Проводимость различных сред таблица – Презентация на тему: «ЭЛЕКТРИЧЕСКИЙ ТОК В РАЗЛИЧНЫХ СРЕДАХ. Электрическая проводимость ( электропроводность) — 1/ R — электрическая проводимость 1/ R

Электрический ток в различных средах: таблица

Одним из основных свойств электрического тока, является его способность к проводимости в разных условиях. Степень проводимости для каждого случая отличается между собой. Поэтому, когда изучается электрический ток в различных средах, таблица помогает наглядно представить, какими качествами он обладает в том или ином случае. Все вещества, в соответствии с их электрической проводимостью, разделяются на несколько основных категорий.

Металлы, как проводники электрического тока

При прохождении электрического тока в металлах, существенных изменений не наблюдается, за исключением обязательного нагрева. Металлы отличаются высокой концентрацией электронов, влияющих на уровень проводимости. Происходит их постоянное движение с высокой скоростью.

В узлах кристаллических решеток металлов располагаются положительные ионы, производящие тепловые колебания. В промежутках между ними происходит движение свободных электронов, которым придается ускорение с помощью электрического поля.

Движение электрического тока в полупроводниках

Полупроводники обладают собственными свойствами, влияющими на проводимость. Основой их проводимости является р-п переход. Повышение температуры вызывает увеличение удельного сопротивления вещества. При этом, возрастает количество свободных электронов, на месте которых остаются виртуальные заряды, называемые дырками.

Поэтому, основной особенностью электрического тока в полупроводниках, является движение не только свободных электронов, но и дырок. При росте температуры, проводимость увеличивается из-за резкого снижения сопротивления.

Жидкость и газ – эффективные проводники

Всем известно, что дистиллированная вода не является проводником. Однако, если опустить в нее хотя-бы один кристалл обычной соли, произойдет замыкание цепи. Это вызвано появлением в воде свободных носителей зарядов. Происходит явление электролитической диссоциации, когда молекулы распадаются на ионы под воздействием растворителя. Такие жидкие проводники, где содержатся подвижные носители зарядов, называются электролитами.

Газы в обычном состоянии, как и дистиллированная вода, также являются диэлектриками, поскольку содержат нейтральные молекулы и атомы. Все эти частицы не имеют зарядов и придают газам высокие изолирующие свойства. Для того, чтобы газ стал проводником, в нем необходимо присутствие заряженных частиц в виде свободных носителей зарядов.

Как правило, проводниками являются ионизированные газы с положительными и отрицательными ионами. Проводимость в газах может быть создана самостоятельно, или путем искусственного внесения в них заряженных частиц.

electric-220.ru

Электрическая проводимость различных веществ. Электронная проводимость металлов

Электрическая проводимость различных веществ. Электронная проводимость металлов

«Физика - 10 класс»

Как движутся электроны в металлическом проводнике, когда в нём нет электрического поля?
Как изменяется движение электронов, когда к металлическому проводнику прикладывают напряжение?

Электрический ток проводят твёрдые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?

Вы познакомились с электрическим током в металлических проводниках и с установленной экспериментально вольт-амперной характеристикой этих проводников — законом Ома.

Наряду с металлами хорошими проводниками, т. е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизованный газ — плазма. Эти проводники широко используются в технике.

В вакуумных электронных приборах электрический ток образуют потоки электронов.

Металлические проводники находят самое широкое применение в передаче электроэнергии от источников тока к потребителям. Кроме того, эти проводники используются в электродвигателях и генераторах, электронагревательных приборах и т. д.

Кроме проводников и диэлектриков (веществ со сравнительно небольшим количеством свободных заряженных частиц), имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, но и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название

полупроводников.

Долгое время полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, когда сначала была предсказана теоретически, а затем обнаружена и изучена легкоосуществимая возможность управления электрической проводимостью полупроводников.

Нет универсального носителя тока. В таблице приведены носители тока в различных средах.

Электронная проводимость металлов.

Начнём с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о её объяснении с точки зрения молекулярнокинетической теории.

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика — порядка 10 28 1/м 3 .

Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10-4 м/с.

Экспериментальное доказательство существования свободных электронов в металлах.

Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Мандельштама и Папалекси (1913), Стюарта и Толмена (1916). Схема этих опытов такова.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 16.1). К концам дисков при помощи скользящих контактов подключают гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока в этом опыте говорит о том, что он создаётся движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8 • 10

11 Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе е/m, найденным ранее из других опытов.

Движение электронов в металле.

Свободные электроны в металле движутся хаотично. При подключении проводника к источнику тока в нём создаётся электрическое поле, и на электроны начинает действовать кулоновская сила = qe. Под действием этой силы электроны начинают двигаться направленно, т. е. на хаотичное движение электронов накладывается Скорость направленного движения увеличивается в течение некоторого времени t0 до тех пор, пока не произойдёт столкновение электронов с ионами кристаллической решётки. При этом электроны теряют направление движения, а затем опять начинают двигаться направленно. Таким образом, скорость направленного движения электрона изменяется от нуля до некоторого максимального значения, равного В результате средняя скорость упорядоченного движения электронов оказывается равной т. е. пропорциональной напряжённости электрического поля в проводнике: υ ~ Е и, следовательно, разности потенциалов на концах проводника, так как где l — длина проводника.

Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: I ~ U.

В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения. Этот факт подтверждает, например, зависимость сопротивления от температуры. Согласно классической теории металлов, в которой движение электронов рассматривается на основе второго закона Ньютона, сопротивление проводника пропорционально эксперимент же показывает линейную зависимость сопротивления от температуры.

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский



Электрический ток в различных средах - Физика, учебник для 10 класса - Класс!ная физика

Электрическая проводимость различных веществ. Электронная проводимость металлов --- Зависимость сопротивления проводника от температуры. Сверхпроводимость --- Электрический ток в полупроводниках. Собственная и примесная проводимости --- Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы --- Электрический ток в вакууме. Электронно-лучевая трубка --- Электрический ток в жидкостях. Закон электролиза --- Электрический ток в газах. Несамостоятельный и самостоятельный разряды --- Плазма --- Примеры решения задач по теме «Электрический ток в различных средах»

class-fizika.ru

Тема урока "Электрический ток в различных средах"

Разделы: Физика


Цель урока:

Обобщить и систематизировать знания учащихся об электрическом токе в различных средах путем анализа опытов, демонстрирующих проводимость в различных средах, выявить природу носителей зарядов в средах, сравнить зависимости сопротивления различных сред от температуры, сопоставить вольтамперные характеристики приборов.

Применять знания об основных положениях электродинамики для объяснения электропроводимости различных сред.

Оборудование:

  1. вольтметр, амперметр, выпрямитель, лампочка,
  2. таблицы:
    “Электрический ток в вакууме”,
    “Электрический ток в полупроводниках”.

Обобщение знаний:

  1. Опыты, демонстрирующие электропроводимость различных сред.
  2. Носители электрических зарядов в различных средах.
  3. Вольтамперные характеристики приборов.
  4. Зависимость сопротивления металлов, электролитов, газов и полупроводников от температуры.
  5. Практическое применение тока в различных средах.
  6. Задание на дом.

Сегодня на уроке мы с вами вспомним закономерности прохождения тока в различных средах, сравним физическую природу тока в них и механизм образования свободных носителей тока.

На столе у каждого ученика лежит заготовленная таблица, которую необходимо заполнить во время урока.

(Приложение 1.)

Вспомним, какие опыты помогли установить электропроводность металлов – Мандельштама и Папалекси. (Ученики поясняют схему постановки опыта, учитель на доске рисует эту схему.)


Рис.1

Какие опыты мы проводили, чтобы показать электропроводимость жидкостей и газов?

(Ученики поясняют схемы соответствующих опытов, учитель делает зарисовки схем опытов, учащиеся аналогичную работу проводят в тетрадях.)


Рис.2

Далее разбираем опыт с вакуумным диодом.

(Ученик поясняет опыт, учитель чертит схему.)

(Полупроводники от металлов можно отличить по характеру зависимости их проводимости от температуры. Если температура полупроводника повышается, то его сопротивление уменьшается. Если собрать цепь из источника тока, полупроводникового терморезистора и амперметра, то можно заметить, что показания амперметра будут увеличиваться при нагревании терморезистора.)

Итак, носители зарядов в различных средах:

(В металлах свободными носителями зарядов являются свободные электроны, в жидкостях – положительные и отрицательные ионы, в газах – ионы и электроны, в полупроводниках – электроны и дырки (или свободные и связанные электроны).)

Какова концентрация свободных носителей зарядов в разных средах? От чего она зависит?

(В металлах концентрация электронов 1022 – 1023см-3 остается почти постоянной при разных температуpax, в жидкостях концентрация ионов зависит от содержания в водном растворе кислот, солей и щелочей, т. е. от концентрации самих растворов. В газах концентрация ионов и электронов определяется свойствами самого ионизатора. В вакууме концентрация электронов в электронном облаке повышается при увеличении температуры нити накала и, кроме того, в значительной мере зависит от оксидного покрытия катода.

В полупроводниках концентрация носителей определяется наличием примесей, создающих преимущественно электронную или дырочную проводимость, и зависит от температуры и освещенности полупроводника.)

Далее вычерчиваем вольтамперные характеристики для металлов, жидких проводников; сравниваем их.

Задаю ряд дополнительные вопросы:

1. Почему в отличие от металлического проводника характеристика диода нелинейная?

2. Когда наступает явление насыщения тока? От чего зависит сила тока насыщения?

Итак, мы убедились, что изучение вольтамперных характеристик позволяет сделать важные выводы о прохождении тока в различных средах.

Можно ли по виду вольтамперных характеристик сделать какие-либо выводы о сопротивлениях сред? Обратите внимание: одни характеристики являются линейными, другие – нет.

(Вольтамперные характеристики для металлов и электролитов показывают прямую пропорциональную зависимость силы тока от напряжения, потому что сопротивление проводников постоянно. Нелинейность других характеристик показывает, что сопротивление изменяется.)

Какова зависимость сопротивления сред от температуры? От каких факторов зависит сопротивление?

(Ученики отвечают. У металлов и жидкостей сопротивление при постоянной температуре не изменяется с ростом напряжения; кроме того, оно прямо пропорционально длине проводника, удельному сопротивлению и обратно пропорционально поперечному сечению. Различие в том, что сопротивление металлов с повышением температуры увеличивается, а у жидкостей, наоборот, уменьшается.)

(На демонстрационном столе собрана электрическая цепь, состоящая из выпрямителя, амперметра, вольтметра и электрической лампы: 10 Вт, 220 В)

Измеряем напряжение на выходе выпрямителя, учащиеся следят за показаниями приборов. Показания приборов (значения силы тока и напряжения) записываются в таблицу

U,В 0 1 7 20 38 58 90
I,А 0 0,2 0,4 0,6 0,8 1 1,2

Как можно объяснить такую зависимость?

(Так как при увеличении напряжения и силы тока растет температура нити накала лампы и сопротивление ее увеличивается, то зависимость силы тока от напряжения нелинейная.

Учащиеся рассказывают об использовании металлических проводников, о технических применениях электролиза и различных типов газового разряда, поясняют устройства вакуумного диода и электроннолучевой трубки, приводят примеры полупроводниковых приборов. Во время рассказа учащиеся используют учебные таблицы.)

Мы еще раз убедились, что объяснить эти явления можно с точки зрения электронной теории. Мы упоминали о таком явлении, которое нельзя объяснить классической электронной теорией. Напомните это явление.

(Это явление сверхпроводимости.)

Обратимся еще раз к таблице. (Приложение 2) В верхней строчке ее отражены опыты, с помощью которых мы выяснили природу свободных носителей электрических зарядов. Затем мы рассматривали основные положения электронной теории, объясняющие причины возникновения носителей зарядов, а также вольтамперные характеристики. Далее выяснили, от чего зависят сопротивления сред. Завершили тему изучением вопросов о техническом применении электрического тока в различных средах. Приборы, технические устройства и другие примеры практического применения тока в различных средах основаны на использовании выводов и следствий электронной теории. Таким образом, экспериментально подтверждается истинность теоретических следствий, а следовательно, и самой теории.

Заключение:

После повторения всех вопросов плана и заполнения таблицы учащиеся еще раз просматривают материал и делают вывод о том, в какой последовательности развивались научные знания об электрическом токе в различных средах.

Для развития познавательной активности школьников проводится демонстрационный эксперимент. По его результатам строится график зависимости силы тока от напряжения. Учащиеся сравнивают полученную характеристику тока, проходящего через лампу накаливания, с другими, рассмотренными ранее.

Задание на дом: Итоги гл.10, стр.200

Литература:

  1. Мякишев Г.Я., Буховцев Б.Б. Физика: Учеб. Для 10 кл. сред. шк.– 3-е изд.-М.; Просвещение,1994.
  2. П.И. Самойленко, Е.И. Огородникова, Г.И. Рябоволов. – М.; “Высшая школа”, 1984.
  3. Современный урок физики в средней школе/ В.Г. Разумовский, Л.С. Хижнякова, А.И. Архипова и др. – М.; Просвещение,1983.

xn--i1abbnckbmcl9fb.xn--p1ai

электрический ток в различных средах

 на главную   

Официальный сайт АНО ДО Центра "Логос", г.Глазов

http://logos-glz.ucoz.net/

 

 

ГОТОВИМСЯ К УРОКУ

Кинематика

Динамика

МКТ

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

Электрический ток в различных средах                                                      немного о физике:   

Электрическим током называют всякое  упорядоченное движение электрических зарядов. Электрический ток может проходить через различные вещества при определенных условиях. Одним из условий возникновения электрического тока является наличие свободных зарядов, способных двигаться под действием электрического поля.

Поэтому в этом разделе мы попытаемся  установить, какие частицы, переносят  электрический заряд в различных средах.

 

Электрический ток в металлах.

Металлы состоят из положительно заряженных ионов, находящихся в узлах кристаллической решетки и совокупности свободных электронов. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, а потому рассматриваются в классической электронной теории как электронный газ.

Под действием внешнего электрического поля меняется характер движения свободных электронов внутри металла. Электроны, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля.

Следовательно, электрический ток в металлах - это упорядоченное движение электронов.

 

Сила тока в металлическом проводнике определяется по формуле:

где I - сила тока в проводнике, e - модуль заряда электрона,  n0 - концентрация электронов проводимости,  - средняя скорость упорядоченного движения электронов,  S - площадь поперечного сечения проводника.

 

Плотность тока проводимости численно равна заряду, проходящему за 1с через единицу площади поверхности, перпендикулярной направлению тока.

где j - плотность тока.

У большинства металлов практически каждый атом ионизирован. А так как концентрация электронов проводимости  одновалентного металла равна

где Na - постоянная Авогадро,  A - атомная масса металла, ρ - плотность металла,

то получаем что концентрация определяется в пределах 1028 - 1029 м-3.

 

Закон Ома для однородного участка цепи:

где U - напряжение на участке,  R - сопротивление участка.

 

Для однородного участка цепи:

где  ρУ- удельное сопротивление проводника, l - длина проводника,  S - площадь поперечного сечения проводника.

Удельное сопротивление проводника зависит от температуры и  эта зависимость выражается соотношением:

ρу = ρоу ( 1 + α ∆Т )

где ρоу  - удельное сопротивление металлического проводника при температуре Т =273К, α - термический коэффициент сопротивления, ∆Т = Т - То  - изменение температуры.

 

 

 

Вольт-амперная характеристика металлов.

Сила тока в  проводниках по закону Ома прямо пропорциональна напряжению. Такая зависимость имеет место для проводников со строго заданным сопротивлением ( для резисторов).

Тангенс угла наклона графика равен проводимости проводника. Проводимостью называется величина, обратная сопротивлению

где  G - проводимость.

 

Но так как сопротивление металлов зависит от температуры, то вольт-амперная характеристика металлов не является линейной.

 

 

 

Электрический ток в растворах и расплавах электролитов.

Явление распада молекул солей, щелочей и кислот в воде на ионы противоположных знаков называют электролитической диссоциацией. Полученные в следствие распада ионы служат носителями заряда в жидкости, а сама жидкость становятся проводником.

 

Вне электрического поля ионы движутся хаотически. Под действием внешнего электрического поля ионы, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля: катионы к катоду, анионы - к аноду.

Следовательно, электрический ток в растворах (расплавах) электролитов - это направленное перемещение ионов обоих знаков в противоположных направлениях.

Прохождение электрического тока через раствор электролита всегда сопровождается выделением на электродах веществ, входящих в его состав. Это явление называют электролизом.

При движении внутри электролитов ионы взаимодействуют с молекулами воды и другими ионами, т.е. электролиты оказывают некоторое противодействие движению, а, следовательно, обладают сопротивлением. Электрическое сопротивление электролитов зависит от концентрации ионов, величины заряда иона, от скорости движения ионов обоих знаков.

Сопротивление электролитов так же определяется по формуле:

где  ρУ- удельное сопротивление электролита, l - длина жидкого проводника,  S - площадь поперечного сечения жидкого проводника.

При увеличении температуры электролита уменьшается его вязкость, что ведет к увеличению скорости движения ионов. Т.е. при повышении температуры сопротивление электролита уменьшается.

 

Законы Фарадея.

1. Масса вещества, выделяемого на электроде, прямо пропорциональна электрическому заряду, прошедшему через электролит.

где m - масса вещества, выделяющегося на электроде,  k - электрохимический эквивалент, q - заряд, прошедший через электролит.

 

2. Электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту.

          

где М- молярная масса вещества, F- постоянная Фарадея, z - валентность иона.

постоянная Фарадея численно равна заряду, который должен пройти через электролит, чтобы выделить из него массу вещества, численно равную химическому эквиваленту.

 

Объединенный закон Фарадея.

 

                    

 

 

 

Электрический ток в газах.

При нормальных условиях   газы  состоят  из  нейтральных молекул, а поэтому являются диэлектриками. Так как для  получения электрического тока необходимо наличие заряженных частиц, то молекулы газа следует ионизировать (оторвать электроны от молекул). Для ионизации молекул необходимо затратить энергию - энергию ионизации, количество которой зависит от рода вещества. Так, энергия ионизации минимальна для атомов щелочных металлов, максимальна - для инертных газов.

Ионизировать молекулы можно при нагревании газа, при облучении его различного рода лучами. Благодаря дополнительной  энергии  возрастает скорость  движения  молекул, нарастает интенсивность их теплового движения  и  при соударении отдельные молекулы теряют электроны, превращаясь в положительно заряженные ионы.

Электроны, оторвавшись от молекулы могут присоединятся к нейтральным молекулам, образуя при этом отрицательно заряженные ионы.

Следовательно, при ионизации появляются три типа носителей зарядов: положительные ионы, отрицательные ионы и электроны.

Под действием внешнего электрического поля ионы обоих знаков и электроны движутся  в направлении действия сил электрического поля: положительные ионы  к катоду, отрицательные ионы и электроны - к аноду. Т.е. электрический ток в газах - это упорядоченное движение ионов и электронов под действием электрического поля.

Вольт- амперная характеристика газов.

Зависимость силы тока от напряжения выражена  кривой ОАВС.

На  участке графика  ОА сила тока подчиняется закону Ома. При малом напряжении сила тока мала, т.к.  ионы двигаясь с малыми скоростями рекомбинируют, не достигая электродов. При увеличении напряжения  между электродами скорость направленного движения электронов  и ионов возрастает, поэтому  большая часть заряженных частиц достигает  электродов, а, следовательно возрастает сила тока.

При определенном значении напряжения U1 все ионы имеют достаточные скорости и, не рекомбинируя, достигают электродов. Ток становится максимально возможным и не зависит от дальнейшего увеличения напряжения до значения U2. Такой ток называют током насыщения, и ему соответствует участок графика АВ.

При напряжении U2 в несколько тысяч вольт скорость электронов, возникающих при ионизации молекул, а следовательно, их кинетическая энергия значительно увеличиваются. И когда  кинетическая энергия  достигает значения энергии ионизации, электроны, сталкиваясь с нейтральными молекулами, ионизируют их. Дополнительная ионизация  приводит к лавинообразному увеличению количества заряженных частиц, а следовательно и к значительному увеличению силы тока без воздействия внешнего ионизатора. Прохождение электрического тока без воздействия внешнего ионизатора называют самостоятельным разрядом. Такая зависимость выражена участком графика АС.

 

 

 

Электрический ток в вакууме.

В вакууме отсутствуют заряженные частиц, а следовательно, он является диэлектриком. Т.е.  необходимо создать определенные  условия, которые помогут  получить заряженные частицы.

Свободные электроны есть в металлах. При комнатной температуре  они не могут покинуть металл, т. к. удерживаются в нем силами кулоновского притяжения со стороны положительных ионов. Для преодоления этих сил электрону необходимо затратить определенную энергию, которая называется работой выхода. Энергию, большую или  равную работе выхода, электроны могут получить при разогреве металла до высоких температур.

 

При нагревании металла  количество электронов с кинетической энергией, большей работы выхода, увеличивается, поэтому из металла вылетает большее количество электронов. Испускание электронов из металлов  при его нагревании называют термоэлектронной эмиссией. Для осуществления термоэлектронной эмиссии в качестве оного из электродов используют тонкую проволочную нить из тугоплавкого металла (нить накала). Подключенная  к источнику тока нить раскаляется и с ее поверхности  вылетают электроны. Вылетевшие электроны попадают в электрическое поле между двумя электродами и начинают двигаться направленно, создавая электрический ток.

Явление термоэлектронной эмиссии лежит  в основе принципа действия электронных ламп:  вакуумного диода, вакуумного триода.

 

                  Вакуумный диод                                            Вакуумный триод

 

                                   

                 

Вольт-амперная характеристика вакуумного диода.

Зависимость силы тока от напряжения выражена  кривой ОАВСD.

При испускании электронов катод приобретает положительный заряд и поэтому удерживает возле себя электроны.  При отсутствии электрического поля между катодом и анодом, вылетевшие электроны образуют у  катода электронное облако.

По мере увеличения напряжения между анодом и катодом большее количество электронов устремляется к аноду, а следовательно сила тока увеличивается. Эта зависимость выражена участком графика ОАВ. Участок АВ является характеризует прямую зависимость  силы тока от напряжения, т.е. в  интервале напряжений U1 - U2 выполняется закон Ома.

 

 

Нелинейная зависимость на участке ВСD объясняется тем, что число электронов, устремляющихся к аноду, стает больше числа электронов, вылетающих с катода.

При достаточно большом  значении напряжения U3все электроны, вылетающие с катода, достигают анода, и электрический  ток достигает насыщения.

 

Так же в качестве источника заряженных частиц можно использовать радиоактивный препарат, испускающий α-частицы.Под действием сил электрического поля α-частицы будут двигаться, т.е. возникнет электрический ток.

Таким образом, электрический ток в вакууме может быть создан упорядоченным  движением любых заряженных частиц (электронов, ионов).

 

 

 

Электрический ток в полупроводниках.

 

Полупроводники - вещества, удельное сопротивление которых убывает с увеличением температуры и зависит от наличия примесей и  изменения освещенности. Удельное сопротивление проводников при комнатной температуре находится в интервале от 10-3 до 107 Ом ·м.  Типичными представителями полупроводников являются кристаллы германия и кремния.

В этих кристаллах атомы соединены между собой ковалентной связью. При нагревании ковалентная связь нарушается, атомы ионизируются. Это обуславливает  возникновение свободных электронов и "дырок"- вакантных положительных мест с недостающим электроном.

 

 

При этом электроны соседних атомов могут занимать вакантные места, образуя "дырку"  в соседнем атоме. Таким образом не только  электроны, но и "дырки" могут перемещаться по кристаллу. При помещении такого кристалла в электрическое поле электроны и дырки придут в упорядоченное движение - возникнет электрический ток.

 

Собственная проводимость.

В чистом кристалле электрический  ток создается равным количеством электронов и "дырок". Проводимость, обусловленную движением свободных электронов и равного им количества "дырок" в полупроводниковом кристалле  без примесей, называют собственной проводимостью полупроводника.

При повышении  температуры собственная проводимость полупроводника увеличивается, т.к. увеличивается число свободных электронов и "дырок".

 

 

Примесная  проводимость.

Проводимость проводников зависит от наличия примесей. Примеси бывают донорные и акцепторные. Донорная примесь - примесь с большей валентностью. Например, для четырехвалентного кремния донорной примесью является пятивалентный мышьяк. Четыре валентных электрона атома мышьяка участвуют в создании ковалентной связи, а пятый  станет электроном проводимости.

 

 

При нагревании  нарушается ковалентная связь,  возникают  дополнительные   электроны проводимости  и "дырки". Поэтому в кристалле количество свободных электронов преобладает над количеством "дырок". Проводимость такого проводника является электронной, полупроводник является полупроводником n-типа.  Электроны являются основными носителями заряда, "дырки" - неосновными.

 

Акцепторная  примесь - примесь с меньшей валентностью. Например, для четырехвалентного кремния акцепторной примесью является трехвалентный индий. Три валентных электрона атома индия участвуют в создании ковалентной связи с тремя атомами кремния, а на месте четвертой  незавершенной ковалентной связи образуется "дырка". 

 

 

При нагревании  нарушается ковалентная связь,  возникают  дополнительные   электроны проводимости  и "дырки". Поэтому в кристалле количество "дырок" преобладает над количеством свободных электронов. Проводимость такого проводника является дырочной, полупроводник является полупроводником p-типа.  "Дырки" являются основными носителями заряда, электроны - неосновными.

 

p-n переход.

 При контакте полупроводников p-типа и  n-типа через границу происходит диффузия электронов из n-области в p-область и "дырок" из p-области в n-область. Это приводит к возникновению запирающего слоя, препятствующего дальнейшей диффузии.  p-n переход обладает односторонней проводимостью.

При подключении p-n перехода к источнику тока так, чтобы p-область была соединена с положительным полюсом , а  n-область - с отрицательным полюсом, появляется  движение основных носителей зарядов через контактный слой. Этот способ подключения называют включением в прямом направлении.

 

При подключении p-n перехода к источнику тока так, чтобы p-область была соединена с отрицательным  полюсом , а  n-область - с положительным полюсом, толщина запирающего слоя увеличивается, и движение основных носителей зарядов через контактный слой прекращается, но может иметь место движение неосновных зарядов через контактный слой. Этот способ подключения называют включением в обратном направлении.

 

 

Принцип действия полупроводникового диода  основан на свойстве односторонней проводимости  p-n перехода. Основное применение полупроводникового диода - выпрямитель тока.

 

 

 

Вольт-амперная характеристика полупроводникового диода.

Зависимость силы тока от напряжения выражена  кривой АОВ.

 

Ветвь ОВ соответствует пропускному направлению тока, когда ток создается основными носителями зарядов, и  при увеличении напряжения сила тока возрастает. Ветвь АО соответствует току, созданному неосновными носителями зарядов, и значения силы тока невелики.

nika-fizika.narod.ru

Таблица "Электрический ток в различных средах"

Электрический ток в различных средах

электроны

Электроны, дырки

электроны

Электроны,

ионы(положитель-ные и отрицательные)

ионы(положительные и отрицательные)

Условия возникновения частиц проводимости

Наличие свободных электронов в кристаллической решётке металлов

1.Разрыв ковалентной связи при повышении температуры

или освещённости;

2.При внесении примеси.

Термоэлек-

тронная

эмиссия

(испускание электронов с поверхности нагретых металлов)

1.Наличие свободных зарядов;

2.Ударная ионизация

Электролитичес-кая диссоциация

Зависимость сопротивления оттемпературы

увеличивается

уменьшается

уменьшается

уменьшается

уменьшается

Где находит практическое применение

Линии

электропередач

Радиотехника, реле, солнечные батареи и т.д

Электронные лампы, электронно-лучевые трубки, дисплеи ЭВМ и др.

Газосветные трубки, лампы дневного света

(разряд в парах ртути),газовые лазеры(квантовые источники света), электрическая дуга и др.

Получение чистых металлов (рафинирование меди), гальваноплас-

тика, гальваностегия, электрофорез, аккумуляторы, и др.

__________________________________________________________________________

Электрический ток в различных средах

электроны

Электроны, дырки

электроны

Электроны,

ионы(положитель-ные и отрицательные)

ионы(положительные и отрицательные)

Условия возникновения частиц проводимости

Наличие свободных электронов в кристаллической решётке металлов

1.Разрыв ковалентной связи при повышении температуры

или освещённости;

2.При внесении примеси.

Термоэлек-

тронная

эмиссия

(испускание электронов с поверхности нагретых металлов)

1.Наличие свободных зарядов;

2.Ударная ионизация

Электролитичес-кая диссоциация

Зависимость сопротивления оттемпературы

увеличивается

уменьшается

уменьшается

уменьшается

уменьшается

Где находит практическое применение

Линии

электропередач

Радиотехника, реле, солнечные батареи и т.д

Электронные лампы, электронно-лучевые трубки, дисплеи ЭВМ и др.

Газосветные трубки, лампы дневного света

(разряд в парах ртути),газовые лазеры(квантовые источники света), электрическая дуга и др.

Получение чистых металлов (рафинирование меди), гальваноплас-

тика, гальваностегия, электрофорез, аккумуляторы, и др.

infourok.ru

Методика изучения, контроля и систематизации знаний при изучении темы "Электрический ток в разных средах"

Разделы: Физика


При изучении темы  "Электрический ток в средах" целесообразно использовать составление таблицы, дающей возможность сопоставить механизм прохождения тока в различных средах, выявить различия и общие черты данного явления, применение его на практике (см. табл.1).

Составление таблицы возможно на любом этапе изучения темы в зависимости от образовательного уровня учащихся, подготовки учителя и цели, которую ставит перед собой учитель.

Рассмотрим работу с таблицей на разных этапах изучения темы.

1.   Составление таблицы можно начать на первом уроке. Опираясь на знания, полученные учащимися при изучении темы "Электрический ток" в курсе физики 8 класса, целесообразно напомнить им, что все вещества делятся на проводники и диэлектрики условно по количеству свободных носителей зарядов, напомнить условия протекания тока. Далее с помощью демонстраций учащимся показывается, что электрический ток можно получить в любой среде, подчеркнув, что во всех случаях для прохождения тока через среду в ней нужно создать электрическое поле, но в одних средах ток начинается сразу, т.к. в них есть свободные носители заряда, а в других носители заряда надо создать тем или иным способом.

Демонстрации:

1)      Свечение лампы - ток в металлах.
2)       Несамостоятельный разряд в газах - ток в газах.
3)       Прохождение тока через раствор соли - ток в жидкостях.
4)       Проводимость полупроводников при нагревании и освещении.
5)       Работа вакуумного диода - ток в вакууме.

 Затем, перед учащимися ставится задача изучить механизм появления, свойства и поведение носителей зарядов в различных средах, и практическое применение тока в этих средах в быту и технике. При этом сразу выстраивается план изучения темы в виде заполнения первой горизонтальной и первой вертикальной строк таблицы.

В дальнейшем возможно в хорошо подготовленных классах заполнение таблицы проводить горизонтальными строками. При этом четко просматриваются сходства и различия в проводимости  различных сред. Такой подход позволяет развивать мыслительную способность учащихся, способность сравнивать, анализировать, обобщать.

2.     В менее подготовленных классах заполнение таблицы можно проводить вертикальными столбцами по мере изучения механизма проводимости различных сред. При этом целесообразно после изучения темы "электрический ток в металлах" вместе с учащимися выделить основные компоненты (пункты) рассказа о данном явлении, поместив их в первую вертикальную колонку таблицы.

3.     Возможно заполнение таблицы вместе с учащимися на уроке обобщения темы с использованием доски. При этом   отдельные учащиеся заполняют и объясняют каждый свою колонку. ( В слабом классе это может делать сам учитель с помощью учеников).

4.     И, наконец, заполнение таблицы можно предоставить учащимся в конце изучения темы как самостоятельную, контрольную или домашнюю работ .

Таблица №1.

Среда Металлы Полупроводники Жидкости Вакуум Газы
Носители заряда Электроны Электроны и дырки Ионы Электроны Ионы и электроны
Образование носителей заряда При образовании кристалла валентные электроны теряют связь с ядром атома и становятся свободными. При разрыве ковалентных связей между атомами в результате нагревания кристалла или под действием света образуются свободные электроны и дырки - вакантные места в связях. При взаимодействии молекул жидкости с молекулами растворителя или при взаимодействии друг с другом  в результате нагревания молекулы распадаются на ионы. При нагревании металла с его поверхности вылетают самые быстрые электроны - термоэлектронная эмиссия. Под действием ионизатора или в результате тепловых столкновений молекулы газов теряют один или два электрона, становясь положительными ионами. Электрон остается свободным или присоединяется к нейтральному атому образуя отрицательный ион.
Способ создания электрического поля. Присоединение к проводнику источника тока. Присоединение полупроводникового элемента к источнику тока Введение в раствор электролитов электродов Введение в вакуумное пространство электродов. Введение в газовое пространство электродов.
Движение заряженных частиц в средах Электроны двигаются к положительному электроду. Электроны двигаются к положительному полюсу источника тока, дырки - к отрицательному Положительные ионы двигаются к катоду, отрицательные ионы - к аноду Электроны двигаются к аноду Положительные ионы двигаются к катоду, электроны и отрицательные ионы - к аноду
Вольтамперная характеристика
Основные законы

 

 

--

  -- --
Применение В электронагревательных  и осветительных приборах, электродвигателях, для подведения тока к любому электрическому устройству В радиотехнике для выпрямления тока, для изменения его характеристик, получения тока в солнечных батареях, в различного рода реле и автоматических устройствах Покрытие одних металлов другими, для получения чистых веществ, для заточки хирургических инструментов, для получения копий с рельефных изображений и т.д. В радиотехнике для выпрямления тока и изменения его характеристик, в электронно-лучевых трубках, используемых в телевидении, осциллографах, медицинских приборах и т.д. В лампах дневного света, рекламных трубках, электросварке, при искровой обработке металлов и т.д.

  В классе, где у учащихся развито образное мышление, можно во второй, третьей и четвертой горизонтальных строчках таблицы заменить текст   соответствующими рисунками (см. табл.2).

Таблица № 2 .

Поделиться страницей:

xn--i1abbnckbmcl9fb.xn--p1ai

таблица Эл. ток в разных средах

Таблица ««Электрический ток в разных средах»

Среда

Носители заряда

Основные законы

Вольт - амперные

характеристики

Тех. устройства использующие данный тип проводимости.

Металлы

Свободные электроны.

(образуются при росте металлических кристаллов)

I = UR (закон Ома)

I = neυS (электронная теория проводимости)

R=ρ QUOTE ;

ρ =ρ0 (1 +α t)

I

U

R = const

ρ

T

ρ =ρ0 (1 +α t)

Электротехника: эл. провода, катушки, трансформаторы, резисторы, реостаты, нагревательные элементы.

Электролиты

Положительные и отрицательные ионы.

(получаются при электролитической диссоциации)

m = k Q = k I ∆t (1закон Фарадея)

k = 1F Mn

(2 закон Фарадея)

F = e Na = 9,648 *104 QUOTE (постоянная Фарадея)

I = U- △φr ;

∆φ – потенциал поляризации электрода.

I

∆φ U

Гальванопластика, рафинирование металлов, электрометаллургия, полировка, травление.

Газы

Электроны, положительные и отрицательные ионы.

(возникают при ионизации:

- термоионизиция;

- фотоионизация;

- электронный удар).

Q E λ =mυ22 QUOTE ≥Wk

Iн – зависит от интенсивности ионизатора

ΔWk ≥A иониз

I

U

Тлеющий разряд: рекламные трубки, люминесцентные лампы.

Искровой разряд: искровая обработка материалов.

Дуговой разряд: сварка, резка, плавка.

Коронный разряд: очистка газов от примесей

Вакуум

Любые заряженные частицы, индуктируемые в вакуум (чаще электроны).

mυ22 QUOTE ≥ Авых

I

U

Выпрямители, генераторы, электронно-лучевая трубка (осциллографы, телевизоры)

полупроводник

Свободные электроны, связанные электроны (дырки).

(образуются при формировании кристалла и при добавлении в него примесей)

I = Iэ + Iб

Uэ = I к Rн

Коэффициент усиления

k = IkIэ = UвыхUвх QUOTE

I

U

p –n переход

Электроника: термисторы, диоды, транзисторы.

www.freedocs.xyz

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *