Пропионовая кислота, химические свойства, получение, C2H5COOH
1
H
ВодородВодород
1,008
1s1
2,2
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
ГелийГелий
4,0026
1s2
Бесцветный газ
t°кип=-269°C
3
Li
ЛитийЛитий
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
БериллийБериллий
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
БорБор
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
УглеродУглерод
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
7
N
АзотАзот
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
КислородКислород
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
ФторФтор
18,998
2s2 2p5
4,0
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
НеонНеон
20,180
2s2 2p6
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
НатрийНатрий
22,990
3s1
0,93
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
МагнийМагний
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
АлюминийАлюминий
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
КремнийКремний
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
ФосфорФосфор
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
СераСера
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
ХлорХлор
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
АргонАргон
39,948
3s2 3p6
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
КалийКалий
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
КальцийКальций
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
СкандийСкандий
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
ТитанТитан
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
ВанадийВанадий
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
ХромХром
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
МарганецМарганец
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
ЖелезоЖелезо
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
КобальтКобальт
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
НикельНикель
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
МедьМедь
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
ЦинкЦинк
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
ГаллийГаллий
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
ГерманийГерманий
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
МышьякМышьяк
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
СеленСелен
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
БромБром
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
КриптонКриптон
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
РубидийРубидий
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
СтронцийСтронций
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
ИттрийИттрий
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
ЦирконийЦирконий
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
НиобийНиобий
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
МолибденМолибден
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
ТехнецийТехнеций
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
РутенийРутений
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
РодийРодий
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
ПалладийПалладий
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
СереброСеребро
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
КадмийКадмий
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
ИндийИндий
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
ОловоОлово
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
СурьмаСурьма
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
ТеллурТеллур
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
ИодИод
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
КсенонКсенон
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
ЦезийЦезий
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
БарийБарий
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
ЛантанЛантан
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
ЦерийЦерий
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
ПразеодимПразеодим
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
НеодимНеодим
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
ПрометийПрометий
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
СамарийСамарий
150,36
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
ЕвропийЕвропий
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
ГадолинийГадолиний
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
ТербийТербий
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
ДиспрозийДиспрозий
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
ГольмийГольмий
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
ЭрбийЭрбий
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
ТулийТулий
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
ИттербийИттербий
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
ЛютецийЛютеций
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
ГафнийГафний
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
ТанталТантал
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
ВольфрамВольфрам
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
РенийРений
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
ОсмийОсмий
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
ИридийИридий
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
ПлатинаПлатина
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
ЗолотоЗолото
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
РтутьРтуть
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
ТаллийТаллий
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
СвинецСвинец
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
ВисмутВисмут
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
ПолонийПолоний
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
АстатАстат
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
РадонРадон
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
ФранцийФранций
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
РадийРадий
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
АктинийАктиний
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
ТорийТорий
232,04
f-элемент
Серый мягкий металл
91
Pa
ПротактинийПротактиний
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
УранУран
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
НептунийНептуний
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
ПлутонийПлутоний
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
АмерицийАмериций
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
КюрийКюрий
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
БерклийБерклий
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
КалифорнийКалифорний
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
ЭйнштейнийЭйнштейний
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
ФермийФермий
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
МенделевийМенделевий
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
НобелийНобелий
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
ЛоуренсийЛоуренсий
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
РезерфордийРезерфордий
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
ДубнийДубний
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
СиборгийСиборгий
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
БорийБорий
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
ХассийХассий
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
МейтнерийМейтнерий
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
ДармштадтийДармштадтий
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
Пропионовая кислота и пропионаты
Главная \ 3. Пробиотики \ Микрофлора ЖКТ \ Короткоцепочечные жирные кислоты и пробиотики \ Пропионовая кислота и пропионаты
ПРОПИОНОВАЯ КИСЛОТА И ПРОПИОНАТЫ. ПОЛЬЗА ДЛЯ ОРГАНИЗМА И ПРИМЕНЕНИЕ В НАРОДНОМ ХОЗЯЙСТВЕ
ПРОПИОНОВАЯ КИСЛОТА
Пропионовая кислота (англ. propionic acid) — (пропановая или метилуксусная кислота, консервант E280) — одноосновная предельная карбоновая кислота — бесцветная едкая жидкость с резким запахом. Пропионовая кислота (с греческого «protos» — первый, «pion» — жир;) названа так, потому что она является наименьшей H(CH2)nCOOH кислотой, проявляющей свойства жирных кислот. Относится к короткоцепочечным (летучим) жирным кислотам. Соли и анионы пропионовой кислоты называются пропионатами.
Химическая Формула пропионовой кислоты: C3H6O2
Линейная Формула: CH3CH2COOH
ПРОПИОНАТ
Пропионат (англ. propionate), или ион пропаноата (propanoate ион) — сопряженное основание пропионовой кислоты (пропионовая кислота минус один водородный ион).
Химическая формула пропионата: C3H5O2−
Рациональная формула: CH3CH2COO
Пропионовое соединение представляет собой небольшую соль или сложный эфир пропионовой кислоты. Ниже приведены примеры пропионатов — солей пропионовой кислоты, которые используются в пищевой отрасли:
ПРОПИОНАТ КАЛЬЦИЯ Синоним: Кальциевая соль пропионовой кислоты Хим. Формула: Ca(C3H5O2)2 Рациональная: Ca(CH3CH2COO)2 | ПРОПИОНАТ НАТРИЯСиноним: Натриевая соль пропионовой кислоты Хим. Формула: NaC3H5O2 Рациональная:CH3CH2COONa |
ЭНДОГЕННЫЕ ПРОПИОНАТЫ и ПРОПИОНОВАЯ КИСЛОТА, ПРОДУЦИРУЕМЫЕ КИШЕЧНОЙ МИКРОФЛОРОЙ
Среди постоянно обитающей в кишечнике человека индигенной микробиоты важную роль играют бактерии, продуцирующие пропионовую кислоту (пропионаты) в процессе пропионовокислого брожения. Это представители родов и семейств:
- Propionibacterium (пропионибактерии), включая: Arachnia, которые ранее классифицировались как отдельный род, а в настоящее время включены в род Propionibacterium (в частности, вид Arachnia propionica переименован в Propionibacterium propionicus)
- представители семейства Veillonellaceae (вейлонеллы): Veillonella и Anaerovibrio
Эти кишечные бактерии сбраживают молочную кислоту, глюкозу, лактозу и другие углеводы, а также некоторые спирты с образованием пропионовой и уксусной кислот (пропионата и ацетата) и углекислого газа.
Далее перечислены некоторые физиологические эффекты пропионовой кислоты (пропионатов), как метаболита кишечной микрофлоры (Ардатская М.Д., Минушкин О.Н.):
1) энергообеспечение эпителия; 2) антибактериальный эффект; 3) регуляция пролиферации и дифференцировки эпителия; 4) поставка субстратов глюконеогенеза; 5) блокировка адгезии патогенов к эпителию; 6) поддержание ионного обмена.
Следует отметить, что пропионовая кислота участвует также в синтезе гормонов, нейромедиаторов (серотонина, эндорфинов) и обладает противогрибковым эфектом.
Значительная часть продуцированной бактериями пропионовой кислоты (пропионатов) проникает в локальные кишечные капилляры и по системе воротной вены достигает печени, где подвергается дальнейшей трансформации с образованием глюкозы. Пропионовая кислота в гепатоцитах, преимущественно, участвует в глюконеогенезе, а также является регулятором метаболических процессов и липидного обмена в печени (Ардатская М. Д.).
По имеющимся данным, около 90% количества пропионовой кислоты метаболизируется печенью, а остальная часть транспортируется в периферическую кровь, где еe количество у человека достигает ≈6 мкмоль/л, что значительно превышает таковое у бутирата, но ниже, чем у ацетата.
См. также: Применение пропионовокислых бактерий для образования пропионовой кислоты и/или пропионатов в ободочной кишке
ДРУГИЕ ПОЛЕЗНЫЕ СВОЙСТВА ПРОПИОНОВОЙ КИСЛОТЫ (ПРОПИОНАТОВ) ДЛЯ ЗДОРОВЬЯ
Благотворное влияние пропионовой кислоты и ее производных давно изучается учеными:
Так в работе Jan, G.; et al. «Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria». Cell Death & Differentiation. 9, 179-188 (2002). показано как Пропионибактерии индуцируют апоптоз клеток колоректальной карциномы через короткоцепочечные жирные кислоты, в частности, пропионовую кислоту (пропионат), действующие на митохондрии.
В работе Hao Guo, Jenny P. Y. Ting, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science, 2020; 370 (6516): eaay9097 было показано, что пропионат является радиопротекторным метаболитом кишечной микробиоты и защищает организм от опасного радиационного воздействия.
В работе Mario M. Zaiss., et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nature Communications, 9, Article number: 55 (2018). показано, что пропионат защищает костную систему от патологического разрушения (предотвращает остеопороз).
В работе Chambers ES, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015; 64: 1744–1754 говорится, как адресная доставка пропионата в толстую кишку нормализует вес у взрослых.
В работе Jonathan Scheiman, Sarah Lessard, Aleksandar D. Kostic, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature Medicine, 2019 было показано, что пропионат является причиной повышения физической выносливости (таким образом, он может быть полезен как спорсменам, так и лицам с малоподвижным образом жизни, повышая их работоспособность).
В работе Sa’ad Al-Lahham & Farhad Rezaee. Propionic acid counteracts the inflammation of human subcutaneous adipose tissue: a new avenue for drug development. DARU Journal of Pharmaceutical Sciences (2019) 27:645–652 было показано противовоспалительное действие пропионовой кислоты на воспаление подкожно-жировой клетчатки человека.
В ряде работ было показано, что пропионат (и бутират) защищают от аллергических расстройств, в частности, за счет модулирования активации тучных клеток (мастоцитов). Они ингибирут дегрануляцию тучных клеток тем самым уменьшая высвобождение гистамина. Также было показано, что высокие уровни пропионата и бутирата в раннем возрасте связаны с защитой от атопии.
В работе Aiden Haghikia et al. Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell. 2020 Mar 19; 180 (6): 1067-1080. e16. было показано, что пропионовая кислота, изменяя состав кишечной микробиоты и восстанавливая дисбаланс клеток Treg / Th27, может служить мощной иммуномодулирующей добавкой к препаратам от рассеянного склероза
В работе Lars Tönges et al. Propionic Acid and Fasudil as Treatment Against Rotenone Toxicity in an In Vitro Model of Parkinson’s Disease. Molecules 2020, 25, 2502 было показано, что лечение пропионовой кислотой показывает благоприятный потенциал в пораженных ротеноном первичных мезенцефальных клетках (в исследовании использовали модельную систему болезни Паркинсона для культивируемых первичных мезенцефальных клеток и пестицид ротенон использовали для моделирования повреждения дофаминергических клеток). Пропионовая кислота способствовала выживанию дофаминергических клеток против токсичности ротенона и увеличению роста нейритов в умеренной степени. Таким образом, данные по лечению пропионовой кислотой в парадигме ротенона in vitro подчеркивают ее благоприятный потенциал для дофаминергических нейронов при болезни Паркинсона.
В работе Lesley Hoyles, Simon McArthur, et. al. Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome, 2018 британские ученые исследовали и показали защитные эффекты пропионата на гематоэнцефалический барьер:
Гемато-энцефалический барьер (ГЭБ) — физиологический барьер между кровеносной системой и центральной нервной системой. Главная функция — поддержание гомеостаза мозга. Он защищает нервную ткань от циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают ткань мозга как чужеродную. ГЭБ выполняет функцию высокоселективного фильтра, через который из артериального русла в мозг поступают питательные, биоактивные вещества; в направлении венозного русла с глимфатическим потоком выводятся продукты жизнедеятельности нервной ткани.
- Пропионат, вырабатываемый из пищевых субстратов бактериями толстой кишки, стимулирует глюконеогенез кишечника и связан со сниженным стрессовым поведением, но его потенциальная эндокринная роль не была рассмотрена. В проведенном исследовании, после демонстрации экспрессии рецептора пропионата FFAR3 (Free fatty acid receptor 3) на эндотелии головного мозга человека, ученые изучили влияние физиологически релевантной концентрации пропионата (1 µmol или 10−6 моль) на свойства ГЭБ in vitro. Как оказалось, пропионат ингибировал пути, связанные с неспецифическими микробными инфекциями через CD14-зависимый механизм, подавлял экспрессию LRP-1 (белка 1, подобного рецептору липопротеинов низкой плотности) и защищал ГЭБ от окислительного стресса посредством передачи сигналов фактора транскрипции NRF2 – основного протеина, регулирующего экспрессию антиоксидантных белков.
P.S. В дополнение ко всему следует напомнить об антимикробном (бактерицидном и бактериостатическом) действии пропионовой кислоты (пропионатов), что является эффективной защитой нашего организма в отношении патогенных микроорганизмов (грамотрицательных энтеробактерий, клебсиелл, протеев, псевдоманад и других болезнетворных микробов), в т.ч. благодаря созданию благоприятной pH-среды для развития дружественной симбионтной микрофлоры.
ПРИМЕНЕНИЕ ПРОПИОНОВОЙ КИСЛОТЫ И ПРОПИОНАТОВ В НАРОДНОМ ХОЗЯЙСТВЕ
Пропионовая кислота и её производные применяют в производстве гербицидов (пропанол, дихлорпрол), лекарств (ибупрофен, феноболин), ароматических веществ, растворителей, винилпластификаторов и ПАВ (гликолевые эфиры).
Пропионовая кислота препятствует росту плесени и некоторых бактерий. Поэтому большая часть производимой пропионовой кислоты используется как консервант в продуктах, потребляемых человеком, и в продуктах для животных. В продуктах для животных применяется непосредственно пропионовая кислота, либо её аммониевая соль (пропионат аммония). В продуктах, потребляемых людьми, особенно в хлебе и в других хлебобулочных изделиях, пропионовая кислота используется как натриевая (пропионат натрия) или кальциевая (пропионат кальция) соли.
Основная опасность пропионовой кислоты — это химические ожоги, которые могут произойти при контакте с концентрированной кислотой.
ПОЛУЧЕНИЕ ПРОПИОНОВОЙ КИСЛОТЫ (ПРОПИОНАТОВ) В НАРОДНОМ ХОЗЯЙСТВЕ
В природе пропионовая кислота найдена в нефти, образуется при брожении углеводов. В промышленности ее получают карбонилированием этилена по реакции Репле; каталитическим окислением пропионового альдегида в присутствии кобальта или ионов марганца; Пропионовую кислоту также получают биологически при метаболическом разложении жирных кислот, содержащих нечётное число атомов углерода, и при разложении некоторых аминокислот. Бактерии рода Propionibacterium производят пропионовую кислоту как конечный продукт своего анаэробного метаболизма. Эти бактерии встречаются в рубце жвачных животных, и отчасти из-за их деятельности швейцарский сыр имеет свой аромат.
пищевая промышленность:
ВЛИЯНИЕ ЭКЗОГЕННОЙ ПРОПИОНОВОЙ КИСЛОТЫ И ПРОПИОНАТОВ НА ЗДОРОВЬЕ
Пропионовая кислота и ее соли (пропионаты) — пищевые Е-добавки, которые часто можно встретить в описании состава пищевых продуктов. Пропионовая кислота и ее производные здесь названы экзогенными, т.к. они химически синтезированы промышленным способом и поступают в организм извне с продукатми питания, в которых они присутствуют.
Пропионовая кислота Е280 (Propionic acid, пропанкарбоновая кислота)
Пропионовую кислоту используют в пищевой промышленности в качестве консерванта. Вещество представляет собой маслянистую жидкость, имеющую характерный резкий едкий запах и кислый вкус.
Природный источник пропионовой кислоты – жизнедеятельность бактерий рода Propionibacterium. Вещество присутствует в некоторых сортах сыра, для изготовления которых используются пропионовые культуры.
Промышленное производство Е280 осуществляется с помощью химического синтеза.
Применение пропионовой кислоты Е-280
Способность вещества оказывать угнетающие действие на многие виды микроорганизмов, вызывающих порчу пищевых продуктов – дрожжей, плесеней, бактерий, позволяет использовать его в качестве консерванта для увеличения срока годности продовольственных товаров.
Однако возможности применения пропионовой кислоты в пищевой промышленности ограниченны из-за изменения под ее воздействием вкусовых качеств готового продукта. Поэтому для производства продуктов питания обычно используются пропионаты – Е281, Е282 и Е283.
В небольших количествах пропионовую кислоту применяют при изготовлении хлебобулочных изделий, а также для консервирования молочной сыворотки и защиты от плесени зерна. Пропионовая кислота может входить в состав лекарственных и фармацевтических средств, кормов для животных, удобрений.
Влияние пропионовой кислоты Е280 на здоровье человека
Пищевая добавка допущена к применению в пищевой промышленности РФ, стран Еврозоны, США, Канады, присутствует в Кодексе Алиментариус.
Нормативные документы не регламентируют допустимое суточное потребление консерванта, так как его применение в производстве продуктов и так очень ограниченно из-за свойств пропионовой кислоты.
Исследования, проведенные с целью выяснить, каково влияние Е280 на здоровье человека, не выявило токсичных, мутагенных, канцерогенных факторов. Согласно официальным источникам, пищевая добавка является безопасной для организма человека.
С точки зрения химии, пропионовая кислота является жирной кислотой, которая полностью усваивается, не накапливается и выводится из организма в виде углекислого газа в цикле Кребса.
Вред пропионовой кислоты проявляется только при контакте кожных покровов и слизистых оболочек с концентрированным веществом, что вызывает химические ожоги. При употреблении в пищу в составе продуктов Е280 не оказывает негативного воздействия.
Предположения о том, что этот консервант может вызывать онкологические заболевания, не подтверждается официальными исследованиями.
Безопасный консервант Е280 — пропионовая кислота (видео)
Пропионат натрия Е281 (Sodium propionate, натриевая соль пропионовой кислоты)
Пропионатом натрия называется пищевая добавка Е-281, используемая в качестве консерванта. Пищевая добавка представляет собой белый порошок, имеющий резкий запах, хорошо растворяющийся в воде.
В форме пропионовой кислоты вещество содержится в нефти, а также образуется в результате воздействия бактерий в желудке жвачных животных и некоторых видах твердых сыров. Консервант производится с помощью химического синтеза при взаимодействии пропионовой кислоты с едким натром.
Применение пропионата натрия Е281
Этот консервант используется в пищевой промышленности реже, чем Е282. Пропионат натрия замедляет рост микроорганизмов, вызывающих порчу продуктов.
Основная сфера применения пищевой добавки – хлебопекарная и кондитерская промышленность. Е 282 используется также для изготовления косметических и лекарственных средств.
Влияние пропионата натрия на здоровье
Консервант имеет разрешение для производства продовольственных товаров в РФ, ЕС, США, Канаде и других странах, присутствует в Международных стандартах на пищевые продукты.
Допустимое суточное потребление пропионата натрия не ограничивается нормативными документами.
В результате проведенных официально исследований не было выявлено негативных последствий употребления в пищу продуктов, в состав которых входит данный консервант. В организме человека пропионат натрия полностью усваивается и выводится из организма.
Существует альтернативная информация о том, что Е281 и другие производные пропионовой кислоты могут вызывать головные боли и провоцировать онкологические заболевания, однако это не подтверждается официальными исследованиями.
Пропионат кальция Е282 (Calcium propionate)
Пропионатом кальция называется пищевая добавка — консервант, кальциевая соль пропионовой кислоты. Вещество представляет собой кристаллический порошок белого цвета с резким запахом пропионовой кислоты, хорошо растворимый в воде.
Применение пропионата кальция Е282
Из всех солей пропионовой кислоты Е282 чаще всего используется в пищевой промышленности для препятствования росту нежелательной микрофлоры.
Консервант применяется для производства хлебобулочных и мучных кондитерских изделий, сыров и сырных продуктов. Е 282 также входит в состав косметических и лекарственных средств.
Влияние пропионата кальция Е-282 на здоровье человека
Пищевая добавка разрешена для производства продуктов питания в РФ, странах Евросоюза, США, Канаде. В Международных стандартах «Кодекс Алиментариус» Е282 разрешено использовать для изготовления плавленых сыров и продуктов на их основе.
Допустимое суточное потребление пропионата кальция не ограничено.
Согласно официальным данным, Е282 не наносит вреда здоровью человека. В результате проведенных исследований было выяснено, что у пропионовой кислоты отсутствуют канцерогенные, токсичные и мутагенные свойства, а также кумулятивный эффект. Пропионат кальция полностью усваивается организмом и выводится в виде углекислого газа.
Вред пропионатов может быть связан с химическими ожогами при контакте с концентрированной кислотой, что исключается при употреблении пищевых продуктов.
сельское хозяйство
ПРОПИОНОВАЯ КИСЛОТА и ПРОПИОНОВОКИСЛЫЕ БАКТЕРИИ В СИЛОСОВАНИИ КОРМОВ
Как известно, силос получают путём заквашивания измельчённой зелёной массы травянистых растений, пригодной для корма животных и птиц. Как правило, этот сочный корм получают в результате консервирования молочной кислотой. И, как правило, консервирование без доступа воздуха (в анаэробных условиях) является наиболее распространённым способом заготовки.
А что если основным консервантом выступит пропионовая кислота?
1. ПРОПИОНОВАЯ КИСЛОТА
Пропионовая кислота — естественный метаболит живого организма (продуцируют ее пропионовые бактерии). В рубце жвачных (отдел желудка) ее образуется от З00 до 1100 г. И широкое применение эта кислота нашла для консервирования влажного зерна в аэробных условиях. Биоцидное и биостатическое действие пропионовой кислоты на микроорганизмы заключается в ее воздействии на обмен углеводов и энергообмен некоторых ферментов, вследствие чего подавляется жизнедеятельность микробов. Пропионовая кислота ограничивает процессы брожения (вторичное брожение) в готовом силосе, значительно угнетает развитие плесневых грибов и дрожжей.
В опытах НИИ животноводства России по консервированию травы люцерны пропионовой кислотой (3 кг/т зеленой массы) после 6-месячного хранения силоса потери сухого вещества по сравнению с контролем снизились в 2,5, общего азота – в 2,2, а безазотистых экстрактивных веществ (БЭВ) – в 1,5 раза. Расчеты показали, что использование пропионовой кислоты как консерванта зеленой массы люцерны дает возможность дополнительно получать 1,2 ц сухого вещества с 1 га площади посева культуры.
При внесении пропионовых бактерий (ПКБ) в силосуемые растения, прежде всего с высоким содержанием сахаров (кукуруза), получили корм более высокого качества, чем в контроле (без внесения ПКБ). Он имел низкую кислотность, был обогащен витаминами В2 и В12, пропионовой кислотой и не подвергался плесневению.
В результате скармливания такого силоса в течении 3 месяцев повысилась яйценоскость птиц, выводимость цыплят, сохранность молодняка животных, в крови которых увеличивается содержание каротина и снижается содержание аммиака. Пропионовая кислота, являясь естественным метаболитом, полностью усваивается жвачными животными в качестве источника энергии, не вызывая при этом отрицательных последствий.
Как видите – одни плюсы))) Ну а если пропионовая кислота является продуктом жизнедеятельности пропионовокислых бактерий, то почему бы не использовать сами микроорганизмы?
2. ПРОПИОНОВОКИСЛЫЕ БАКТЕРИИ В СИЛОСОВАНИИ
Логично, что уже додумались о силосовании с использованием самих продуцентов органических кислот-консервантов, т.е. об использовании бактериальных заквасок. Закваски пропионовокислых бактерий (ПКБ) входят в ряд бакконцентратов, используемых для заготовки силоса, и основным консервирующим веществом в таком корме является конечно же пропионовая кислота…
Для примера, рассмотрим отличие готового корма, приготовленного с использованием бакконцентрата «Казахсил-М» (один из препаратов для силосования с сухой закваской ПКБ) от силоса, заготовленного по традиционной технологии, где основным консервирующим веществом является молочная кислота.
ОТЛИЧИЯ КОРМА (ПРЕИМУЩЕСТВА):
1. Кислотность силосной массы стабильно утверждается показателем рН 4,1-4,3, значительно выше, чем у корма приготовленного под действием только молочнокислых бактерий. Более высокое значение рН повышает потребление корма на 12-15% и снижает риск заболевания животных ацидозом, кетозом, заболеваний копыт.
2. Повышает активность рубцовой микрофлоры, так как содержит витамины группы В – продукты жизнедеятельности пропионовокислых бактерий. Это способствует активации процессов рубцового пищеварения, а также повышения переваримости органического вещества рациона.
3. В готовом силосе и сенаже при контакте с воздухом не происходит рост и развитие микроскопических грибов, следовательно, корм не содержит микотоксинов и не происходит его разогревание, так как пропионовая кислота микробного синтеза обладает резко выраженным фунгицидным действием. В силосе и сенаже, где основным консервирующим веществом является молочная кислота, этого процесса предотвратить не возможно. Следовательно, при контакте с воздухом идет процесс обсеменения готового корма микотоксинами. Микотоксины резко снижают активность рубцовой микрофлоры, а также способствуют развитию ряда заболеваний, связанных с расстройством пищеварения и общего обмена веществ.
4. Корм, где основным консервирующим веществом является пропионовая кислота, значительно менее подвержен порче в процессе хранения и сохраняет свои питательные свойства в течение 2-3 лет после окончания процесса консервации. Молочная же кислота в процессе хранения оказывает разрушающее действие на питательные компоненты корма, а следовательно снижает его питательность и зачастую на 2 год хранения в корме резко снижается содержание питательных веществ, его поедаемость и качество (отмечаются очаги роста и развития гнилостных процессов и плесени).
P.S. И поверьте, использование такого силосования сокращает применение антибиотиков в животноводстве, что сказывается в итоге и на здоровье людей.
См. дополнительно:
- Пропионат как микробный метаболит для здоровья
- Пропионовокислое брожение
К разделу: Короткоцепочечные жирные кислоты
Будьте здоровы!
ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ
- ПРОБИОТИКИ
- ПРОБИОТИКИ И ПРЕБИОТИКИ
- СИНБИОТИКИ
- ДОМАШНИЕ ЗАКВАСКИ
- КОНЦЕНТРАТ БИФИДОБАКТЕРИЙ ЖИДКИЙ
- ПРОПИОНИКС
- ЙОДПРОПИОНИКС
- СЕЛЕНПРОПИОНИКС
- БИФИКАРДИО
- ПРОБИОТИКИ С ПНЖК
- МИКРОЭЛЕМЕНТНЫЙ СОСТАВ
- БИФИДОБАКТЕРИИ
- ПРОПИОНОВОКИСЛЫЕ БАКТЕРИИ
- МИКРОБИОМ ЧЕЛОВЕКА
- МИКРОФЛОРА ЖКТ
- ДИСБИОЗ КИШЕЧНИКА
- МИКРОБИОМ и ВЗК
- МИКРОБИОМ И РАК
- МИКРОБИОМ, СЕРДЦЕ И СОСУДЫ
- МИКРОБИОМ И ПЕЧЕНЬ
- МИКРОБИОМ И ПОЧКИ
- МИКРОБИОМ И ЛЕГКИЕ
- МИКРОБИОМ И ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА
- МИКРОБИОМ И ЩИТОВИДНАЯ ЖЕЛЕЗА
- МИКРОБИОМ И КОЖНЫЕ БОЛЕЗНИ
- МИКРОБИОМ И КОСТИ
- МИКРОБИОМ И ОЖИРЕНИЕ
- МИКРОБИОМ И САХАРНЫЙ ДИАБЕТ
- МИКРОБИОМ И ФУНКЦИИ МОЗГА
- АНТИОКСИДАНТНЫЕ СВОЙСТВА
- АНТИОКСИДАНТНЫЕ ФЕРМЕНТЫ
- АНТИМУТАГЕННАЯ АКТИВНОСТЬ
- МИКРОБИОМ и ИММУНИТЕТ
- МИКРОБИОМ И АУТОИММУННЫЕ БОЛЕЗНИ
- ПРОБИОТИКИ и ГРУДНЫЕ ДЕТИ
- ПРОБИОТИКИ, БЕРЕМЕННОСТЬ, РОДЫ
- ВИТАМИННЫЙ СИНТЕЗ
- АМИНОКИСЛОТНЫЙ СИНТЕЗ
- АНТИМИКРОБНЫЕ СВОЙСТВА
- КОРОТКОЦЕПОЧЕЧНЫЕ ЖИРНЫЕ КИСЛОТЫ
- СИНТЕЗ БАКТЕРИОЦИНОВ
- АЛИМЕНТАРНЫЕ ЗАБОЛЕВАНИЯ
- МИКРОБИОМ И ПРЕЦИЗИОННОЕ ПИТАНИЕ
- ФУНКЦИОНАЛЬНОЕ ПИТАНИЕ
- ПРОБИОТИКИ ДЛЯ СПОРТСМЕНОВ
- ПРОИЗВОДСТВО ПРОБИОТИКОВ
- ЗАКВАСКИ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ
- НОВОСТИ
Explorer — Пропионовая кислота (3:0) (Соединение)
Перейти к классификации соединений
Химические данные
Данные MolDBi
Название IUPAC | Пропановая кислота |
---|
Таксономия ClassyFire
Описание | принадлежит к классу органические соединения, известные как карбоновые кислоты. Карбоновые кислоты представляют собой соединения, содержащие карбоксильную группу с формулой -C(=O)OH. | |||
---|---|---|---|---|
Королевство | Органические соединения 9Класс | Карбоновые кислоты и производные 0010 | Прямое исходное вещество | Карбоновые кислоты |
Альтернативное исходное вещество |
|
Публикации с пропионовой кислотой (3:0)
ID | Название | Первый автор | Авторы 9 | Год | 2 9 Журнал | Том | Выпуск | Страницы | Идентификатор PubMed | DOI | Дизайн исследования | Количество биомаркеров | Количество значений потребления | Количество значений концентрации | Количество значений воспроизводимости | Кол-во значений корреляции | Кол-во метаболических ассоциаций | Кол-во ассоциаций микробиоты | Кол-во ассоциаций рака |
---|
Данные биомаркеров
Значения воспроизводимости
Связь пропионовой кислоты (3:0) с воздействием
Значения корреляции
ID | ID поступления | ID выделения | Группа субъектов | 2 | 0012Страна | Когорта | Определение времени приема | Метод оценки приема | Прием | Детали приема | Включены ли дополнительные приемы? | Поступление Среднее арифметическое | Поступление Среднее геометрическое | Поступление Медиана | Единица потребления | Поступление с поправкой на | 11 БиомаркерДеталь биомаркера | Биомаркер Среднее арифметическое | Биомаркер Среднее геометрическое | Биомаркер Медиана | Биомаркер Единица | Биомаркер С поправкой на | 0011 Корреляция 95% ДИ нижнийКорреляция 95% ДИ верхний | Значение p корреляции | Значимо? | Корректировка измерения | Снижено затухание? | Ковариаты | Публикация |
---|
Метаболические ассоциации
Ассоциации микробиоты
ID | Биомаркер | Экспериментальное свидетельство | Организм | Биообразец | Антибиотик | Бактериальный источник | Субстрат | Публикация |
---|
Ассоциации пропионовой кислоты (3:0) с риском рака
Ассоциации рака
Данные о воздействии значения
ID | Родительский ID | Глубина | Группа субъектов | Население | Страна | Когорта | Определение времени приема | Инструмент оценки приема | Охват продуктов питания | Охват времени приема | Метод оценки потребления | Потребление | Детали потребления | Описание пищевого продукта | Включены ли добавки? | Размер измерения | Обнаружено (nb) | Обнаружено (%) | Только обнаружено? | Среднее арифметическое | Среднее арифметическое | Среднее геометрическое | Среднее геометрическое | Мин. | Мин. (обнаружено) | Percentile_05 | Процентиль_10 | Процентиль_25 | Медиана | Процентиль_75 | Процентиль_90 | Процентиль_95 | Макс. 10 | Макс. Среднее 95% ДИ нижнее | Среднее 95% ДИ верхнее | GMean 95% ДИ нижнее | GMan 95 Верхний % ДИ | Единица измерения | Преобразованное среднее арифметическое | Преобразованное среднее геометрическое | Преобразованная медиана | Преобразованная единица измерения | Тип корректировки | Скорректировано на | Регрессировано на | Выражено как | Публикация |
---|
Ассоциации значений воздействия пропионовой кислоты (3:0) с биомаркерами 7 1
9 9 665 ID Впуск ID Идентификатор выделения Подопытная группа Население Страна Когорта Определение времени приема Метод оценки приема Впуск Детали впуска Дополнительные впуски включены? Поступление Среднее арифметическое Поступление Среднее геометрическое Поступление Медиана Единица потребления Поступление с поправкой на 11 Биомаркер Деталь биомаркера Биомаркер Среднее арифметическое Биомаркер Среднее геометрическое Биомаркер Медиана Биомаркер Единица Биомаркер С поправкой на Размер корреляции Тип корреляции Значение корреляции Корреляция 95% ДИ нижний Корреляция 95% ДИ верхний Значимость0 p-значение Корректировка измерения Снижено затухание? Ковариаты Публикация
Формула пропановой кислоты – структура, получение, свойства и применение
Дата последнего обновления: 20 апреля 2023 г.
•
Всего просмотров: 201,9 тыс.
•
Просмотров сегодня: 2,71 тыс.
Формула пропановой кислоты может быть определена как насыщенная жирная кислота. В этой короткоцепочечной насыщенной жирной кислоте основной характеристикой этой группы является наличие молекулы этана, присоединенной к карбоксигруппе, в частности, к углероду карбоксигруппы. Обычно он находится в жидком состоянии, химическое соединение имеет резкий запах, связанный с ним. Пропановая кислота чаще называется пропионовой кислотой. Соли пропановой кислоты имеют коммерческое значение, использование пропановой кислоты наблюдается как в промышленных, так и в биологических операциях.
Структурная формула пропановой кислоты
Формула пропановой кислоты может быть представлена двумя способами, химическая формула пропановой кислоты представляет собой число и тип присоединенных к ней атомов. Химическая формула также намекает на реакцию, в которой участвует соединение. Формула пропионовой кислоты может быть представлена как C\[_{3}\]H\[_{6}\]O\[_{2}\]. Другой вариант представления формулы пропановой кислоты выглядит следующим образом: CH\[_{3}\]CH\[_{2}\]COOH. Чаще используется первый способ представления формулы пропановой кислоты.
Структура пропановой кислоты
Структуру пропановой кислоты можно определить, используя простое представление атомов и связей между ними. Один из способов представления структуры пропановой кислоты или альтернативно известный как пропионовая кислота, структурная формула пропановой кислоты выглядит следующим образом:
[Изображение будет загружено в ближайшее время]
Другое представление, используемое для структурной формулы пропановой кислоты, выглядит следующим образом. , это представление используется более широко.
[Изображение будет загружено в ближайшее время]
Эта структурная формула пропановой кислоты показывает наличие группы карбоновой кислоты. Соединение можно определить как этан, присоединенный к углероду карбоновой кислоты.
Получение пропановой кислоты
Производство пропановой кислоты может осуществляться различными способами, пропановая кислота обычно определяется как встречающаяся в природе кислота. Они производятся бактериями, называемыми штаммами Propionibacterium. Этот штамм бактерий используется в области биотехнологии для производства кислоты в коммерческих масштабах. Продукция пропановой кислоты штаммами Propionibacterium. Не очень осуществим, поэтому он не используется для массового производства кислоты.
Химическое производство
Процесс химического производства широко используется для коммерческого производства пропановой кислоты. Есть два основных пути, которые используются для производства пропановой кислоты. Первая реакция включает гидрокарбоксилирование этилена. Гидрокарбоксилирование представляет собой реакцию, которая включает присоединение монооксида углерода к органическому соединению. Он использует карбонил никеля в качестве катализатора. Химическая реакция, связанная с получением пропановой кислоты, может быть представлена следующим образом:
C\[_{2}\]H\[_{4}\] + CO\[_{2}\] + H\[_{2}\]O → C\[_{3}\ ]H\[_{6}\]O\[_{2}\]
Другой метод производства пропановой кислоты включает аэробное окисление пропионового альдегида. Соль марганца и кобальта используется в качестве катализатора реакции, оптимальная температура реакции составляет от 45 до 50 градусов Цельсия.
Другие названия пропановой кислоты
Название химического соединения IUPAC — пропановая кислота, они более известны как пропионовая кислота. Некоторые другие названия кислоты перечислены ниже.
Карбоксиэтан
Этанкарбоновая кислота
Этилмуравьиная кислота
Метацетоновая кислота 9079этил
05 9079этил Этиловая кислота
Химические свойства пропановой кислоты
Химические свойства соединения используются для определения реакция и характер реакции соединения, химическое свойство определяется на основе молекулярной массы, структуры пропановой кислоты, формулы пропионовой кислоты, сложности, количества доноров водородной связи, количества акцепторов водородной связи и т. д. некоторые химические свойства соединение обсуждается ниже.
Молекулярная масса соединения согласно расчетам составляет 74,079 г/моль.
Формула пропионовой кислоты представлена в виде C\[_{3}\]H\[_{6}\]O\[_{2}\] другой способ представления формулы пропановой кислоты — CH\ [_{3}\]СН\[_{2}\]СООН.
Структура пропановой кислоты может быть определена как моноклинная.
Количество доноров водородной связи равно 1.
Количество акцепторов водородной связи равно 2.
9{3}\].Температура кипения химического соединения 141,15 °C.
Температура плавления соединения составляет -20,5 °C.
Растворимость в воде составляет 8,19 г/г при -28,3 °C.
Как правило, они бесцветные и маслянистые по своей природе.
Имеют характерный прогорклый запах, похожий на запах сыра.
Использование пропановой кислоты
Соли пропановой кислоты очень важны с коммерческой точки зрения. Соли и сложные эфиры называются пропионатами. Их также называют пропаноатами. Использование пропановой кислоты перечислено ниже:
Используются в качестве пищевых добавок.
Используются в качестве консервантов.
Используются в качестве корма для животных.
Производятся в качестве промежуточного продукта в процессе производства полимеров.
Они используются в пестицидной и фармацевтической промышленности.
Заключение
Пропановая кислота, также известная как пропионовая кислота, является природной кислотой. Его можно определить как химическую группу, в которой этан присоединен к углероду группы карбоновой кислоты, химическая формула пропановой кислоты может быть записана как C\[_{3}\]H\[_{6}\]O \[_{2}\]. Соль и сложный эфир соединения известны как пропионаты, они имеют широкий спектр применения. Некоторые из применений включают использование в пищевой промышленности, фармацевтической промышленности, полимерной промышленности и использование в кормах для крупного рогатого скота. Пропановая кислота может быть получена как химическими, так и биологическими методами.