Пропановый эфир – 1- бромпропан -> 1- пропанол -> пропаналь -> пропановая кислота -> этиловый эфир пропановой кислоты

Сложные эфиры

это соединения, содержащие карбоксильную группу, связанную с двумя алкильными радикалами.

Общая формула сложных эфиров такая же, как у карбоновых кислот: CnH2nO2

НОМЕНКЛАТУРА СЛОЖНЫХ ЭФИРОВ. Названия сложных эфиров определяются названиями кислоты и спирта, из которых они образуются.

Формула эфира

Полное название

Другие названия.

СН3-С-ОСН3

О

метиловый эфир уксусной кислоты

метилацетат

уксуснометиловый эфир

Н-С –ОС2Н5

О

этиловый эфир муравьиной кислоты

этилформиат

С2Н5 -С–ОС3Н7

О

пропиловый эфир пропановой (пропионовой) кислоты

пропилпропаноат (пропионат)

ПОЛУЧЕНИЕ СЛОЖНЫХ ЭФИРОВ.

1)Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации). Катализаторами являются минеральные кислоты.

2) Сложные эфиры фенолов нельзя получить с помощью этерификации, для их получения используют реакцию фенолята с галогенангидридом кислоты:

С6Н5-Na+ + C2H5C=O NaCl + C6H5

O-C=O

\ \

Cl C2H5

фениловый эфир пропановой кислоты (фенилпропаноат)

Виды изомерии сложных эфиров.

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку — с пропилового спирта, например, этилбутаноату изомерны этилизобутаноат, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки —СО—О—. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия с карбоновыми кислотами.

СВОЙСТВА СЛОЖНЫХ ЭФИРОВ.

1. Гидролиз сложных эфиров.

Реакция этерификации обратима. Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира.

Кислотный гидролиз обратим:

Щелочной гидролиз протекает необратимо:

Эта реакция называется омылением сложного эфира.

2. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

studfiles.net

- Полный этиловый эфир бутандиовой кислоты из бутандиовой кислоты

- полный амид бутандиовой кислоты из полного метилового эфира той же кислоты

- метилацетат из соответствующей карбоновой кислоты и ангидрида

- ацетамид из соответствующих функциональных производных: сложного эфира и ангидрида

- метилацетат по реакции этерификации

- сложный эфир из бутановой кислоты и этилового спирта

- пропанамид из различных ацилирующих агентов: кислоты, ангидрида, сложного эфира

- ангидриды бутановой и бутандиовой кислот из соответствующих кислот

Механизмы реакций:

При нагревании сухих аммониевых солей карбоновых кислот происходит их разложение на исходные вещества, после чего аммиак нуклеофильно атакует атом углерода карбонильной группы:

В отсутствие катализаторов реакция этерификации протекает очень медленно, поскольку на атакуемом атоме углерода карбоксильной группы дефицит электронной плотности невелик из-за -эффекта группы ОН. Поэтому реакцию этерификации проводят в присутствии катализаторов — минеральных кислот (H2SO4, газообразныйHCl, фосфорная кислота) Эти вещества протонируют атом кислорода карбонильной группы и тем самым увеличивают частичный положительный заряд на атакуемом атоме углерода.

Реакции свободных карбоновых кислот не могут катализироваться основаниями, так как образуются карбоксилат-анионы, не обладающие карбонильной активностью.

Роль катализаторов в реакции этерификации играют ионы водорода.

Механизм реакции можно представить следующим образом:

Обычно реализуется тетраэдрический механизм AAC2.

Общие схемы механизмов.

Превращения производных карбоновых кислот могут быть изображены в соответствии с общими схемами следующим образом:

Катализируемые кислотами реакции проходят через аналогичные промежуточные продукты:

Для заместителей с большой основностью (X=Nh3, ОН, OR) сначала происходит протонирование соединения II, а затем отщепление НХ с образованием карбений-оксониевого иона:

9.Напишите уравнения реакций гидролиза:

- метилацетата

- этилового эфира пропановой кислоты

- N-метиламида уксусной кислоты

- метилбутаноата

Опишите механизмы реакций. В какой среде они протекают?

Решение

- Метилацетат

- Этиловый эфир пропановой кислоты

- N-метиламид уксусной кислоты

- Метилбутаноат

Все реакции могут протекать как в кислой, так и в щелочной среде.

Механизм гидролиза сложных эфиров при кислотном катализе:

Механизм гидролиза (омыления) сложных эфиров при основном катализе:

Реакция протекает необратимо, так как образуется соль кислоты.

Механизм гидролиза амидов карбоновых кислот, аналогичен механизмам гидролиза сложных эфиров.

Реакции гидролиза амидов, катализируемые как кислотами, так и основаниями, по существу, необратимы, так как в обоих случаях образуются соли. В случае основного катализа осуществляется механизм ВАС2.

10. Напишите уравнения следующих окислительно-восстановительных реакций:

- окисление пропанола-2

- ОВР в системе гидрохинон - хинон

- ОВР в системе молочная кислота - пировиноградная кислота

- окисление этанола

- окисление бутанола

- восстановление бутанола

- ОВР в системе цистеин - цистин

- ОВР в системе яблочная кислота - щавелевая кислота

- восстановление бутендиовой кислоты

- йодоформная проба для ацетона, ацетальдегида, бутанола

какой кофермент принимает участие в ОВР в организме? В чём заключается принцип его действия.

Решение

- окисление пропанола-2

- ОВР в системе гидрохинон - хинон

- ОВР в системе молочная кислота - пировиноградная кислота

При анаэробном дыхании протекает восстановление пировиноградной кислоты в молочную.

- окисление этанола

- окисление бутанола

- восстановление бутанола

- ОВР в системе цистеин - цистин

- ОВР в системе яблочная кислота - щавелевая кислота

Протекает в организмах.

- восстановление бутендиовой кислоты

- йодоформная проба для ацетона, ацетальдегида,

бутанола?

Аналогично реагирует ацетальдегид.

КОФЕРМЕНТЫ орг. прир. соед., необходимые для осуществления каталитич. действия ферментов.

Никотинамидные К. - коферментная форма витамина ниацина. К этой группе К., универсальных по распространению (они найдены буквально во всех живых клетках) и биол. роли, относятся НАД (ф-ла I; R = Н) и никотинамидадениндинуклеотидфосфат, или НАДФ [I; R = РО(ОН)2], а также восстановленные (по пиридиновому кольцу) формы этих соед. (соотв. НАДН и НАДФН).Наиб. важная биохим. ф-ция этих К.-их участие в переносе электронов и водорода от окисляющихся субстратов к кислороду в клеточном дыхании. При участии НАД или НАДФ, связанных прочно или легко диссоциирующих, ферменты дегидрогеназы (напр., алкогольдегидрогеназа, глутаматдегидрогеназа) катализируют обратимое превращ. спиртов, гидроксикислот и нек-рых аминокислот в соответствующие альдегиды, кетоны или кетокислоты.

Флавиновые К.-коферментная форма витамина рибофлавина. Среди оксидоредуктаз дыхательной цепи, участвующих в переносе электронов и водорода.

Главная ф-ция флавиновых К. - перенос электронов (водорода) в окислит.-восстановит, цепи от НАДН и янтарной к-ты к цитохромам. Флавопротеиды катализируют также многочисл. р-ции, механизм к-рых включает стадию одноэлектронного переноса; окисление восстановл. формы амида липоевой к-ты, синтез кобамидного кофермента из АТФ и витамина В12, окисление глюкозы и др.

studfiles.net

Пропионовая кислота — Википедия

Материал из Википедии — свободной энциклопедии

Перейти к навигации Перейти к поиску
Пропионовая кислота
Общие
Систематическое
наименование
Пропановая кислота
Традиционные названия Пропионовая кислота
Хим. формула C3H6O2
Рац. формула CH3CH2COOH
Физические свойства
Состояние Бесцветная жидкость
Молярная масса 74,08 г/моль
Плотн

ru.wikipedia.org

Способ получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил) пропановой кислоты

Изобретение относится к области синтеза 1,3-дикарбонильных соединений, конкретно к способу получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты формулы:

Способ заключается в ацилировании калия 3-оксо-3-этоксипропаноата 2,6-дихлорникотиноилхлоридом в присутствии безводного растворителя, триэтиламина и хлорида магния с последующей обработкой реакционной массы водным раствором соляной кислоты и выделением целевого продукта, отличающийся тем, что в качестве растворителя используют этилацетат, при этом мольное соотношение 2,6-дихлорникотиноилхлорида: калия 3-оксо-3-этоксипропаноата равно 1:1.4-1.6. Техническим результатом является повышение технологичности синтеза, а также увеличение выхода и чистоты заявляемого соединения.

 

Изобретение относится к области синтеза 1,3-дикарбонильных соединений, конкретно к способу получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты формулы:

который находит применение как предшественник антибактериальных [Пат. US 3590036, C07D 213/50, C07D 213/61, C07D 213/64, C07D 213/73, C07D 213/74, C07D 213/77, C07D 213/85, C07D 471/04, C07D 213/00, C07D 471/00, (IPC1-7): C07D 39/10. Naphthyridine-3-carboxylic acids, their derivatives and preparation thereof/ Lesher G.Y., Gruett D. - 1971] и противоопухолевых производных 1,8-нафтиридина [Yasunori T. Synthesis and Structure-Activity Relationships of Novel 7-Substituted 1,4-Dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic Acids as Antitumor Agents. Part 2 [Text] / T. Yasunori, T. Kyoji, S. Koh-ichiro et.al. // J. Med. Chem. - 2004. - Vol. 47. - P. 2097-2109].

Известен способ получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты путем взаимодействия калия 3-оксо-3-этоксипропаноата с 1-(2,6-дихлорникотиноил)-1H-имидазолом [Yasunori Т. Synthesis and Structure-Activity Relationships of Novel 7-Substituted 1,4-Dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic Acids as Antitumor Agents. Part 2 [Text] / T. Yasunori, T. Kyoji, S. Koh-ichiro et.al. // J. Med. Chem. - 2004. - Vol.47. - P.2097-2109].

Этот способ реализуется путем последовательной обработки 2,6-дихлорникотиновой кислоты N,N'-карбонилдиимидазолом в смеси абсолютных ацетонитрила и тетрагидрофурана с образованием 1-(2,6-дихлорникотиноил)-1H-имидазола. Параллельно к суспензии калия 2-оксо-3-этоксипропаноата в абсолютном ацетонитриле при охлаждении льдом прибавляется безводный хлорид магния и триэтиламин и полученная смесь перемешивается 5 часов. После этого к реакционной массе прибавляется приготовленный, как описано выше, раствор 1-(2,6-дихлорникотиноил)-1H-имидазола в смеси абсолютного тетрагидрофурана и ацетонитрила. Реакционная масса перемешивается 15 часов. В ходе подкисления реакционной массы разбавленной соляной кислотой, последующей экстрактивной обработки этилацетатом получают технический продукт с выходом 93%. Дополнительная очистка полученного продукта достигается путем перегонки при пониженном давлении.

Этот способ характеризуется целым рядом существенных недостатков. Во-первых, для его реализации необходимо использование 1-(2,6-дихлорникотиноил)-1H-имидазола - дорогостоящего ацилирующего агента, получаемого in situ из 2,6-дихлорникотиновой кислоты и N,N'-карбонилдиимидазола. Во-вторых, синтез проводится в смеси безводных ацетонитрила и тетрагидрофурана, а экстрактивная обработка выполняется с применением этилацетата. В результате используются три различных органических растворителя, образующие смесь, не подлежащую регенерации. В-третьих, при проведении синтеза происходит побочное образование имидазола, который также не регенерируется.

Наиболее близким является способ получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты путем обработки калия 3-оксо-3-этоксипропаноата полученным in situ 2,6-дихлорникотиноилхлоридом (из 2,6-дихлорникотиновой кислоты и оксалилхлорида в дихлорметане) в присутствии хлорида магния и триэтиламина в безводном ацетонитриле [WO 2008/060693, 22.05.2008]. После отгонки растворителя реакционная масса разбавляется этилацетатом и обрабатывается соляной кислотой. Органическая фаза отделяется, промывается насыщенным раствором хлорида натрия, осушается сульфатом натрия и фильтруется. После отгонки растворителя в вакууме получается технический продукт с выходом 83%, который дополнительно очищается перекристаллизацией из смеси метанола и воды с образованием целевого вещества. Чистота получаемого вещества составляет 95%, а выход - 74%. Абсолютно идентичный способ описан также в другом литературном источнике [WO 2006/034113, 30.03.2006].

Предложенный метод обладает рядом существенных недостатков, снижающих его препаративную ценность.

Во-первых, для получения хлорангидрида 2,6-дихлорникотиновой кислоты используется дорогостоящий хлорирующий агент - оксалилхлорид. Во-вторых, в синтезе используется технический хлорангидрид без дополнительной очистки, что привносит в реакционную массу дополнительные примеси с предыдущей технологической стадии.

Во-вторых, для проведения синтеза используется ацетонитрил - токсичный растворитель, который неограниченно смешивается с водой. В связи с этим возникает необходимость предварительной отгонки растворителя от реакционной смеси в вакууме перед обработкой соляной кислотой. Это усложняет процесс выделения целевого вещества и делает его менее технологичным.

В-третьих, получаемый технический продукт требует дополнительной очистки, что еще более усложняет процесс его получения и приводит к снижению выхода.

Задачей предлагаемого технического решения является разработка нового технологичного способа получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты, позволяющего проводить синтез в мягких условиях с использованием доступных реагентов и получением целевого продукта с высокими выходом и степенью чистоты.

Техническим результатом является повышение технологичности синтеза, а также увеличение выхода и чистоты заявляемого соединения.

Предлагаемый технический результат достигается в способе получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты общей формулы:

заключающийся в ацилировании калия 3-оксо-3-этоксипропаноата 2,6-дихлорникотиноилхлоридом в присутствии безводного растворителя, триэтиламина и хлорида магния, с последующей обработкой реакционной массы водным раствором соляной кислоты и выделением целевого продукта, при этом в качестве растворителя используют этилацетат, при мольном соотношении 2,6-дихлорникотиноилхлорида:калия 3-оксо-3-этоксипропаноата, равном 1:1.4-1.6.

Сущностью предлагаемого способа является ацилирование калия 3-оксо-3-этоксипропаноата 2,6-дихлорникотиноилхлоридом в среде безводного этилацетата и кислотный гидролиз/декарбоксилирование полученного интермедиата синтеза:

Преимуществом данного способа является возможность получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты с выходом, близким к количественному, не требующего дополнительной очистки. Кроме этого при проведении синтеза используется доступный ацилирующий агент - 2,6-дихлорникотиноилхлорид, а синтез проводится в этилацетате. Таким образом, растворитель после синтеза и экстракции удается практически полностью регенерировать, а также избежать использования дорогостоящего 1-(2,6-дихлорникотиноил)-1H-имидазола и N,N'-карбонилдиимидазола.

Предлагаемый способ осуществляется следующим образом.

Получение этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты.

К взвеси калия 3-оксо-3-этоксипропаноата в безводном этилацетате прибавляют безводный триэтиламин, охлаждают полученную смесь до 0°С и при перемешивании прибавляют к ней безводный хлорид магния. Реакционную массу перемешивают еще 15 мин при охлаждении и продолжают перемешивание при температуре 35-45°С 6 ч. После этого охлаждают полученную суспензию до -8°С. К охлажденной смеси при перемешивании в течение 15 минут прибавляют раствор свежеперегнанного 2,6-дихлорникотиноилхлорида в безводном этилацетате. Полученную смесь перемешивают еще 1 час при охлаждении, а затем еще сутки при комнатной температуре, после чего вновь охлаждают до -8°С. К охлажденной смеси медленно приливают 12%-ный водный раствор соляной кислоты, перемешивают еще 30 минут, отделяют органическую фазу, а водную извлекают этилацетатом. Объединенные органические вытяжки промывают водой до нейтральной среды, сушат безводным сульфатом магния, фильтруют через тонкий слой силикагеля для ТСХ и удаляют растворитель на водяной бане при пониженном давлении. В остатке получают чистый этиловый эфир 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты в виде вязкого масла янтарного цвета.

Изобретение иллюстрируется следующими примерами.

Пример 1. Этиловый эфир 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты.

К взвеси 13.6 г (0.08 моль) калия 3-оксо-3-этоксипропаноата в безводном этилацетате (125 мл) прибавляют безводный триэтиламин (28 мл, 20.3 г, 0.20 моль), охлаждают полученную смесь до 0°С и при перемешивании прибавляют к ней безводный хлорид магния (9.1 г, 0.096 моль). Реакционную массу перемешивают еще 15 мин при охлаждении и продолжают перемешивание при температуре 35-45°С 6 ч. После этого охлаждают полученную суспензию до -8°С. К охлажденной смеси при перемешивании в течение 15 минут прибавляют раствор свежеперегнанного 2,6-дихлорникотиноилхлорида (12 г, 57 ммоль) в безводном этилацетате (50 мл). Полученную смесь перемешивают еще 1 час при охлаждении, а затем еще сутки при комнатной температуре, после чего вновь охлаждают до -8°С. К охлажденной смеси медленно приливают 12%-ный водный раствор соляной кислоты (150 мл), перемешивают еще 30 минут, отделяют органическую фазу, а водную извлекают этилацетатом (3*75 мл). Объединенные органические вытяжки промывают водой до нейтральной среды, сушат безводным сульфатом магния, фильтруют через тонкий слой силикагеля для ТСХ и удаляют растворитель на водяной бане при пониженном давлении. В остатке получают чистый этиловый эфир 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты в виде вязкого масла янтарного цвета.

Выход - 14.6 г (98%). Rf=0.79 (пластины NanoSILGUR 20/UV254, элюент - хлороформ - этилацетат (4:1, по объему)). Содержание основного вещества (по ВЭЖХ) - 97.1%.

1H-ЯМР-спектр (300 MГц, СDСl3) δ, м.д, 12.55 - 12.39 (м, 1 Н, ОН (енол)), 7.97-7.81 (м, 1 Н, С4H (ароматический)), 7.38-7.21 (м, 1 Н, С5H (ароматический)), 5.74-5.59 (м, 1 Н, СН (енол)), 4.25-4.09 (м, 2 Н, СН2СН3), 4.05-3.99 (м, 1 Н, СН2 (кето-форма)), 1.32-1.15 (м, 3 Н, CH2СН3).

Соотношения исходных реагентов: 2,6-дихлорникотиноилхлорид: калия 3-оксо-3-этоксипропаноат составляют 1:1.4.

Пример 2. Этиловый эфир 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты.

Выполняют аналогично примеру 1 за исключением соотношения исходных реагентов: 2,6-дихлорникотиноилхлорид: калия 3-оксо-3-этоксипропаноат составляют 1:1.5.

Выход этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты - 96%.

Пример 3. Этиловый эфир 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты.

Выполняют аналогично примеру 1 за исключением соотношения исходных реагентов: 2,6-дихлорникотиноилхлорид: калия 3-оксо-3-этоксипропаноат составляют 1:1.6.

Выход этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты - 94%.

Как следует из представленных примеров, предложенный способ получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты является технологичным, позволяет получать целевой продукт в мягких условиях с использованием доступных реагентов с высокими выходом и степенью чистоты.

Способ получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил)пропановой кислоты общей формулы

заключающийся в ацилировании калия 3-оксо-3-этоксипропаноата 2,6-дихлорникотиноилхлоридом в присутствии безводного растворителя, триэтиламина и хлорида магния, с последующей обработкой реакционной массы водным раствором соляной кислоты и выделением целевого продукта, отличающийся тем, что в качестве растворителя используют этилацетат, при этом мольное соотношение 2,6-дихлорникотиноилхлорида:калия 3-оксо-3-этоксипропаноата равно 1:1.4-1.6.

www.findpatent.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *