре зубчатых колес, и, в отличие от механической коробки передач, вы можете переключаться только на передачу, которая идет до или после текущей. Это потому, что шестерни расположены «на одной линии», в отличие от формата H, который вы знаете по механической коробке передач. Наконец, преимущество состоит в том, что вы можете быстрее переключаться между передачами и быстрее ускоряться, поэтому секвентальная коробка передач используется во многих гоночных автомобилях.

Активное управление переключением передач

Недавно Hyundai разработала улучшенную версию трансмиссии в гибридных автомобилях.Особенность гибридного автомобиля в том, что в нем есть как бензиновый, так и электродвигатель. Большим преимуществом этого автомобиля является то, что он использует электродвигатель в то время, когда у обычных бензиновых автомобилей самый высокий расход топлива, особенно при запуске и ускорении.

Другими словами: при максимальном расходе топлива гибридный автомобиль использует электродвигатель. Это дает действительно хорошую экономию топлива, а также благоприятно сказывается на окружающей среде.

Однако технология Active Shift Control делает еще больше для экономии топлива, переключения передач и долговечности коробки передач.При этом ускорение налаживается.

Это выполняется системой ASC, также известной как Precise Shift Control, которая оптимизирует импульс и передачу мощности на колеса за счет оптимизации скорости переключения передач. Это достигается с помощью датчика в электродвигателе, определяющего обороты в коробке передач, который затем синхронизируется с электродвигателем. Затем этот сработает при переключении передач. Таким образом, потери энергии сокращаются до 30% за счет более плавного переключения передач, когда электродвигатель поддерживает высокие обороты автомобиля на протяжении всей смены.Время переключения передач сокращено с 500 миллисекунд до 350 миллисекунд, а трение в коробке передач меньше, что увеличивает долговечность.

Технология сначала внедряется в гибридных автомобилях Hyundai, а затем и в известных моделях Kia.

Все о редукторах / трансмиссиях

Как работает коробка передач (трансмиссия)? Что такое передаточное число?

Принцип работы коробки передач:

Коробка передач — это комплект, состоящий из различных шестерен, синхронизирующих втулок и механизма переключения передач, помещенных в металлический корпус.Металлический корпус, обычно изготовленный из литого алюминия / чугуна, вмещает в себя все шестерни. Коробка передач является частью системы «трансмиссии», поскольку шестерни играют важную роль в передаче мощности двигателя на колеса.

Схема 5-ступенчатой ​​коробки передач

Что такое трансмиссия?

Все компоненты трансмиссии, которые помогают передавать мощность двигателя на колеса, являются частью системы «Трансмиссия». Неотъемлемой частью которой является коробка передач. Эти компоненты включают сцепление, коробку передач, муфты, карданный вал, полуоси и дифференциал.В общем, термин «трансмиссия» обычно относится к коробке передач автомобиля. Некоторые конструкции автомобилей объединяют коробку передач и дифференциал в единый блок, называемый «трансмиссией» или «трансмиссией».

Какое передаточное число?

Передаточное число — это соотношение между входной и выходной шестернями. Ведущая шестерня и ведомые шестерни в коробке передач определяют передаточные числа. Входные шестерни получают привод от двигателя, и они вращают выходные шестерни, которые, в свою очередь, приводят в движение колеса. Отношение числа оборотов выходной шестерни к числу оборотов входной шестерни называется передаточным числом.

Передаточное число также можно получить по следующей формуле:

Передаточное число = число зубьев ведомой шестерни / число. зубьев входной шестерни

Например, если нет. шестерен на входной (ведущей) передаче = 30, № шестерен выходной (ведомой) шестерни = 105

Тогда передаточное число = 105/30 = 3,5: 1, потому что для поворота выходной (ведомой) шестерни на 1 оборот необходимо повернуть входную (ведущую) шестерню на 3,5 оборота.

Диаграмма передаточного числа

Типовая диаграмма передаточных чисел в коробке передач MUV:

Ниже приводится диаграмма передаточного числа редуктора MUV.

Шестерня

Коэффициент

1 st шестерня

3.78: 1

2 nd шестерня

2.20: 1

3 ряд шестерня

1.42: 1

4 шестерня

1: 1

5 -я шестерня (повышающая передача)

0.83: 1

Передаточные числа варьируются от автомобиля к автомобилю. В грузовых автомобилях передаточные числа обычно выше, чем в легковых автомобилях, поскольку они должны нести тяжелые грузы.

Как работает коробка передач?

Коробка передач содержит шестерни разных размеров. Это происходит главным образом из-за различных требований транспортного средства к крутящему моменту, необходимому на колесах, в зависимости от дороги, местности и нагрузки. Например, если автомобиль поднимается по склону, ему требуется более высокий крутящий момент, чем при движении по прямой дороге.

Первая передача является самой большой в коробке передач и обеспечивает максимальный выходной крутящий момент при минимальной скорости. Следовательно, он используется при подъеме на склоны. Все шестерни между 1 st и последней передачей различаются по размеру с уменьшающимся передаточным отношением. Таким образом, он обеспечивает различную комбинацию тягового усилия и скорости. Таким образом, автомобиль мог двигаться плавно, не теряя при этом ускорения. Коробка передач в основном улучшает управляемость автомобиля в любых условиях.

Что такое овердрайв?

Напротив, последняя передача или высшая передача, иногда повышающая передача, являются наименьшими по размеру. Однако он обеспечивает минимальную тягу, но максимальную скорость. Коробка передач с повышающей передачей означает, что ее выходная мощность выше, чем ее вход, который подключается к двигателю. Другими словами, повышающая передача вращается быстрее, чем частота вращения двигателя. Таким образом, он обеспечивает более высокую скорость и лучшую эффективность, поскольку двигатель работает на более низких оборотах по сравнению со скоростью автомобиля.

В некоторых усовершенствованных конструкциях имеется более одной шестерни повышенной передачи, обычно две.Таким образом, Dual Overdrive (также известный как «Double Top») обеспечивает еще более высокую скорость и лучшую эффективность в автомобиле.

Работа коробки передач:

Как правило, в обычной коробке передач есть два набора шестерен — входная и выходная. Входные шестерни закреплены на промежуточном валу, что делает его единым блоком. Он приводит в движение отдельные шестерни на главном валу, которые свободно вращаются на подшипниках. Таким образом, коробка передач передает привод на колеса в зависимости от шестерни, которая входит в зацепление с главным валом.Когда вы толкаете втулку переключателя к желаемой передаче, эта шестерня фиксируется на главном валу и вращает его. Таким образом, главный вал вращается со скоростью включенной передачи и обеспечивает выходную мощность в соответствии с передаточным числом включенной передачи.

Схема работы первой передачи

Коробка передач: скорость против тяги

Вам нужна как скорость, так и тяга при вождении автомобиля. Шестерни в коробке передач помогают выбрать любую из них в зависимости от условий движения. Низшая передача, т.е.2-я и 1-я передачи дадут вам наибольшее сцепление с дорогой, а более высокие передачи, то есть 5-я и 6-я (если есть), дадут вам максимальную скорость. Количество передач в коробке передач обеспечивает идеальное сочетание тяги и скорости. Таким образом, это помогает водителю / гонщику выбрать наиболее подходящую комбинацию для постоянного повышения эффективности. Следовательно, очень важно выбрать правильную передачу в соответствии с дорожными условиями и условиями нагрузки. С короткой передачей вы получаете лучшее ускорение или прием, в то время как высокая передача дает вам более высокую максимальную скорость.

Типы коробки передач:

В целом автомобильные коробки передач в основном подразделяются на четыре категории:

  1. Механическая — до 6 передач переднего хода в автомобиле и до 13 передач переднего хода в грузовике
  2. Полностью автоматическая коробка передач — до 9 скоростей
  3. Бесступенчатая трансмиссия — вариатор
  4. Автоматическая механическая коробка передач (AMT) — до 5 скоростей.
  5. Коробка передач с двойным сцеплением

В соответствии с механизмом переключения, производители классифицируют автомобильную передачу еще на три категории:

  1. Раздвижная сетка — обычно используется в двухколесных автомобилях / велосипедах
  2. Постоянная сетка — обычно используется в грузовиках старого поколения
  3. Синхронизирующая сетка — используется в легковых и грузовых автомобилях нового поколения

В зависимости от расположения механизма переключения:

  1. Column Shift — Рычаг переключения передач, установленный на рулевой колонке, управляется вручную.
  2. Напольное переключение — Рычаг переключения передач, установленный на полу, управляется вручную
  3. Подрулевые переключатели — Переключатели передач, установленные на рулевом колесе, управляются пальцами.

Eaton и ZF — одни из известных мировых производителей коробок передач.

Для получения дополнительной информации о коробках передач нового поколения щелкните здесь.

Посмотрите, как работает коробка передач:

Подробнее: Как крутящий момент помогает повысить эффективность автомобиля? >>

О CarBikeTech

CarBikeTech — это технический блог.Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

4 типа автомобильных трансмиссий (и как они работают)

Источник: iStock

Когда ваш дед был ребенком, у каждой машины было по три педали, и обучение работе со сцеплением было обрядом посвящения. Однако сегодня существует беспрецедентное количество коробок передач, у каждой из которых есть свои плюсы и минусы.Выяснить, что означают все аббревиатуры и загадочные описания, может быть непросто, но функции этих очень сложных механических чудес на самом деле довольно просты. Давайте откроем картер трансмиссии и посмотрим, что делает каждый тип трансмиссии уникальным.

1. Коробка передач Ручка ручного переключения передач | Thinkstock

Самый простой и старый тип трансмиссии, который до сих пор используется, — это надежное руководство. В этой коробке передач используется фрикционная муфта, регулируемая ногой водителя, для передачи энергии вращения двигателя на входной вал трансмиссии.Отсюда фиксированный набор передач включается с помощью синхронизатора и вилки переключения передач, соединенной с переключателем, управляемым правой рукой водителя (или левой, в некоторых странах).

За прошедшие годы он получил множество названий — ручной, ручной, стандартный, трех, четырех, пяти или шести скоростей — но как бы вы его ни называли, нельзя отрицать, что надежное руководство является вымирающим видом, по крайней мере В США все меньше и меньше новых моделей автомобилей предлагают рядные коробки передач, и все больший процент водителей, кажется, не знает, как ими пользоваться.

Несмотря на мрачные перспективы на будущее, у руководства есть много преимуществ перед более новыми и более сложными вариантами. Простота рычага переключения передач означает, что ему реже потребуется дорогостоящий ремонт, чем любой другой тип трансмиссии, а если у него действительно есть проблема, он, вероятно, будет дешевле и легче исправить.

На протяжении десятилетий стандарт был единственным выбором, когда дело касалось характеристик, и практически каждый гоночный и спортивный автомобиль на планете был оборудован им. В последние годы, однако, механическая коробка передач была вытеснена коробкой передач с двойным сцеплением или полуавтоматической трансмиссией в большинстве высокопроизводительных автомобилей.Тем не менее, он по-прежнему предлагает лучшие характеристики, чем большинство автоматических коробок передач и практически все трансмиссии CVT. И экономия топлива — похожая история. Вплоть до недавнего времени водители, которые предпочитали переключать собственные передачи, экономили топливо явно лучше, чем те, кто этого не делал. Автоматика с ее постоянно увеличивающимся числом передач существенно сократила разрыв.

Помимо присущей ему простоты, производительности и экономии топлива, возможно, наиболее убедительным доводом в пользу почтенного рычага переключения передач является само удовольствие от вождения.Для настоящих энтузиастов вождения ничто не может сравниться с ощущением идеально рассчитанного переключения передач на старом добром руководстве.

2. Коробка автомат Автоматический селектор передач | iStock

Вездесущая автоматическая коробка передач на сегодняшний день является наиболее распространенной трансмиссией на дорогах. Он использует очень сложный преобразователь крутящего момента для передачи энергии вращения двигателя, в то время как переключение передач контролируется компьютером транспортного средства и осуществляется с помощью планетарного ряда и ряда сцеплений и тормозов.

Хотя закулисное действие довольно сложно, все, что нужно сделать водителю, — это выбрать один из знакомых вариантов P-R-N-D-L на селекторе передач. Преимущество, конечно же, в упрощенном вождении и плавном обучении. Компромисс для простоты вождения — механическая сложность, которая делает автомат более склонным к сбоям и более дорогим для ремонта.

Хотя большинство автоматических коробок передач не могут сравниться с механической коробкой передач по производительности или экономии топлива, современные модели намного ближе, чем предыдущие поколения.Некоторые автомобили последних моделей оснащены трансмиссиями с восемью или даже девятью передачами переднего хода.

3. Бесступенчатая коробка передач (CVT) CVT использует конусы и ленты для создания различных уровней натяжения | Nissan

CVT предлагает те же впечатления от вождения, что и автоматический, но работает с использованием совершенно другого механизма. Фактически, вариатор вообще не имеет шестерен — вместо этого он использует систему ремней и шкивов для создания бесконечного диапазона передаточных чисел.Компьютер автомобиля решает, как отрегулировать шкивы, чтобы создать оптимальное передаточное число для конкретной дорожной ситуации. Это создает главное преимущество вариатора: экономию топлива. Ни один другой тип трансмиссии не может предложить больше MPG, чем вариатор (пока).

Поскольку они не такие сложные, как автоматика, вариаторы менее подвержены поломкам и дорогостоящему ремонту (хотя и не так сильно, как руководства). Их самый большой недостаток может быть субъективным — впечатления от вождения. Поскольку нет переключения передач, только плавное и плавное ускорение, вариатор может оставить у истинного энтузиаста вождения ощущение, будто он или она управляет устройством, а не водит машину.

4. Полуавтоматические трансмиссии и коробки передач с двойным сцеплением Подрулевой переключатель | iStock

Думайте об этом как о гибриде между полностью автоматической и механической коробкой передач. В полуавтоматической трансмиссии механическая схема аналогична обычной, но для переключения передач используется система пневматики и приводов. В коробке передач с двойным сцеплением (DCT) есть отдельные муфты как для нечетной, так и для четной передачи, что обеспечивает невероятно быстрое переключение. Эти коробки передач, как правило, могут работать в полностью автоматическом режиме или вручную с помощью подрулевых переключателей на рулевом колесе.

Полуавтоматическая трансмиссия и трансмиссия DCT

обеспечивают высочайшую производительность с невероятно быстрым переключением передач, с которым не может сравниться чисто механическая коробка передач. В настоящее время эти коробки передач в основном используются на гоночных и спортивных автомобилях высокого класса, поэтому они довольно дороги. Этот недостаток усугубляется их чрезвычайной сложностью, что приводит к более частому и дорогостоящему ремонту.

Нравится классика? Где-то всегда бывает четверг с возвратом.

Как это работает: Автоматические коробки передач

Автоматическая коробка передач кажется довольно простой; в конце концов, вы просто помещаете его на Диск и вперед.Но, как и в случае с большинством автомобильных вещей, очень сложно сделать так, чтобы это выглядело просто.

Двигатель содержит тяжелый вращающийся центральный цилиндр коленчатого вала, который обеспечивает вращение колес. «Обороты двигателя» — это скорость вращения коленчатого вала, измеряемая в оборотах в минуту или «об / мин». Большинство двигателей вырабатывают большую часть своей мощности в относительно узком диапазоне скоростей, но для управления автомобилем требуется более широкий диапазон. Трансмиссия является жизненно важным звеном, увеличивающим крутящий момент для ускорения после остановки или предотвращающим чрезмерную работу двигателя на скоростях шоссе.

Автоматическая коробка передач использует датчики для определения момента переключения передач и переключает их с помощью внутреннего давления масла. Несмотря на то, что в трансмиссию встроено множество компонентов, и их фактическая работа немного сложнее, чем в упрощенной версии, представленной здесь, ключевыми компонентами являются преобразователь крутящего момента и планетарные редукторы.

Шестерни внутри восьмиступенчатой ​​автоматической коробки передач, а также крыльчатка и турбина внутри гидротрансформатора слева.BMW

Для переключения передач необходимо временно отсоединить трансмиссию от двигателя. На механической коробке передач водитель делает это, нажимая на педаль сцепления, а на автоматической — через гидротрансформатор.

Внутри преобразователя крутящего момента, заполненного трансмиссионной жидкостью, есть два веерообразных компонента: крыльчатка, прикрепленная к коленчатому валу двигателя, и турбина, прикрепленная к входному валу трансмиссии. Когда двигатель вращает крыльчатку, его лопасти перемещают жидкость, что, в свою очередь, заставляет турбину вращаться.Жидкость движется по замкнутому контуру. Третий веерообразный компонент, статор, находится между крыльчаткой и турбиной и помогает направлять движение жидкости. Когда вы нажимаете дроссель для увеличения скорости, жидкость перемещает турбину быстрее, чтобы передать больше энергии через трансмиссию. По мере замедления движение жидкости замедляется, турбина перестает вращаться, и двигатель может сидеть и работать на холостом ходу без остановки.

Турбина и рабочее колесо не прикреплены постоянно, и рабочее колесо всегда вращается быстрее. В большинстве автомобилей используется гидротрансформатор с механической муфтой, которая временно соединяет два компонента на более высоких скоростях, чтобы улучшить экономию топлива.

Вырез гидротрансформатора Silverado с маятником для компенсации любой вибрации двигателя.

Как только эта мощность будет передана на входной вал трансмиссии, пора планетарной передаче сделать свое дело. Название происходит от того, как они устроены. Центральная шестерня называется солнечной шестерней, в то время как меньшие планетарные шестерни вращаются вокруг нее, удерживаясь в кольце, называемом водилом планетарной передачи. Их всех окружает большой зубчатый венец, который находится в зацеплении с планетарными шестернями в их водиле.

Вместо использования отдельной шестерни для каждой передачи, различные скорости трансмиссии достигаются за счет комбинации шестерен. Солнечная, планетарная и коронная шестерни входят в зацепление в различных комбинациях, например, внешняя кольцевая шестерня вращается, а внутренняя солнечная шестерня остается неподвижной. Это достигается с помощью небольших фрикционных муфт, которые задействуют шестерни для поворота, и лент, которые удерживают их в стороне, чтобы они не вращались. Муфты и ленты приводятся в действие пальцами и клапанами, которые активируются трансмиссионной жидкостью под давлением.

Восьмиступенчатая автоматическая коробка передач для переднеприводной Тойоты. Тойота

Создавая различные передаточные числа, трансмиссия забирает мощность от двигателя и увеличивает или уменьшает ее на пути к выходному валу, который передает мощность на колеса. На первой передаче двигатель вращается относительно медленно, так как водитель постепенно нажимает на дроссель, поэтому трансмиссия использует низкую передачу, чтобы умножить крутящий момент, передаваемый на колеса, чтобы дать им мощность, необходимую для ускорения. На скоростях шоссе трансмиссия использует повышенную передачу, когда выходная скорость трансмиссии выше, чем скорость, поступающая от двигателя, что позволяет экономить топливо и сокращать износ двигателя.

Когда трансмиссия переведена в режим заднего хода, малая солнечная шестерня поворачивает наружную кольцевую шестерню назад. Для парковки небольшой зубчатый стояночный механизм надежно удерживается небольшой защелкой, называемой парковочной защелкой, которая не позволяет выходному валу вращать колеса.

Мощность, передаваемая трансмиссией, не поступает прямо на колеса, которые должны иметь возможность вращаться с разной скоростью. Если бы они этого не сделали, вы не смогли бы правильно повернуть угол, поэтому автомобиль использует дифференциал, чтобы разделить мощность и передать нужное количество на каждое колесо.На переднеприводном транспортном средстве дифференциальные шестерни объединены в картер трансмиссии, и весь блок обычно называют трансмиссией.

Хотя трансмиссии не требуют такого ухода, как двигатель, им все же нужно немного любви. Убедитесь, что уровень трансмиссионной жидкости проверяется при каждой замене масла, и, если график технического обслуживания вашего автомобиля рекомендует это, замените трансмиссионную жидкость по рекомендации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *