Принцип работы компрессора высокого давления: О компрессорах высокого давления | neva-airstroy

Содержание

Устройство, принцип работы и конструкция компрессора высокого давления

Компрессор – это устройство, предназначенное для создания давления и перемещения газообразной среды. Они используются в любой сфере деятельности – их можно встретить повсеместно как на промышленных предприятиях, так и на некрупных производствах. Кроме того, их применение широкого распространено в быту, автомастерских и других сферах деятельности.

Все установки можно разделить на следующие группы: объемные и динамические, что зависит от особенностей действия основных механизмов участвующих в процессе компрессии. Кроме того данные установки можно поделить на классы, такие как:

  • по способу охлаждения – могут быть воздушные и жидкостные.
  • по типу привода – электропривод, ДВС, включая также газотурбинные.
  • по роду сжимаемой среды – воздух или же агрессивные газы.
  • по степени сжатия и давлению на выходе.

Вакуумные компрессоры в редких случаях способны создать давление до 2кПа, а в режиме отсасывания воздуха возможно разрежение до 10-50кПа.

Эти устройства зачастую используются в качестве газонадувок, вентиляторов или же вакуумного насоса.

Здесь Вы можете ознакомиться с каталогом компрессоров высокого давления, реализуемых ООО ГК "ТехМаш".

Компрессорами низкого давления называют устройства, сжимающие газообразную среду до 1,2мПа (12атм). Среднего давления от 1,2 до 10мПа. Высоким давлением можно считать от 10мПа(100атм), а сверхвысоким уже более 100мПа.


Рассмотрим более тщательно устройство и принцип работы компрессоров высокого давления.

Существует множество компрессоров высокого давления с различными принципами действия. Самые популярные компрессоры высокого давления - поршневые, винтовые, роторные и ротационные (объёмные), которые действуют, изменяя рабочий объём камеры сжатия, и (динамические) осевые, центробежные – за счет переданного механизмом среде постоянного потока перемещающегося из относительно просторного в более тесное пространство.

Принцип работы компрессоров высокого давления не сильно отличается от компрессоров среднего или даже низкого давления. Главное их отличие от менее сильных машин в том, что используется система многоступенчато сжатия. По сути, повторно или же многократно дублируется процесс сжатия, повышая до необходимого, давления. Воздух или иной газ попадает в первую камеру сжатия (первая ступень), давление повышается, затем процесс повторяется уже в следующей камере (вторая ступень), дожимая воздушную среду, соответственно повышая давление и так далее. В некоторых случаях сжимаемая среда изначально подготавливается и подается в компрессор уже под давлением – это делается для экономии затрат энергии. Процесс подготовки можно считать за первую ступень.

Вращающиеся элементы, такие как подшипники, находятся в постоянной нагрузке и зачастую используются так называемые подшипники «скольжения» в место характерных компрессорам низкого давления шарико-роликовых «качения». В свою очередь их снабжает маслом насос – обычно зубчатый, так как такие подшипники работают под давлением масла.


 

Устройство компрессоров высокого давления некоторых из видов требует использования масла для смазывания элементов механизмов, непосредственно участвующих в сжатии – дабы избежать трения металлов между поверхностями необходима масленая пленка. Образуется она путем впрыскивания масла. Однако избыточное количество масла – это не только напрасные затраты, но и возможные неполадки по причине нагара после выхода из компрессора в трубопроводе и собственно в самой рабочей камере. Не устранение вовремя подобных проблем может привести даже к возгоранию. 

Во время работы компрессора, вследствие сжатия и трения рабочих поверхностей, неизбежно образуется избыток тепла, и тем более при работе в режиме высокого давления. Во избежание перегрева применяют системы охлаждения непосредственно камер сжатия, смазывающего масла и продукта сжатия. 

Некоторые компрессоры высокого давления, устройство которых, по причине своей конструкции можно считать неприхотливыми, так как пыль и мелкие частицы не способны нанести вред работающим механизмам. Но есть и такие установки, конструктивные особенности которых отличаются от других наличием сверхточных подвижных частей. В этом случае присутствие пыли в сжимаемой среде может, подобно абразиву, пагубно повлиять на рабочие поверхности и в итоге привести к потере производительности. В борьбе с этим предварительно воздух очищают, пропуская его через фильтры. 

Следует учитывать, что заявленные производителем показатели – это максимальное значение способности агрегата в идеальных условиях. В действительности же возможны немного отличные данные, в связи с этим необходимо заведомо применять компрессоры высокого давления с небольшим запасом мощности – это позволит увеличить рабочий ресурс заменяемых частей.

Таким образом, от правильного выбора необходимого агрегата, а также его эксплуатации с учетом основных требований – в зависимости потребляемого масла, вязкости, своевременного технического обслуживания и других особенностей, можно максимально продлить рабочий ресурс компрессора при его высокой производительности.

Компрессоры высокого давления: принцип работы и нюансы покупки

По принципу работы компрессоры высокого давления практически не отличаются от приборов среднего и низкого давлений. Главное различие в использовании многоступенчатого метода сжатия воздуха, при котором процесс дублируется многократно, в результате чего достигается конечное давление в нужных параметрах.

Из всех типов компрессоров чаще пользуются поршневыми. Принцип действия у них следующий:

  • работающий электродвигатель вращает компрессорный вал, который задаёт в цилиндре возвратно-поступательное движение поршню;
  • в нижнем положении поршня происходит открытие всасывающего клапана и внутрь цилиндра попадает очищенный в фильтрах воздух;
  • при верхнем направлении движения поршень вытесняет воздух в коллектор, который потом опускается по трубе в ресивер и выталкивается под давлением на выход;
  • воздух обратно вернуться в цилиндр не может, потому что путь ему прикрывает обратный клапан.

Весь цикл преобразования воздуха под высоким давлением в компрессоре контролирует прессостат, или специальное реле давления. Возникающее при работе избыточное давление сбрасывается особенным клапаном, расположенным рядом с реле. А остатки масла и конденсата удаляются через специальные сливные клапаны.

Купить компрессоры высокого давления можно, ориентируясь на самые важные рабочие параметры:

  • давление – его максимальная величина отражает рабочие способности конкретного агрегата;
  • потребление воздуха – производительность аппарата зависит от того, сколько воздуха расходует компрессор на входе и выходе. Как правило, эти характеристики отражаются в документации раздельно. Для выбора подходящей модели по этим параметрам достаточно знать, сколько требует объёма самое мощное оборудование из имеющихся и прибавить к нему «запасные» 25%;
  • объём бака или ресивера – каждый компрессор хранит в них запас сжатого воздуха или газа, чтобы избежать скачков давления при пуске и аварийной остановке;
  • мощность потребляемой энергии имеет немаловажное значение для бесперебойной эксплуатации агрегата. Ошибочный выбор мощного агрегата чреват последствиями, к примеру, домашняя электросеть не выдержит нагрузку. Бытовые модели потребляют в пределах 2 кВт электроэнергии и подключаются к обычной бытовой электросети.

Выбирают компрессоры высокого давления ещё по категории масляные или безмасляные.

У первых более мощные двигатели, они, в сравнении с безмасляными, обладают более длительным сроком службы и даже считаются долговечными. Но они требуют частой замены расходных элементов, потребляют много масла, сильно шумят. Поэтому все эти нюансы необходимо учитывать при выборе аппарата и отдать предпочтение тому, который полностью соответствует вашим запросам.

Компрессор. Принцип действия, устройство, виды компрессоров.

Компрессор (от латинского слова compressio - сжатие) - энергетическая машина или устройство для повышения давления (сжатия) и перемещения газообразных веществ.

Компрессорная установка - это совокупность компрессора, привода и вспомогательного оборудования (газоохладителя, осушителя сжатого воздуха и т. д.).

Общепринятая классификация механических компрессоров по принципу действия, под принципом действия понимают основную особенность процесса повышения давления, зависящую от конструкции компрессора. По принципу действия все компрессоры можно разделить на две большие группы: динамические и объёмные.


Объёмные компрессоры

В компрессорах объёмного принципа действия рабочий процесс осуществляется в результате изменения объёма рабочей камеры. Номенклатура компрессоров данного типа разнообразна (более десятка видов), основные из которых: поршневые, винтовые, роторно-шесте-рён- чатые, мембранные, жидкостно-кольцевые, воздуходувки Рутса, спиральные, компрессор с катящимся ротором.



Рис. 1. Классификация объемных компрессоров

Поршневые компрессоры (рис. 2-3) могут быть одностороннего или двухстороннего действия, крейцкопфные и бескрейцкопфные, смазываемые и без применения смазки (сухого трения или сухого сжатия), при высоких давлениях сжатия применяются также плунжерные.

Роторные компрессоры - это машины с вращающим сжимающим элементом, конструктивно подразделяются на винтовые, ротационнопластинчатые, жидкостно-кольцевые, бывают и другие конструкции.

 



Рис. 2. Схема работы поршневого компрессора



Рис. 3. Поршневой компрессор: 1 - коленчатый вал; 2 - шатун; 3 - поршень; 4 - рабочий цилиндр; 5 - крышка цилиндра; 6 - нагнетательный трубопровод; 7 - нагнетательный клапан; 8 - воздухозаборник; 9 - всасывающий клапан; 10 - труба для подвода охлаждающей воды



Рис. 4. Одноступенчатый поршневой компрессор одинарного действия

Поршневой компрессор в основном состоит из рабочего цилиндра и поршня; имеет всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра. Для сообщения поршню возвратно-поступательного движения в большинстве поршневых компрессорах имеется кривошипно-шатунный механизм с коленчатым валом. Поршневые компрессоры бывают одно и многоцилиндровые, с вертикальным, горизонтальным, V или W - образным и другим расположением цилиндров, одинарного и двойного действия (когда поршень работает обеими сторонами), а также одноступенчатого или многоступенчатого сжатия.

Действие одноступенчатого воздушного поршневого компрессора (рис. 3) заключается в следующем. При вращении коленчатого вала 1 соединённый с ним шатун 2 сообщает поршню 3 возвратные движения. При этом в рабочем цилиндре 4 из-за, увеличения объёма, заключённого между днищем поршня и крышкой цилиндра 5, возникает разрежение и атмосферный воздух, преодолев своим давлением сопротивление пружины, удерживающей всасывающий клапан 9, открывает его и через воздухозаборник (с фильтром) 8 поступает в рабочий цилиндр. При обратном ходе поршня воздух будет сжиматься, а затем, когда его давление станет больше давления в нагнетательном патрубке на величину, способную преодолеть сопротивление пружины, прижимающей к седлу нагнетательный клапан 7, воздух открывает последний и поступает в трубопровод 6. При сжатии газа в компрессоре его температура значительно повышается.

Для предотвращения самовозгорания смазки компрессоры оборудуются водяным (труба 10 для подвода воды) или воздушным охлаждением. При этом процесс сжатия воздуха будет приближаться к изотермическому (с постоянной температурой), который является теоретически самым выгодным. Одноступенчатый компрессор, исходя из условий безопасности и экономичности его работы, целесообразно применять со степенью повышения давления при сжатии до b = 7 - 8. При больших сжатиях применяются многоступенчатые компрессоры, в которых, чередуя сжатие с промежуточным охлаждением, можно получать газ очень высоких давлений - выше 10 Мн/м2. В поршневых компрессорах обычно предусматривается автоматическое регулирование производительности в зависимости от расхода сжатого газа для обеспечения постоянного давления в нагнетательном трубопроводе. Существует несколько способов регулирования. Простейший из них - регулирование изменением частоты вращения вала.

Принципы действия ротационного и поршневого компрессора в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном компрессоре всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора. Известны другие конструкции ротационного компрессора, в том числе винтовые, с двумя роторами в виде винтов. Для удаления воздуха с целью создания разрежения в каком-либо пространстве применяют роторные водокольцевые вакуумнасосы. Регулирование производительности ротационного компрессора осуществляется обычно изменением частоты вращения их ротора.

Ротационные компрессоры имеют один или несколько роторов, которые бывают различных конструкций. Значительное распространение получили ротационные пластинчатые компрессоры (рис. 5), имеющие ротор 2 с пазами, в которые свободно входят пластины 3, ротор расположен в цилиндре корпуса 4 эксцентрично. При его вращении по часовой стрелке пространства, ограниченные пластинами, а также поверхностями ротора и цилиндра возрастать корпуса, в левой части компрессора будут возрастать, что обеспечит всасывание газа через отверстие 1. В правой части компрессора объёмы этих пространств уменьшаются, находящийся в них газ сжимается и затем подаётся из компрессора в холодильник 5 или непосредственно в нагнетательный трубопровод. Корпус ротационного компрессора охлаждается водой, для подвода и отвода которой предусмотрены трубы 6 и 7. Степень повышения давления в одной ступени пластинчатого ротационного компрессора обычно бывает от 3 до 6.



Рис. 5. Ротационный пластинчатый компрессор: 1 - отверстие для всасывания воздуха; 2 - ротор; 3 - пластина; 4 - корпус; 5 - холодильник; 6 и 7 - трубы для отвода и подвода охлаждающей воды


Винтовые компрессоры

Конструкция винтового блока состоит из двух массивных винтов и корпуса. При этом винты во время работы находятся на некотором расстоянии друг от друга, и этот зазор уплотняется масляной пленкой. Трущихся элементов нет.

Таким образом, ресурс винтового блока практически неограничен и достигает более чем 200-300 тысяч часов. Регламентной замене подлежат лишь подшипники винтового блока.


Пластинчато-роторные компрессоры

Конструкция пластинчато-роторного блока состоит из одного ротора, статора и минимум восьми пластин, масса которых, а соответственно и толщина ограничены. На пластину в процессе работы действуют силы: центробежная и трения/упругости масляной пленки.

Так как масляная пленка нормализуется и становится равномерной и достаточной лишь после нескольких минут работы компрессора, то во время стартов и остановов идет трение пластин о статор и соответственно повышенный их износ и выработка.

Чем большее давление должен нагнетать такой блок, тем большая разницы давлений в соседних камерах сжатия, и тем большая должна быть центробежная сила для недопущения перетоков сжимаемого воздуха из камеры с большим давлением в камеру с меньшим. В свою очередь, чем больше центробежная сила, тем больше и сила трения в моменты пуска и остановки и тем тоньше масляная пленка во время работы - это является основной причиной, почему данная технология получила широкое распространение в области вакуума (то есть давление до 1 бара) и в области нагнетания давления до 0,3-0,4 МПа.

Так как масляная пленка между пластинами и статором имеет толщину всего несколько микрон, то любая пыль, тем более твердые частички крупнее размеров, выступают как абразив, который царапает статор и делает выработку по пластинам. Это приводит к тому, что возникают перепуски сжимаемого воздуха из одной камеры сжатия в другую и производительность заметно падает.

В отличие от небольших вакуумных насосов, где широко применяется пластинчато-роторная технология, в компрессорах большой производительности и давлением выше 0,5 МПа со временем необходимо будет менять весь блок в сборе, так как замена отдельно пластин эффективна лишь в случае восстановления геометрии статора, а такие большие статоры восстановлению (шлифовке) не подлежат.

Производители обычно не дают никаких данных по ресурсу пластинчато-роторного блока, так как он очень сильно зависит от качества воздуха и режима работы компрессора. Для газовых компрессоров, качающих газ практически не останавливаясь круглый год, ресурс может действительно достигать и более 100 тысяч часов потому, что масляная пленка равномерна и достаточна все время работы без остановок.

А при промышленном использовании, где разбор воздуха крайне неравномерен и компрессор запускают и останавливают десятки раз в день, большую часть времени нормальной для работы масляной пленки внутри блока нет, что является причиной агрессивного износа пластин. В таком случае ресурс блока не более 25 тысяч часов.


Динамические компрессоры

В компрессорах динамического принципа действия газ сжимается в результате подвода механической энергии от вала, и дальнейшего взаимодействия рабочего вещества с лопатками ротора. В зависимости от направления движения потока и типа рабочего колеса такие компрессоры бывают центробежные (рис. 6) и осевые (рис. 7).


Рис. 6. Центробежный компрессор: 1 - вал; 2, 6, 8, 9, 10 и 11 - рабочие колёса; 3 и 7 - кольцевые диффузоры; 4 - обратный направляющий канал; 5 - направляющий аппарат; 12 и 13 - каналы для подвода газа из холодильников; 14 - канал для всасывания газа

Центробежный компрессор в основном состоит из корпуса и ротора, имеющего вал 1 с симметрично расположенными рабочими колёсами. Центробежный 6-ступенчатый компрессор разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы 12 и 13. Во время работы центробежного компрессора частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси компрессора к периферии рабочего колеса, претерпевает сжатие и приобретает скорость. Сжатие продолжается в кольцевом диффузоре из-за снижения скорости газа, то есть преобразования кинетической энергии в потенциальную. После этого газ по обратному направляющему каналу поступает в другую ступень компрессор и т.д.

Получение больших степеней повышения давления газа в одной ступени (более 25-30, а у промышленных компрессоров - 8-12) ограничено главным образом пределом прочности рабочих колёс, допускающих окружные скорости до 280-500 м/сек. Важная особенность центробежных компрессоров (а также осевых) - зависимость давления сжатого газа, потребляемой мощности, а также КПД от его производительности. Характер этой зависимости для каждой марки компрессоров отражается на графиках, называемых рабочими характеристиками.

Регулирование работы центробежных компрессоров осуществляет различными способами, в том числе изменением частоты вращения ротора, дросселированием газа на стороне всасывания и другими.

Рис. 7. Осевой компрессор: 1 - канал для подачи сжатого газа; 2 - корпус; 3 - канал для всасывания газа; 4 - ротор; 5 - направляющие лопатки; 6 - рабочие лопатки

Осевой компрессор (рис. 7) имеет ротор 4, состоящий обычно из нескольких рядов рабочих лопаток 6, на внутренней стенке корпуса 2 располагаются ряды направляющих лопаток 5, всасывание газа происходит через канал 3, а нагнетание через канал 1. Одну ступень осевого компрессора составляет ряд рабочих и ряд направляющих лопаток. При работе осевого компрессора вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси компрессора (откуда его название) и вращаться. Решётка из неподвижных направляющих лопаток обеспечивает главным образом изменение направления скорости частиц газа, необходимое для эффективного действия следующей ступени. В некоторых конструкциях осевых компрессорах между направляющими лопатками происходит и дополнительное повышение давления за счёт уменьшения скорости газа. Степень повышения давления для одной ступени осевого компрессора обычно равна 1,2-1,3, то есть значительно ниже, чем у центробежных компрессоров, но КПД у них достигнут самый высокий из всех разновидностей компрессоров.

Зависимость давления, потребляемой мощности и кпд от производительности для нескольких постоянных частот вращения ротора при одинаковой температуре всасываемого газа представляют в виде рабочих характеристик. Регулирование осевых компрессоров осуществляется так же, как и центробежных. Осевые компрессоры применяют в составе газотурбинных установок.

Техническое совершенство осевых, а также ротационных, центробежных и поршневых компрессоров оценивают по их механическому КПД и некоторым относительным параметрам, показывающим, в какой мере действительный процесс сжатия газа приближается к теоретически самому выгодному в данных условиях.

Струйные компрессоры по устройству и принципу действия аналогичны струйным насосам. К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные компрессоры обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар.

Турбокомпрессоры - это динамические машины, в которых сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решётками лопастей.

Прочие классификации

По назначению компрессоры классифицируются по отрасли производства, для которых они предназначены (химические, холодильные, энергетические, общего назначения и т. д.). По роду сжимаемого газа (воздушный, кислородный, хлорный, азотный, гелиевый, фреоновый, углекислотный и т. д.). По способу отвода теплоты - с жидкостным или воздушным охлаждением.

По типу приводного двигателя они бывают с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины. Дизельные газовые компрессоры широко используются в отдаленных районах с проблемами подачи электроэнергии. Они шумные и требуют вентиляции для выхлопных газов. С электрическим приводом компрессоры широко используются в производстве, мастерских и гаражах с постоянным доступом к электричеству. Такие изделия требуют наличия электрического тока, напряжением 110-120 Вольт (или 230-240 Вольт). В зависимости от размера и назначения, компрессоры могут быть стационарными или портативными. По устройству компрессоры могут быть одноступенчатыми и многоступенчатыми.

По конечному давлению различают:

- вакуум-компрессоры, газодувки - машины, которые отсасывают газ из пространства с давлением ниже атмосферного или выше. Воздуходувки и газодувки подобно вентиляторам создают поток газа, однако, обеспечивая возможность достижения избыточного давления от 10 до 100 кПа (0,01-0,1 МПа), в некоторых специальных исполнениях - до 200 кПа (0,2 МПа). В режиме всасывания воздуходувки могут создавать разрежение, как правило, 10-50 кПа, а в отдельных случаях - до 90 кПа и работать как вакуумный насос низкого вакуума;

- компрессоры низкого давления, предназначенные для нагнетания газа при давлении от 0,15 до 1,2 МПа;

- компрессоры среднего давления - от 1,2 до 10 МПа;

- компрессоры высокого давления - от 10 до 100 МПа.

- компрессоры сверхвысокого давления, предназначенные для сжатия газа выше 100 МПа.

Рис. 8. Пример чертежей компрессора


Производительность компрессоров

Производительность компрессоров обычно выражают в единицах объёма газа сжатого в единицу времени (м3/мин, м3/час). Производительность обычно считают по показателям, приведённым к нормальным условиям. При этом различают производительность по входу и по выходу, эти величины практически равны при маленькой разнице давлений между входом и выходом, но при большой разнице, например, у поршневых компрессоров, выходная производительность может при тех же оборотах падать более чем в 2 раза по сравнению с входной производительностью, измеренной при нулевом перепаде давления между входом и выходом. Компрессоры называются дожимающими, если давление всасываемого газа заметно превышает атмосферное.


Агрегатирование компрессоров

Агрегатирование представляет собой процесс установки компрессора и двигателя на раму. В связи с тем, что компрессоры поршневого типа характеризуются неравномерной тряской, результатом которой при отсутствии соответствующего основания или опоры становится чрезмерная вибрация, агрегатирование должно выполняться с учетом качественно спроектированного фундамента.

Компрессоры высокого давления: классификация, характеристики и особенности

В чем заключается основное предназначение компрессоров? Чем полезно это устройство на производстве, в промышленности, строительстве и даже в быту? Чем отличаются компрессоры высокого, среднего и низкого давления? Когда уместно использовать тот или иной тип агрегатов? Ответы на все эти и много других вопросов о компрессорных устройствах можно отыскать в данной статье. С чего начнем?

В первую очередь, следует все-таки «расшифровать» понятие компрессор. Компрессор – это электрическое устройство, основная «миссия» которого – сжатие воздуха, а также подача его (или какого-либо другого газа) под давлением. Компрессор – это незаменимый помощник во всех сферах производства и народного хозяйства. Более того, компрессорные устройства используются и на маленьких промышленных предприятиях, и даже в быту, а специализированные компании предоставляют услуги аренды компрессоров.

А вы знаете? Одна из самых популярных сфер применения компрессоров – это авторемонтные базы и сервисы. Здесь без них просто не обойтись – даже элементарная подкачка колес требует использования особого оборудования, что уж говорить о профессиональной покраске или механической обработке авто.

Типы компрессоров: какие бывают устройства?

В зависимости от эксплуатационных характеристик, особенностей конструкции и механизма функционирования компрессоры можно разделить на такие группы:

  • Объемные (многоступенчатые и одноступенчатые) устройства.
  • Турбокомпрессоры – динамические устройства.

Их основное отличие – принцип действия, а также особенности функционирования основных механизмов, которые используются в процессе сжатия воздуха.

Компрессоры высокого давления: об основных отличиях и не только

Это только на первый взгляд кажется, что компрессоры высокого давления – это достаточно ограниченная группа устройств. На самом деле «бывалые» знают, что существуют десятки разновидностей таких компрессоров. Отличаются они не только внутренне, но и внешне: габаритами, количеством «запчастей» и рабочих узлов. Ключевым отличием различных типов компрессоров высокого давления все-таки является принцип работы.

Механизм функционирования компрессоров высокого давления на деле не так уж и сильно отличается от принципа работы устройств среднего и даже низкого давления. Главное (хоть и далеко не единственное) преимущество высокомощных приборов – это применение системы многоступенчатого сжатия газов. Простыми словами, у компрессоров с низким давлением процесс сжатия газа или воздуха происходит однократно, а с высоким, соответственно, многократно. Наличие нескольких рабочих камер позволяет сжимать «сырье» до необходимого давления и состояния. Иногда сырье сжимается еще до момента подачи его в компрессор – все это делается с целью экономии энергии. Чаще всего процесс предварительного сжатия заменяет первую стадию работы компрессора.

Уход за компрессором: основные рекомендации

Некоторые разновидности компрессоров высокого давления требуют индивидуального подхода и особого ухода. Элементы механизма многих компрессоров необходимо смазывать специальными маслами во избежание перегрева устройства и порчи металлических поверхностей. Детали компрессора часто «стираются», потому к вопросу смазывания рабочих поверхностей следует подходить очень ответственно. Важно своевременно проверять наличие масла в механизме, однако не стоит забывать и о том, что избыточное количество смазочного вещества (также, как и его недостаток) может привести к плачевным последствиям.

Поршневые компрессоры: особенности, устройство, принцип работы

Пневматическое оборудование применяют на производственных предприятиях, строительных площадках, станциях технического обслуживания. Для получения сжатого воздуха используют компрессоры. Широкое распространение получили поршневые модели. Это оборудование отличается высоким КПД, надежностью и низкой ценой. Поршневые компрессоры рекомендуют использовать при рабочем давлении не менее 1 МПа. Один из главных критериев современной техники высокая мощность, поэтому компрессоры, генерирующие сжатый воздух с давлением более 1 МПа пользуются широким спросом.


Устройство поршневого компрессора

 

Простое устройство воздушного поршневого компрессора – гарантия надежной работы оборудования. Выпускают однопоршневые и двухпоршневые модели. Конструктивные особенности наглядно можно рассмотреть на оборудовании с одним поршнем. Главные узлы:

  • поршень;

  • цилиндр;

  • нагнетающий клапан;

  • всасывающий клапан;

  • коленчатый вал;

  • шатун.

Выполняется работа поршневого компрессора при вращении коленчатого вала. Он передает момент вращения шатуну, который производит ограниченные движения поршня в камере сжатия. Объем воздуха между клапанами, расположенными в верхней части камере и поршнем увеличивается. В результате воздух в камере разряжается, это позволяет атмосферному воздуху преодолеть сопротивления пружины клапана. При сжатии поршня, объем камеры уменьшается, а давление увеличивается и воздух попадает в нагнетательный клапан.

 

Такое устройство воздушного поршневого компрессора позволяет эффективно нагнетать воздух в режиме пульсации. Чтобы исключить возможность перебоев, оборудование комплектуется ресиверами. Двухпоршневые модели в них не нуждаются, конструктивные особенности позволяют стабилизировать поток нагнетаемого воздуха. Два поршня работают поочередно: на противофазе воздух сжимается, после этого подается в нагнетающую часть оборудования.

 

Поршни располагаются в чугунном корпусе. В движение поршни приводятся электродвигателем или двигателем внутреннего сгорания. Двухпоршневые модели могут комплектоваться цилиндрами разного размера. При этом устройство и работа поршневого компрессора усложняется. Между камерами поршня устанавливается медная трубка, выполняющая роль охладителя. Из камеры поршня большего диаметра, воздух через охладитель попадает в цилиндр меньшего размера. Здесь воздух дожимается, что позволяет получить максимальное давление.

Виды поршневых компрессоров

 

Поршневые компрессоры классифицируют по типу привода, количеству поршней и ступеней сжатия, расположению цилиндров и установленному двигателю. По типу привода выделяют модели:

  • с прямым приводом – имеют высокий КПД, потребляют меньше энергии, отличаются низким показателем уровня шума;

  • с ременным приводом – характеризуются низким уровнем нагрузки на основные узлы при запуске, что увеличивает срок службы.

 

По уровню давления оборудование классифицируют на три группы:

  • компрессоры низкого давления – рабочий диапазон от 5 до 12 бар;

  • агрегаты среднего давления – работают в диапазоне от 2 до 100 бар;

  • компрессоры высокого давления – максимальный уровень достигает 1000 бар.

 

По расположению цилиндров агрегаты делят на три группы:

В угловых моделях цилиндры расположены под небольшим наклоном, имеют V-образную или W-образную компоновку.

 

По исполнению выделяют стационарные и передвижные компрессоры. Стационарные применяются на производственных предприятиях, модели с низким давлением – на строительных площадках. Мобильные агрегаты высокого и среднего давления используют в дорожном строительстве, на возведении промышленных и муниципальных объектов.

 

В зависимости от типа установленного силового агрегата компрессоры делят на три группы:

  • электрические – комплектуются однофазными или трехфазными электродвигателями. Преимущества – отсутствие вредных выбросов, минимальный уровень шума, регулировка рабочих параметров в широком диапазоне. Компрессоры используют при работе в помещениях;

  • дизельные – комплектуются экономичными двигателями, предназначенными для интенсивной эксплуатации на протяжении рабочего дня. Установка моторов большой мощности позволяет решать сложные производственные задачи, работать с любым пневматическим инструментом;

  • бензиновые – установленные двигатели отличаются пониженным уровнем шума, высокой мощностью, незначительным уровнем вредных выбросов. Агрегаты легко запускаются при отрицательной температуре воздуха.

В каждой категории выпускаются агрегаты разной мощности и комплектации. Это позволяет выбрать компрессор в зависимости от требований производства.

 


Где используются поршневые компрессоры

 

Сфера применения поршневых компрессоров постоянно расширяется. Оборудование используется в автосервисах для накачки шин, раскручивания гаек. В пищевой промышленности агрегаты применяют при упаковке продуктов питания, при производстве напитков. При строительных работах используют гайковерты, дрели и перфораторы. При отделочных работах краскопульты и пескоструйные аппараты, работающие на сжатом воздухе. В дорожном строительстве используют мобильные агрегаты, которые приводят в действие отбойные молотки.

 

Мощные поршневые компрессоры устанавливают на металлургических производствах для подачи сжатого воздуха. Здесь используют бесмасленные модели. Аналогичное оборудование применяют на предприятиях по производству электроники. Предприятия машиностроительной отрасли, мебельные производства используют агрегаты на линиях покраски, сборки.

 

Преимущества поршневых компрессоров

 

Оборудование этого класса используется в разных отраслях промышленности более 70 лет. Это объясняют преимущества поршневых компрессоров:

  • простая конструкция;

  • продолжительный срок службы при регулярном техобслуживании;

  • низкая цена;

  • широкий ассортимент моделей позволяет выбрать технику для любой отрасли;

  • возможность эксплуатации в сложных климатических условиях.

Поршневые компрессоры рассчитаны на интенсивную эксплуатацию. Это делает технику удачным выбором для производственных предприятий и строительных компаний.

 

Среди недостатков оборудования – повышенный уровень шума. Это компенсируется установкой мощных компрессоров в отдельных помещениях. При использовании на улице персонал использует индивидуальные средства защиты.

 

Производители поршневых компрессоров

 

При покупке оборудования для пневматической техники эксперты рекомендуют остановить выбор на поршневых компрессорах. Среди агрегатов этого класса можно подобрать модель для всех видов работ. Поршневые компрессоры используют в различных сферах – от аэрографии до металлургических производств. Везде это оборудование демонстрирует надежность и удобное обслуживание. Доступная стоимость техники и продолжительный срок эксплуатации сделали применение компрессоров рентабельным на производственных предприятиях.

 

Технику выпускают отечественные и зарубежные машиностроительные предприятия. Популярные производители поршневых компрессоров:

  • FUBAG – немецкая компания, предлагающая широкий выбор техники для небольших производственных предприятий, строительных компаний и частного использования. Оборудование используют для покраски стен, аэрографии, на станциях техобслуживания и в кузовных цехах;

  • FIAC – итальянская компания, выпускающая компрессоры разной конструкции и производительности. Продукция привлекает качеством сборки, продолжительным интервалом между плановыми техническими обслуживаниями;

  • KRONVUZ – чешская компания, предлагающая качественную технику по доступной цене;

  • REMEZA – белорусский бренд, привлекающий качеством оборудования, доступностью расходных материалов, легким обслуживанием моделей;

  • KRAFTMAN – немецкая компания, предлагающая компрессоры со сроком службы 20-25 лет. В модельном ряду техника для разных отраслей промышленности;

  • ABAC – итальянский производитель, имеющий 70-летний опыт выпуска компрессоров, признанных одними из лучших в мире с момента своего появления. Среди преимуществ – доступная цена, надежность, высокая производительность.

На вершине профессионального рейтинга машиностроительные компании Италии и Германии. Эти производители постоянно совершенствуют модельный ряд и тщательно следят за требованиями, пожеланиями потребителей.

 

"Пневматическое оборудование применяют на производственных предприятиях, строительных площадках, станциях технического обслуживания. Для получения сжатого воздуха используют компрессоры. Широкое распространение получили поршневые модели. Это оборудование отличается высоким КПД, надежностью и низкой ценой. Поршневые компрессоры рекомендуют использовать при рабочем давлении не менее 1 МПа. Один из главных критериев современной техники высокая мощность, поэтому компрессоры, генерирующие сжатый воздух с давлением более 1 МПа пользуются широким спросом.

"

Устройство поршневого компрессора

 

Простое устройство воздушного поршневого компрессора – гарантия надежной работы оборудования. Выпускают однопоршневые и двухпоршневые модели. Конструктивные особенности наглядно можно рассмотреть на оборудовании с одним поршнем. Главные узлы:

  • поршень;

  • цилиндр;

  • нагнетающий клапан;

  • всасывающий клапан;

  • коленчатый вал;

  • шатун.

Выполняется работа поршневого компрессора при вращении коленчатого вала. Он передает момент вращения шатуну, который производит ограниченные движения поршня в камере сжатия. Объем воздуха между клапанами, расположенными в верхней части камере и поршнем увеличивается. В результате воздух в камере разряжается, это позволяет атмосферному воздуху преодолеть сопротивления пружины клапана. При сжатии поршня, объем камеры уменьшается, а давление увеличивается и воздух попадает в нагнетательный клапан.

 

Такое устройство воздушного поршневого компрессора позволяет эффективно нагнетать воздух в режиме пульсации. Чтобы исключить возможность перебоев, оборудование комплектуется ресиверами. Двухпоршневые модели в них не нуждаются, конструктивные особенности позволяют стабилизировать поток нагнетаемого воздуха. Два поршня работают поочередно: на противофазе воздух сжимается, после этого подается в нагнетающую часть оборудования.

 

Поршни располагаются в чугунном корпусе. В движение поршни приводятся электродвигателем или двигателем внутреннего сгорания. Двухпоршневые модели могут комплектоваться цилиндрами разного размера. При этом устройство и работа поршневого компрессора усложняется. Между камерами поршня устанавливается медная трубка, выполняющая роль охладителя. Из камеры поршня большего диаметра, воздух через охладитель попадает в цилиндр меньшего размера. Здесь воздух дожимается, что позволяет получить максимальное давление.

Виды поршневых компрессоров

 

Поршневые компрессоры классифицируют по типу привода, количеству поршней и ступеней сжатия, расположению цилиндров и установленному двигателю. По типу привода выделяют модели:

  • с прямым приводом – имеют высокий КПД, потребляют меньше энергии, отличаются низким показателем уровня шума;

  • с ременным приводом – характеризуются низким уровнем нагрузки на основные узлы при запуске, что увеличивает срок службы.

 

По уровню давления оборудование классифицируют на три группы:

  • компрессоры низкого давления – рабочий диапазон от 5 до 12 бар;

  • агрегаты среднего давления – работают в диапазоне от 2 до 100 бар;

  • компрессоры высокого давления – максимальный уровень достигает 1000 бар.

 

По расположению цилиндров агрегаты делят на три группы:

В угловых моделях цилиндры расположены под небольшим наклоном, имеют V-образную или W-образную компоновку.

 

По исполнению выделяют стационарные и передвижные компрессоры. Стационарные применяются на производственных предприятиях, модели с низким давлением – на строительных площадках. Мобильные агрегаты высокого и среднего давления используют в дорожном строительстве, на возведении промышленных и муниципальных объектов.

 

В зависимости от типа установленного силового агрегата компрессоры делят на три группы:

  • электрические – комплектуются однофазными или трехфазными электродвигателями. Преимущества – отсутствие вредных выбросов, минимальный уровень шума, регулировка рабочих параметров в широком диапазоне. Компрессоры используют при работе в помещениях;

  • дизельные – комплектуются экономичными двигателями, предназначенными для интенсивной эксплуатации на протяжении рабочего дня. Установка моторов большой мощности позволяет решать сложные производственные задачи, работать с любым пневматическим инструментом;

  • бензиновые – установленные двигатели отличаются пониженным уровнем шума, высокой мощностью, незначительным уровнем вредных выбросов. Агрегаты легко запускаются при отрицательной температуре воздуха.

В каждой категории выпускаются агрегаты разной мощности и комплектации. Это позволяет выбрать компрессор в зависимости от требований производства.

 


Где используются поршневые компрессоры

 

Сфера применения поршневых компрессоров постоянно расширяется. Оборудование используется в автосервисах для накачки шин, раскручивания гаек. В пищевой промышленности агрегаты применяют при упаковке продуктов питания, при производстве напитков. При строительных работах используют гайковерты, дрели и перфораторы. При отделочных работах краскопульты и пескоструйные аппараты, работающие на сжатом воздухе. В дорожном строительстве используют мобильные агрегаты, которые приводят в действие отбойные молотки.

 

Мощные поршневые компрессоры устанавливают на металлургических производствах для подачи сжатого воздуха. Здесь используют бесмасленные модели. Аналогичное оборудование применяют на предприятиях по производству электроники. Предприятия машиностроительной отрасли, мебельные производства используют агрегаты на линиях покраски, сборки.

 

Преимущества поршневых компрессоров

 

Оборудование этого класса используется в разных отраслях промышленности более 70 лет. Это объясняют преимущества поршневых компрессоров:

  • простая конструкция;

  • продолжительный срок службы при регулярном техобслуживании;

  • низкая цена;

  • широкий ассортимент моделей позволяет выбрать технику для любой отрасли;

  • возможность эксплуатации в сложных климатических условиях.

Поршневые компрессоры рассчитаны на интенсивную эксплуатацию. Это делает технику удачным выбором для производственных предприятий и строительных компаний.

 

Среди недостатков оборудования – повышенный уровень шума. Это компенсируется установкой мощных компрессоров в отдельных помещениях. При использовании на улице персонал использует индивидуальные средства защиты.

 

Производители поршневых компрессоров

 

При покупке оборудования для пневматической техники эксперты рекомендуют остановить выбор на поршневых компрессорах. Среди агрегатов этого класса можно подобрать модель для всех видов работ. Поршневые компрессоры используют в различных сферах – от аэрографии до металлургических производств. Везде это оборудование демонстрирует надежность и удобное обслуживание. Доступная стоимость техники и продолжительный срок эксплуатации сделали применение компрессоров рентабельным на производственных предприятиях.

 

Технику выпускают отечественные и зарубежные машиностроительные предприятия. Популярные производители поршневых компрессоров:

  • FUBAG – немецкая компания, предлагающая широкий выбор техники для небольших производственных предприятий, строительных компаний и частного использования. Оборудование используют для покраски стен, аэрографии, на станциях техобслуживания и в кузовных цехах;

  • FIAC – итальянская компания, выпускающая компрессоры разной конструкции и производительности. Продукция привлекает качеством сборки, продолжительным интервалом между плановыми техническими обслуживаниями;

  • KRONVUZ – чешская компания, предлагающая качественную технику по доступной цене;

  • REMEZA – белорусский бренд, привлекающий качеством оборудования, доступностью расходных материалов, легким обслуживанием моделей;

  • KRAFTMAN – немецкая компания, предлагающая компрессоры со сроком службы 20-25 лет. В модельном ряду техника для разных отраслей промышленности;

  • ABAC – итальянский производитель, имеющий 70-летний опыт выпуска компрессоров, признанных одними из лучших в мире с момента своего появления. Среди преимуществ – доступная цена, надежность, высокая производительность.

На вершине профессионального рейтинга машиностроительные компании Италии и Германии. Эти производители постоянно совершенствуют модельный ряд и тщательно следят за требованиями, пожеланиями потребителей.

 

Устройство и принцип работы компрессоров

Для получения сжатого воздуха используется компрессорное оборудование, применяемое в производственных отраслях, гаражах, автомастерских и в строительстве.

Первое компрессорное устройство было изобретено еще до нашей эры, компрессоры в современном исполнении работают уже более 150 лет. Во все времена устройство носило название – поршневая воздуходувка, которая создавала поток воздуха под высоким давлением. И сегодня, несмотря на многочисленные инновации и технологии принцип работы компрессора остается неизменным.

Разновидности поршневых компрессоров

Поршневые компрессоры различаются по типу устройства кривошипно-шатунного узла:

  • Одностороннее всасывание, с мощностью не более 100 кВт;
  • Двухстороннее всасывание.

По устройству цилиндров, и их расположению: вертикальные, угловые, горизонтальные. Различаются по степени сжатия: 1-ступенчатые, 2-ступенчатые, многоступенчатые.

По виду исполнения компрессоры могут быть передвижными и стационарными. Отличается компрессор передвижной и по конечному давлению, что важно учитывать при выборе оборудования:

  • Сверхвысокое давление – более 1000 бар;
  • Высоким давлением – до 1000 бар;
  • Средним давлением – до 100 бар;
  • С низким давлением – до 12 бар.

Принцип работы поршневого компрессора

Поршневой компрессор имеет достаточно простой принцип работы и состоит из чугунного корпуса цилиндрической формы, нагнетательного и всасывающего клапана и поршня. Полный рабочий процесс совершается за два хода поршня, во время которого во внутреннюю часть корпуса заходит жидкость или воздух, после чего происходит возрастание давления и сжатое вещество выталкивается через клапан-нагнетатель.

Многолетний опыт использования поршневого оборудования в разных сферах деятельности показал ряд таких преимуществ:

  • Работа возможна даже при отсутствующем начальном давлении;
  • Можно комбинировать любые газы и жидкости, даже загрязненные и пожароопасные;
  • Конечное давление более 1000 бар, что позволяет добиться высокой производительности.

Принцип работы винтового компрессора

Винтовые компрессоры работают от электросети и могут быть, как передвижными, так и стационарными. Передвижной винтовой компрессор является единой установкой, состоящей из нескольких элементов:

  • Компрессор;
  • Бензиновый или дизельный двигатель;
  • Электрогенератор.

Передвижные компрессоры надежны и мобильны, так как установлены на прицеп с колесами, что позволяет быстро доставлять оборудование к месту работы. Если оборудование транспортируется на грузовом транспорте, тогда компрессор устанавливается на кузов.

Объемные компрессоры

Компрессор – это машина, которая повышает давление газа и затем поставляет его для использования в различных областях применения, включая те, которые связаны со сгоранием, пневматикой, охлаждением и процессами транспортировки газа.  Основное назначение компрессора повысить давление газа до такого значения, когда станет возможным его использование в технологическом процессе.

Объемный компрессор сжимает рабочую среду в рабочих камерах, объём которых при сжатии то увеличивается, то уменьшается, при этом также происходит изменение давления. Давление меняется за счет периодического изменения объема камер при работе компрессора, при уменьшении объема давление повышается. Объемные компрессоры работают с постоянной производительностью и в зависимости от конструкционных форм рабочих частей и тому как меняется объем рабочих камер они могут быть роторными и поршневыми.

Масло, впрыскиваемое под давлением, образуют масляную пленку в процессе работы компрессора и служит смазывающим веществом, а также участвует в процессе охлаждения. Однако во время пуска и останова компрессора масло не успевает распределяться и возможен контакт пластин и статора, который в итоге ведет к износу. Также на износ пластин могут повлиять любые твердые частицы.

В компрессорах, где большая производительность и давление превышает 5 бар замене подлежит рабочий блок в сборе. Статоры не восстановимы (их шлифовка не возможна). Замена только пластин без статора не производится. Срок работы компрессора определяют качество воздуха и режим эксплуатации. При неравномерной работе ресурс рабочего блока примерно 25000 часов. Однако, чем дольше агрегат находится в работе, тем больше его срок службы из-за равномерности распределения смазки по рабочим частям.

Общее описание и типы

К объемным компрессорам относят компрессоры следующих типов:

В объемных компрессорах давление увеличивается путем удержания определенного количества газа и преобразование его в меньший объем. Наиболее распространенными типами объемных компрессоров являются поршневые и винтовые компрессоры.

Магистральные газопроводы, нефтехимические установки, нефтеперерабатывающие заводы и другие промышленные предприятия и сферы применения зависят от этого типа оборудования. Благодаря многим факторам включая, но не ограничиваясь, качеством исходных конструкций, адекватностью процесса технического обслуживания и эксплуатационных характеристик промышленные предприятия могут получить значительно варьирующиеся затраты по продолжению срока службы и надежность от их собственных установок.

Различные компрессоры можно найти почти в каждой промышленной сфере применения. Объемные компрессоры могут перекачивать следующие газы:

Поршневые компрессоры обычно используются там, где требуется высокая степень сжатия на ступень (степень нагнетания к давлению всасывания) без высокой производительности и технологическая среда относительно сухая.

Роторные компрессоры имеют несложное конструктивное устройство, небольшой вес, отличаются по форме ротора и применяются во многих областях промышленности.

Принцип действия объемных компрессоров и конструктивное устройство

Объемный компрессоры имеют схожий принцип работы и имеют схожий механизм потерь. Однако относительная величина различных потерь может различаться от типа к типу. Так, например, потеря в результате утечки будет небольшой в масляном промышленном компрессоре с надежными поршневыми кольцами, но может быть значительной в сухом винтовом компрессоре, если он работает на низкой скорости, а давление увеличивается.

Все типы компрессоров имеют камеру сжатия, в которой находится газ при давлении нагнетания в конце процесса нагнетания. Для некоторых конструктивных типов этот объем может быть небольшим и значительным для других конструкций. Некоторые типы компрессоров, как например поршневые компрессоры могут иметь большое пространство сжатия, но при этом газ возвращается к давлению всасывания в цилиндре. В винтовом компрессоре газ расширяется до давления всасывания в пространстве сжатия.

Некоторые типы компрессоров, которые используют зафиксированные отверстия для нагнетания, рассчитаны для работы с определенным значением объема.

Рассмотрим принцип действия и конструктивное устройство объемных компрессоров более подробно на примере поршневого и винтового компрессора.

Компрессоры роторного типа, компактны, требуют небольшого технического обслуживания при их эксплуатации. Роторные компрессоры это компрессоры с высоконапорным корпусом. Всасывание в этих компрессорах происходит напрямую в камере сжатия. Газ, сжимаемый в камере нагнетается в компрессорный корпус. Необходимо отметить, что при холодном пуске компрессорам с высоконапорным кожухом требуется больше времени для того, чтобы достичь их нормального рабочего давления в компрессорном корпусе. Это вызвано частично большим объемом кожуха компрессора.

Роторные винтовые компрессоры – это компрессоры объемного типа, которые используют роторы винтовой формы для сжатия газа. Основными компонентами являются входное и выходное отверстие и основной и вспомогательный ротор. Когда шлицы винтового ротора проходят мимо входного отверстия газа, газ поступает на шлицы. Газ удерживается там, образуя газовый карман по всей длине шлица. После того как основной и вспомогательный роторы приходят в зацепление, объем газового кармана уменьшается и происходит сжатие удерживаемого там газа. По достижению шлицем нагнетания газ выпускается.

Основные два типа винтовых компрессоров – это компрессоры с маслозаполнением и компрессоры сухого типа. Наиболее распространены винтовые компрессоры с маслозаполнением, где масло и газ поступают вместе в компрессор. Масло выполняет функцию уплотнения для вращающихся роторов, в то время как у компрессоров сухого типа есть распределительная шестерня, которая регулирует движение роторов. Однако масло должно быть удалено из сжимаемой среды прежде, чем она покинет компрессор и для этого используют масляные фильтры. Это та, часть компрессора, которая требует регулярного технического обслуживания и замены.

Компрессоры поршневого типа – это объемный компрессор, который использует движение поршня внутри цилиндра для движения газа с одного уровня давления на другой более высокий уровень давления. Цилиндры компрессора, называемые еще ступенями, которых может быть от одной до шести и более являются ограничителями для технологического газа во время сжатия. Для получения более высокого давления газа используют больше ступеней. Конструкция может быть простого или двойного действия. В компрессорах с двойным действием сжатие происходит с обоих сторон поршня. Некоторые цилиндры с двойным действием в высоконапорных применениях имеют стержень поршня с обоих сторон поршня для обеспечения равномерности и сбалансированных нагрузок. Конструкции с тандемными цилиндрами помогают минимизировать динамические нагрузки путем расположения цилиндров в парах, подсоединенных к общему коленвалу, так что движения поршней противоположны друг другу. Износ дорогих частей минимален. Компрессоры с одним цилиндром классифицируются либо как вертикальные или горизонтальные.

Применение объемных компрессоров

Объемные компрессоры широко используются для технологических процессов, где требуется сжатие воздуха, технологических газов и хладогентов. Компрессоры объемного типа можно встретить на химических производствах, в сельском хозяйстве, в электронике, металлургии, в пищевой промышленности, фармацевтической промышленности, в пневмотранспорте и прочих

Объемные компрессоры применяются как при добыче газа так и при улавливании паров, когда требуется транспортировка рабочих сред. Компрессоры объемного типа используется для областей применения, где условия для технологических газов и состав газа могут варьироваться, в этом случае чаще всего применение находят безмасляные винтовые компрессоры. Винтовые компрессоры также хороший выбор там, где требуется экономичная работа. Они могут легко обрабатывать газы с содержанием примесей, сжиженный газ, топливный газ.

Для создания воздуха низкого давления, перемещения природного газа, подаче газа высокого давления во время бурения скважин и для различных областей применения при производстве или химических процессах, которые требуют воздух среднего или высокого давления применяют также представителя объемного типа компрессоров – большие многоцилиндровые многоступенчатые поршневые компрессоры. Эти компрессоры могут применяться на месторождениях и иметь дистанционное управление или на входе газовой установки, где происходит сжатие сырого, влажного (с содержанием воды или углеводородов) и возможно кислого ( с содержанием сероводорода) природного газа. Эти компрессоры устанавливают также на разгрузочном конце газовой установки, где сжимается полностью чистый и сухой газ для потребителей и подается в магистраль.

Недостатки и преимущества

Основные недостатки и преимущества объемных компрессоров приведены в таблице ниже.

Поршневые компрессоры обычно недорогие в закупке, но их производительность со временем понижается, уровень шума высокий и качество среды может быть невысоким из-за присутствия в нем масла.

Объемные компрессоры – это класс высокоэффективных промышленных машин, которые применяются во многих областях промышленности. В настоящее время также ведется постоянная работа по усовершенствованию конструкций и возможностей сжатия этих компрессоров.

Что такое воздушные компрессоры высокого давления

Размещено компанией Compressed Air Systems | Оставить комментарий

Используемые в широком спектре отраслей промышленности, решения для воздушных компрессоров высокого давления используются в приложениях, где требуется постоянно высокое давление и дополнительные фунты на квадратный дюйм (фунт / кв. Дюйм) - обычно около 650 фунт / кв. Дюйм или выше - для выполнения определенных задач. Бустеры компрессора также доступны в качестве дополнений к существующим системам.

В компании Compressed Air Systems мы часто задаем вопросы о различных типах систем высокого давления, их конкретных свойствах и преимуществах. Ниже мы рассмотрели некоторые из наиболее часто задаваемых вопросов.

Как работают воздушные компрессоры высокого давления?

Существует два основных типа компрессоров, подпадающих под категорию высокого давления: стандартные воздушные компрессоры высокого давления и дожимные компрессоры высокого давления.

Сложные и универсальные воздушные компрессоры высокого давления пропускают окружающий воздух через несколько ступеней сжатия, чтобы обеспечить постоянное давление до 6000 фунтов на квадратный дюйм.Воздух охлаждается по мере прохождения каждой ступени, чтобы сжать как можно сильнее. Это обеспечивает оптимальное давление.

С другой стороны, системы повышения давления

требуют стандартного давления и входных отверстий не менее 125 фунтов на квадратный дюйм, чтобы обеспечить диапазоны давления нагнетания от 450 до 640 фунтов на квадратный дюйм. Используя предварительно сжатый воздух из существующих систем, эти надстройки созданы для конкретных точек использования; они наиболее часто используются в ситуациях, когда технологический воздух необходим для большинства услуг, но для других требуется гораздо более высокое давление.

Большинство промышленных предприятий способны выдерживать давление от 90 до 100 фунтов на квадратный дюйм, поэтому бустеры имеют решающее значение для выполнения многих промышленных задач; они служат рентабельной альтернативой оборудованию всей установки для более высоких давлений. Например, выдувное формование полиэтилентерефталата требует очень высокого давления, поэтому заводы могут использовать бустерные системы для улучшения существующих систем, используемых для других применений, для большинства из которых не потребуется почти такое же давление.

Комплексные высококачественные компрессорные системы также будут иметь элементы управления, обеспечивающие автоматическое наполнение и удаленный мониторинг, что, в свою очередь, позволит интегрировать системы мониторинга в масштабах всего предприятия.После этого можно быстро выявить и устранить любые проблемы.

Хотите узнать больше о компрессорах высокого давления, которые мы предлагаем? Нажмите кнопку ниже, чтобы загрузить наше руководство!

Когда вам нужно его использовать?

Для многих операций по сжатию воздуха требуется 6000 фунтов на квадратный дюйм или больше, что намного выше диапазона давления большинства стандартных систем. Разработанные для использования в любом приложении, требующем 650 фунтов на квадратный дюйм или более, воздушные компрессоры высокого давления (или, в некоторых случаях, бустеры) обеспечивают постоянную подачу высокого давления.

В чувствительных приложениях, таких как SCUBA или SCBA, например, поддержание постоянного и надежного высокого давления имеет решающее значение для обеспечения того, чтобы пользователи получали как можно больше воздуха для дыхания из одного баллона.

Из чего состоит система воздушного компрессора высокого давления?

Компрессорные системы высокого давления состоят из воздушного компрессора, заправочных станций и резервуаров, а также заправочных станций баллонов. Эти системы также могут подавать воздух в блок цилиндров, обеспечивая подачу воздуха в ситуациях пиковой нагрузки, когда давление выше того, с которым может работать компрессор, необходимо в течение ограниченного времени.

Как укомплектованные воздушные компрессорные системы, так и бустеры включают многоступенчатые промежуточные охладители, чтобы обеспечить оптимальное охлаждение между каждым этапом процесса, обеспечивая создание оптимального давления.

Где я могу купить?

Чтобы обеспечить постоянное и надежное давление для вашего приложения, очень важно сотрудничать со знающим поставщиком, который может помочь вам в процессе выбора и помочь вам решить любые вопросы или проблемы, которые могут у вас возникнуть.

Compressed Air Systems - гордый поставщик ведущих в отрасли систем высокого давления от Kaeser, Arctic Air и Sauer, и наша команда экспертов всегда готова помочь клиентам с их потребностями в повышенном давлении.Чтобы узнать больше об этих системах или помочь в определении того, какой тип системы подходит вам, обратитесь к команде сегодня.

Как работают воздушные компрессоры: анимированное руководство

Воздушные компрессоры - универсальные и жизненно важные компоненты любого завода или мастерской. За последние годы они стали меньше и менее громоздкими, что делает их более удобными в различных рабочих ситуациях. Это очень полезные портативные машины, которые приводят в действие отдельные пневматические инструменты.

Основное преимущество воздушных компрессоров в том, что они намного мощнее обычных инструментов и не требуют собственных громоздких двигателей. Поскольку единственное реальное обслуживание, которое требуется от них, - это небольшая смазка, различные инструменты могут приводиться в действие одним двигателем, который использует давление воздуха для достижения максимального потенциала.

Их универсальность не ограничивается только верстаком для сверл или шлифовальных машин; их можно использовать для чего угодно, от накачивания шин (например, на вашей местной заправке) до прочистки раковины дома.

Воздушные компрессоры - это свидетельство человеческой изобретательности. Важно понимать, как они работают, чтобы вы могли выбрать подходящий воздушный компрессор для своего проекта.

Как работают воздушные компрессоры

Воздушные компрессоры работают за счет нагнетания воздуха в контейнер и повышения его давления. Затем воздух проходит через отверстие в резервуаре, где нарастает давление. Думайте об этом как об открытом воздушном шаре: сжатый воздух может использоваться как энергия, поскольку он высвобождается.

Они приводятся в движение двигателем, который превращает электрическую энергию в кинетическую. Это похоже на то, как работает двигатель внутреннего сгорания, используя коленчатый вал, поршень, клапан, головку и шатун.

Оттуда сжатый воздух можно использовать для питания различных инструментов. Некоторые из наиболее популярных вариантов - гвоздезабиватели, гайковерты, шлифовальные машинки и краскораспылители.

Существуют разные типы воздушных компрессоров, и каждый из них имеет свою специализацию. Как правило, различия не такие уж и серьезные: все сводится к тому, как компрессор обрабатывает вытеснение воздуха.

Как работает каждый тип воздушного компрессора

Есть два метода сжатия воздуха: прямое и динамическое вытеснение. У каждого метода есть несколько подкатегорий, которые мы рассмотрим ниже. Результаты относительно схожи, но процессы их достижения различаются.

Вот как работают положительное и динамическое смещение:

Объем цилиндра

Воздушные компрессоры прямого вытеснения нагнетают воздух в камеру, объем которой уменьшается, чтобы сжать воздух.

Объемный объем - это общий термин, который описывает различные воздушные компрессоры, мощность которых обеспечивается за счет объемного вытеснения воздуха. Несмотря на то, что внутренние системы различаются между разными машинами, методы подачи энергии одинаковы.

Некоторые типы компрессоров прямого вытеснения лучше подходят для промышленных нагрузок, а другие лучше подходят для любителей или частных проектов. Вот три основных типа воздушных компрессоров, в которых используется объемный объем:

1.Поворотный винт

Винтовые компрессоры имеют два внутренних «винта», которые вращаются в противоположных направлениях, удерживая и сжимая между собой воздух. Два винта также создают постоянное движение при вращении.

Это распространенный тип воздушного компрессора, который является одним из самых простых в уходе. Двигатели обычно имеют промышленные размеры и отлично подходят для непрерывной эксплуатации.

2. Роторная лопасть

Роторно-лопастные компрессоры похожи на роторно-винтовые компрессоры, но вместо винтов на роторе установлены лопасти, которые вращаются внутри полости.Воздух сжимается между лопаткой и ее кожухом и затем выталкивается через другое выпускное отверстие.

Роторно-пластинчатые компрессоры

очень просты в использовании, что делает их очень популярными для частных проектов.

3. Поршневой / поршневой тип

Поршневой (возвратно-поступательный) компрессор использует поршни, управляемые коленчатым валом, для подачи газа под высоким давлением. Обычно они используются на небольших предприятиях и не предназначены для постоянного использования.

Есть два типа поршневых компрессоров: одноступенчатые и двухступенчатые.

1. Одноступенчатый

В одноступенчатых компрессорах воздух сжимается с одной стороны поршня, а другая сторона отвечает за его работу: когда поршень движется вниз, воздух втягивается, а когда он движется вверх, воздух нагнетается. сжатый.

Одноступенчатые компрессоры относительно доступны по цене по сравнению с другими компрессорами и, как правило, их легко приобрести; их можно найти практически в любом механическом магазине.

2.Двухступенчатый

Двухступенчатые компрессоры имеют две камеры сжатия по обе стороны от поршня. Компрессоры двойного действия обычно охлаждаются водой за счет постоянного потока воды через двигатель. Это обеспечивает лучшую систему охлаждения, чем другие компрессоры.

Из-за своей высокой стоимости двухступенчатые компрессоры лучше подходят для заводов и мастерских, чем для частных проектов.

Динамическое смещение

Компрессоры

с динамическим рабочим объемом используют вращающуюся лопасть, приводимую в действие двигателем, для создания воздушного потока.Затем воздух ограничивается для создания давления, а кинетическая энергия сохраняется внутри компрессора.

Они в основном предназначены для крупных проектов, таких как химические заводы или производители стали, поэтому маловероятно, что вы сможете найти такой у местного механика.

Как и в случае компрессоров прямого вытеснения, существует два различных типа динамического вытеснения: осевое и центробежное.

1. Осевые компрессоры

В осевых компрессорах

используется серия лопаток турбины, которые генерируют воздух, прогоняя его через небольшую площадь.Осевые компрессоры, похожие на другие лопаточные компрессоры, работают со стационарными лопастями, которые замедляют воздушный поток, увеличивая давление.

Эти типы воздушных компрессоров не очень распространены и имеют ограниченную функциональность. Они используются в основном в авиационных двигателях и на крупных воздухоразделительных установках.

2. Центробежные компрессоры

Центробежные или радиальные компрессоры работают за счет подачи воздуха в центр через вращающуюся крыльчатку, которая затем толкается вперед под действием центробежной или внешней силы.За счет замедления потока воздуха через диффузор генерируется больше кинетической энергии.

Электрические высокоскоростные двигатели обычно используются для таких компрессоров. Одно из наиболее распространенных применений центробежных компрессоров - это системы отопления, вентиляции и кондиционирования воздуха.

В чем разница между насосом и компрессором?

Иногда слова «насос» и «компрессор» используются как синонимы. Они могут показаться похожими, но между ними есть разница.

Насосы перемещают жидкости между местами, в то время как воздушные компрессоры сжимают объем газа и часто транспортируют его в другое место.Любой проект, связанный с жидкостью, например, перекачка бассейна, использует насос. С другой стороны, сжатый воздух используется для получения энергии для выполнения различных задач, таких как пескоструйная обработка.

Понимание этой разницы между двумя терминами и методами распространения может помочь вам понять, что вам нужно для вашего проекта.

Воздушные компрессоры - полезный инструмент в любом строительном проекте. От окраски распылением до ремонта спущенной шины они могут значительно облегчить работу. Нет двух одинаковых воздушных компрессоров, и понимание того, как они работают, позволяет вам принимать обоснованные решения для проекта, над которым вы работаете.

Похожие сообщения











Что такое воздушный компрессор?

Два часто задаваемых вопроса: «Что такое воздушный компрессор?» и «Как работает воздушный компрессор?» Воздушный компрессор - это механическое устройство, которое сжимает воздух и выпускает воздух под высоким давлением. Широкое распространение воздушного компрессора заметно от дома к промышленности в различных случаях. Чтобы удовлетворить потребности пользователей и сделать воздух более эффективным, созданы различные типы воздушных компрессоров.Сегодня мы узнаем о типах воздушных компрессоров и принципах работы воздушного компрессора, включая центробежный компрессор.

Как работает воздушный компрессор - базовый тип

Основные компоненты воздушного компрессора (поршневого типа):

В основном воздушный компрессор состоит из трех частей: электродвигателя, насоса и ресивера (резервуара). приемники могут быть вертикальными или горизонтальными, различающимися по размеру и емкости.

Электродвигатель

Основное назначение электродвигателя - приводить в действие насос.двигатель приводит в движение шкив через ремни, которые передают мощность от двигателя к поршням насоса через маховик и коленчатый вал. Механизм маховика предназначен для охлаждения насоса компрессора.

Насос

Насос предназначен для сжатия воздуха и его нагнетания в ресивер. Двухступенчатые воздушные компрессоры имеют как минимум два насосных цилиндра. Сжимая воздух дважды сначала в большем цилиндре низкого давления, а затем в меньшем цилиндре высокого давления, двухступенчатый компрессор может создавать давление от 145 до 175 фунтов на квадратный дюйм.

Ресивер (резервуар)

Ресивер предназначен для хранения сжатого воздуха. Обратный клапан на входе ресивера предотвращает попадание сжатого воздуха из ресивера обратно в насос компрессора.

Подробнее: Руководство по техническому обслуживанию воздушного компрессора

Типы воздушного компрессора:

По сути, воздушный компрессор можно разделить на 3 типа.

  1. В зависимости от подаваемого давления.
  2. По конструкции и принципу работы.
  3. По степени сжатия воздуха.

По давлению на выходе воздушный компрессор делится на 3 типа.

  1. A) Воздушный компрессор низкого давления: Этот тип воздушного компрессора может нагнетать давление до 150 фунтов на квадратный дюйм.
  1. B) Компрессор среднего давления: Этот тип компрессора может обеспечивать подачу от 150 до 1000 фунтов на квадратный дюйм.
  1. C) Воздушный компрессор высокого давления: Эти гигантские типы компрессоров всегда производят давление выше 1000 фунтов на квадратный дюйм.

Если мы классифицируем воздушный компрессор по принципу конструкции и его работе, то воздушный компрессор можно разделить на два типа

2.A) Винтовой компрессор

2.B) Турбокомпрессор

Третья основная классификация воздушного компрессора основана на степени сжатия. Эту категорию также можно разделить на два типа.

3. A) Нагнетательный воздушный компрессор

3.Б) Роторно-динамический воздушный компрессор.

И последнее, но не менее важное: поршневой воздушный компрессор можно разделить на три типа: поршневой, винтовой и лопастной.

Как работает поршневой компрессор поршневого типа ?

Воздушный компрессор выпускается в нескольких различных стилях, но наиболее распространенной является модель поршневого типа. Другие варианты - винтовой или центробежный компрессор. Однако, поскольку поршневые модели более распространены, давайте обсудим, как они работают.

Если вы знакомы с поршнями в своей машине, то можете представить себе, как работает этот компрессор. Эта машина может иметь конструкцию одинарного или двойного действия, и она может смазываться маслом или не содержать масла.

Поршневые воздушные компрессоры работают за счет поршневого наполнения резервуара воздухом. Поскольку поршень всасывает воздух снаружи, клапаны и прокладки вокруг него герметизируют воздух и предотвращают его выход. После каждого цикла в камеру закачивается больше воздуха, что увеличивает ее давление.

В моделях двойного действия поршни расположены в L-образной форме, при этом вертикальный цилиндр имеет низкое давление, а горизонтальный - высокое. Такая настройка позволяет компрессору работать более эффективно, обеспечивая более стабильный PSI.

Как в промышленности, так и в быту воздушный компрессор играет очень важную роль. В очень простом виде мы увидим, как работает воздушный компрессор. Обычно у них есть большой кусок трубопровода, называемый цилиндром с поршнем внутри, приводимым в движение коленчатым валом и шатуном.

Пара автоматических клапанов дополняет элементы, необходимые для нашего объяснения. Сначала компрессорная система начинает смотреть вниз в цилиндр. Это создает частичный вакуум при атмосферном давлении, который открывает впускной клапан.

По мере того, как поршень опускается, цилиндр заполняется атмосферным воздухом, в результате чего весь цилиндр заполняется воздухом при атмосферном давлении. Когда коленчатый вал завершает осторожный оборот, поршень снова начинает двигаться вверх. Давление, создаваемое внутри цилиндра, в дополнение к пружине, установленной на клапане, закрывает впускной клапан.Затем повышенное давление открывает автоматический выпускной клапан. когда поршень достигает максимального верхнего положения, выпускной клапан снова закрывается.

Цикл повторяется, и давление внутри резервуара для хранения становится все выше и выше. Специальный датчик, установленный на баке, определяет давление и отсекает приводной двигатель компрессора. Каждый раз, когда давление в резервуаре падает из-за использования воздуха или утечки, датчик перезапускает двигатель.

Смазка компрессора осуществляется с помощью определенного количества масла, содержащегося в масляном поддоне компрессора, а также с помощью смазывающих устройств, размещенных во впускном воздуховоде для поддержания суспензии капель масла для смазки клапанов внутри компрессора. цилиндр.Также имеется прозрачный фильтр, в котором скапливается большая часть воздуха, который необходимо периодически сливать, предотвращая его попадание в камеру сжатия. Примерно так работает базовый компрессор

.

Принцип работы центробежного компрессора

Давайте рассмотрим центробежный компрессор, который использует компрессию пара неположительного вытеснения для сжатия больших количеств хладагента и обычно используется в системах охлаждения очень большой мощности.Центробежный компрессор состоит из трех основных компонентов:

  • Рабочее колесо
  • Диффузор
  • Спиральный корпус

Центробежные компрессоры большой производительности могут иметь две или более рабочих колес или ступеней в одном корпусе. Центробежные компрессоры обычно приводятся в действие герметичными электродвигателями. Однако компрессоры с открытым приводом и центробежные компрессоры также доступны для применений с паровыми турбинами, газовыми турбинами или двигателями.

Рабочее колесо представляет собой вращающийся круглый диск с изогнутыми лопастями, который приводится в движение электродвигателем с высокой скоростью.Когда рабочее колесо вращается, оно перемещает пары хладагента от всасывающего отверстия в его центре к внешнему краю, используя центробежную силу. Пар поступает во всасывающий патрубок с относительно низкой скоростью и покидает внешний край крыльчатки с высокой скоростью; это означает, что крыльчатка передает свою энергию вращения пару, но высокая скорость не связана с высоким статическим давлением.

Для достижения желаемого повышения давления или сжатия пар необходимо замедлить, преобразовав его скоростное давление в статическое давление.Вот где вступает в игру диффузор. Поскольку пар с высокой скоростью движется радиально наружу через диффузор, площадь потока увеличивается, замедляя пар и увеличивая статическое давление.

Некоторые центробежные модели имеют диффузоры с лопатками или трубками, которые изменяют направление потока и дополнительно замедляют пар. Корпус в форме спирали собирает медленно движущийся пар высокого давления вокруг диффузора и направляет его к выпускному патрубку компрессора.

Входные направляющие лопатки регулируют производительность центробежных компрессоров.Эти подвижные лопатки расположены во всасывающем отверстии. Когда лопатки полностью открыты, компрессор обеспечивает полную холодопроизводительность. Поскольку лопатки закрыты, они уменьшают поток хладагента через компрессор, снижая производительность холодильного цикла.

Кроме того, регулировка производительности центробежного компрессора также может осуществляться путем изменения скорости вращения. на этом завершается наш сегмент, посвященный механическому циклу сжатия пара непрямого вытеснения с использованием центробежного компрессора.

Система повышения давления воздуха | Как работает бустер высокого давления?

Сжатый воздух является важным требованием для нескольких промышленных процессов, таких как пескоструйная очистка, испытания под давлением и т. Д. Обычно сжатый воздух подается от стандартных воздушных компрессоров, таких как винтовые, пластинчатые и поршневые. Однако для приложений с большой мощностью давление воздуха в этих системах обычно недостаточно для выполнения заданного процесса.

Следовательно, растениям может потребоваться повышение давления воздуха, поступающего от основного источника питания.Для специальных процессов на промышленных предприятиях требуется воздух без масла или со смазкой при очень высоких давлениях.

Сжатый воздух высокого давления можно удобно и эффективно вырабатывать с помощью дожимных компрессоров. Но какие они?

В этой статье мы обсудим, что такое дожимные компрессоры, их принцип работы и общепромышленное применение.

Что такое бустерный компрессор?

Система повышения давления - это часть оборудования, используемая для увеличения или усиления давления воздуха, поступающего от существующей системы сжатия, путем пропускания его через дополнительные ступени сжатия.Бустерные воздушные компрессоры могут поднять существующее давление воздуха от 80 - 150 фунтов на квадратный дюйм до 2000 фунтов на квадратный дюйм.

Использование усилителя потока сжатого воздуха - один из наиболее экономичных способов получения более высокого давления технологического газа, необходимого на промышленных предприятиях.

Принцип работы усилителя давления воздуха

Бустерный воздушный компрессор или усилитель давления сжатого воздуха работает по простому принципу: в закрытой системе (без вакуума) давление увеличивается по мере уменьшения объема.Система сжатия воздуха с усилителем состоит из приемного бака, трубопроводов и разгрузочного бака.

Приемный резервуар имеет вход, который принимает сжатый технологический воздух, поступающий из первичного источника, и направляет его через несколько ступеней сжатия для дальнейшего повышения давления. Кроме того, резервуар-приемник служит ограниченным резервуаром для хранения, когда система активно не подает сжатый воздух.

После прохождения ряда стадий сжатия сжатый воздух проходит по трубопроводу в сливной резервуар, который имеет выпускное отверстие, по которому газ подается на объект.

Приложения для повышения давления воздуха

Усилители давления воздуха

используются в нескольких промышленных приложениях, включая следующие.

Производство ПЭТ-бутылок

Автоматизированное производство полиэтилентерефталата (ПЭТ) требует непрерывной подачи газа под высоким давлением, чего не могут обеспечить стандартные системы сжатия. Бустерные воздушные компрессоры помогают подавать воздух под высоким давлением к выдувным машинам, которые производят ПЭТ-бутылки. В технике выдувного формования используется сжатый воздух, чтобы заставить расплавленный термопласт в форму.

Промышленные испытания под давлением

Испытания под давлением трубопроводов, насосно-компрессорных труб, сосудов, трубопроводных систем и т. Д. Помогают определить их целостность, надежность и герметичность до и после ввода в эксплуатацию на объекте. Обычно его проводят во время операций по техническому обслуживанию, чтобы убедиться, что основное оборудование находится в рабочем состоянии и находится в хорошем состоянии.

Процедура испытания на герметичность сжатым воздухом или азотом (также называемая пневматическим испытанием) включает пропускание сжатого воздуха через контейнер до требуемого диапазона давления и последующий «выпуск» газа через клапаны сброса давления, расположенные на испытываемой системе.Для этой цели подходит пневматический подкачивающий насос или пневматический усилитель давления воздуха.

Добыча и транспортировка нефти и газа

Жидкости под давлением, такие как диоксид углерода (CO 2 ) и газообразный азот, полезны для специальных процессов, связанных с добычей углеводородов. На этапах вторичной добычи и повышения нефтеотдачи (ПНП) ​​добычи нефти сжатый газ может использоваться для повышения давления в пласте для стимуляции скважины и увеличения падающей добычи.

Некоторыми примерами являются методы газлифта и закачки азота. Дополнительно воздух под высоким давлением или азот можно использовать для очистки углеводородных трубопроводов от примесей и токсичных веществ. Этот тип продувки азотом для осушки трубопровода может помочь при выводе трубопровода из эксплуатации или вводе в эксплуатацию.

Системы повышения давления

могут повышать давление газа в генераторах азота или в воздушных компрессорах на объекте, чтобы обеспечить выполнение этих процессов. Для краткосрочного использования ознакомьтесь с выбором NiGen для аренды генераторов азота и промышленных воздушных компрессоров.

Бустер против компрессора: что вам нужно?

Как воздушные бустерные системы, так и воздушные компрессоры подают воздух под давлением. Однако компрессоры с присоединенной системой повышения давления могут обеспечивать давление воздуха в десять раз большее, чем стандартные системы. Если ваш технологический процесс требует большого диапазона давлений, вам понадобится множитель давления воздуха.

Пусть NiGen позаботится о ваших производственных потребностях в воздухе!

NiGen International - лидер отрасли в проектировании и производстве локальных систем генерации азота, услуг трубопроводов и инженерных услуг для нефтегазовой отрасли.Мы предлагаем контейнерные решения для самых сложных операций.

Чтобы получить дополнительную информацию о наших продуктах и ​​услугах или запросить расценки, , пожалуйста, свяжитесь с нами через наш веб-сайт сегодня !

Основы воздушного компрессора на корабле

Компрессор - одно из таких устройств, которое используется на корабле для различных целей. Основная цель компрессора, как следует из названия, заключается в сжатии воздуха или любой жидкости с целью уменьшения ее объема.Компрессор - это многоцелевое устройство, которое находит множество применений на корабле. Некоторые из основных форм компрессоров, используемых на судах, - это главный воздушный компрессор, палубный воздушный компрессор, компрессор кондиционера и холодильный компрессор. В этой статье мы узнаем о воздушных компрессорах и их типах.

Применение воздушных компрессоров

Воздушный компрессор - это устройство, которое находит широкое применение практически во всех отраслях промышленности и в домашних условиях. В морской отрасли воздушные компрессоры также используются в основном оборудовании или в подающем оборудовании для различных систем.Их можно использовать в различных процессах, начиная от небольшого процесса очистки фильтров и заканчивая более крупными и важными задачами, такими как запуск как основного, так и вспомогательного двигателей.

Air Compressor производит сжатый воздух, уменьшая объем воздуха и, в свою очередь, увеличивая его давление. В зависимости от области применения используются различные типы воздушных компрессоров.

Говоря более техническим языком, воздушный компрессор можно определить как механическое устройство, в котором электрическая или механическая энергия преобразуется в энергию давления в виде сжатого воздуха.

Воздушный компрессор работает на принципах термодинамики. Согласно уравнению идеального газа без разницы температур с увеличением давления газа его объем уменьшается. Воздушный компрессор работает по тому же принципу, по которому он производит сжатый воздух: уменьшение объема воздуха приводит к увеличению давления воздуха без разницы температур.

Типы воздушных компрессоров

Общая классификация:

Воздушный компрессор на кораблях можно разделить на два разных типа, а именно:

Главный воздушный компрессор: Эти воздушные компрессоры представляют собой компрессоры высокого давления с минимальным давлением 30 бар и используются для работы главного двигателя.

Сервисный воздушный компрессор: Он сжимает воздух до низкого давления всего 7 бар и позже используется в обслуживающих и управляющих авиалиниях.

Классификация компрессоров по конструкции и принципу работы:

Есть в основном четыре типа компрессоров:

  1. Центробежный компрессор
  2. Пластинчато-роторный компрессор
  3. Винтовой компрессор
  4. Поршневой воздушный компрессор

Однако на кораблях широко применяется поршневой воздушный компрессор.Поршневой воздушный компрессор состоит из поршня, шатуна, коленчатого вала, пальца, всасывающего и нагнетательного клапанов.

Поршень подсоединяется к стороне низкого и высокого давления на линии всасывания и линии нагнетания. Коленчатый вал вращается, который, в свою очередь, вращает поршень. Движущийся вниз поршень снижает давление в главном цилиндре, разница давлений открывает всасывающий клапан.

Поршень опускается вращающимся коленчатым валом, и цилиндр заполняется воздухом низкого давления.Теперь поршень совершает возвратно-поступательное движение вверх, и это движение вверх начинает создавать давление и закрывает всасывающий клапан.

Когда давление воздуха достигает своего определенного значения, открывается выпускной клапан, и сжатый воздух начинает двигаться через выпускную линию и накапливается в воздушном баллоне.

Этот баллон со сжатым воздухом в воздухе может быть использован в дальнейшем для работы как основного, так и вспомогательного двигателей. На судне могут быть поршневые воздушные компрессоры одностороннего и двустороннего действия.

Классификация по использованию

Обычно количество воздушных компрессоров на борту судов:

  • главный воздушный компрессор
  • дозаправочный компрессор
  • компрессор палубный
  • Аварийный воздушный компрессор
  • Главный воздушный компрессор

Главный воздушный компрессор: Он используется для подачи сжатого воздуха для запуска основных и вспомогательных двигателей. Воздушный компрессор имеет емкость для хранения воздуха, в которой хранится сжатый воздух.Существуют главные воздушные компрессоры разной мощности, но этой мощности должно хватить для запуска главного двигателя. Минимальное давление воздуха, необходимое для запуска главного двигателя, составляет 30 бар. Предусмотрен клапан давления, который снижает давление и подает контролируемый воздух из баллона со сжатым воздухом. Управляющий воздушный фильтр контролирует входящий и выходной воздух в воздушном баллоне.

Компрессор для дозаправки: Этот тип компрессора используется для устранения любых утечек в системе.Это означает, что при обнаружении какой-либо утечки в системе компрессор дозаправочного воздуха перекрывает утечку, беря на себя свинец. При утечке в системе давление воздуха падает ниже необходимого уровня, который может быть пополнен до указанного уровня путем доливки компрессора путем подачи сжатого воздуха.

Палубный воздушный компрессор: Палубный воздушный компрессор используется для использования на палубе и в качестве рабочего воздушного компрессора, и для него может быть предусмотрен отдельный баллон рабочего воздуха. Это компрессоры с более низкой производительностью, так как давление, необходимое для рабочего воздуха, находится в диапазоне от 6 до 8 бар.

Аварийный воздушный компрессор: Аварийный воздушный компрессор используется для запуска вспомогательного двигателя во время аварийной ситуации или когда главный воздушный компрессор не смог заполнить главный воздушный ресивер. Этот тип компрессора может иметь привод от двигателя или двигателя. Если двигатель приводится в действие, он должен питаться от аварийного источника питания.

КПД воздушных компрессоров

Воздушные компрессоры могут работать эффективно при правильной установке в соответствии с руководством по установке.Весь имеющийся экипаж должен оперативно работать с воздушным компрессором в аварийной ситуации, поскольку он является основной частью почти всех важных систем машинного оборудования на судне. Эффективность воздушного компрессора можно повысить с помощью следующих методов и установок.

Бар давления: Бар давления или манометр должен быть установлен во всех компрессорах, чтобы гарантировать давление воздуха и выпускать воздух с заданным давлением. Без этого устройства, если давление воздуха ниже требуемого, он не может приводить в движение или запускать систему, в которой оно используется.

Устройства безопасности: Это устройства, используемые для уменьшения потерь энергии от воздушного компрессора и повышения эффективности. Защитные устройства автоматически отключают входной и выходной воздух, когда достигается соответствующее сжатие, и предохраняют устройство от избыточного давления.

Основные компоненты воздушного компрессора

Некоторые из важных компонентов воздушного компрессора, которые являются общими для всех доступных типов компрессоров, кратко описаны ниже:

  1. Электричество или источник питания: Это ключевой компонент любого типа компрессора, необходимый для его работы.Источник питания или электродвигатель используется для эффективной работы компрессора с постоянной скоростью без колебаний.
  2. Охлаждающая вода: Охлаждающая вода используется для охлаждения компрессора между различными ступенями.
  3. Смазочное масло: Смазочное масло необходимо для поддержания смазки всех подвижных частей компрессора. Эта смазка снижает трение в частях компрессора и, таким образом, увеличивает срок службы компрессора за счет уменьшения износа компонентов компрессора.
  4. Воздух: Это компонент, без которого невозможно даже представить воздушный компрессор. Воздух вокруг нас находится под низким давлением и служит входом для компрессора.
  5. Всасывающий клапан: Всасывающий клапан снабжен всасывающим фильтром, через который подается воздух, который должен сжиматься в основном отсеке компрессора.
  6. Выпускной клапан: Этот клапан забирает выходной воздух для выпуска в требуемом месте или в резервуар для хранения или в баллон для хранения воздуха.

Работа воздушного компрессора

Воздушный компрессор состоит из баллона со сжатым воздухом с заданным давлением. Компрессор сжимает воздух и хранит этот сжатый воздух в воздушном баллоне. Когда этот сжатый воздух подается в двигатель через пневматический пистолет или другое оборудование, он приводит в движение винт и запускает двигатель.

Использование воздушного компрессора на судне

На борту корабля сжатый воздух используется в нескольких целях.В зависимости от области применения подбираются разные воздушные компрессоры для конкретного использования.

  • Воздушный компрессор используется для подачи пускового воздуха к различным машинам и главному двигателю.
  • Помимо основного двигателя, для других систем также требуется сжатый воздух. Эти системы представляют собой регулирующие клапаны. Дроссельные заслонки и другие системы контроля, работающие со сжатым воздухом.
  • Этот сжатый воздух также управляет многими операциями вспомогательного двигателя.
  • В пневматических инструментах, таких как очистка, сжатый воздух необходим для поддержания работы устройств и их эффективного выполнения.
  • При работе судов со свистом также используется сжатый воздух, а дымовые рожки работают на сжатом воздухе.
  • Гидравлический домкрат на судне также использует сжатый воздух для выполнения подъемных операций.
  • Многократные котлы; хладагенты и теплообменники на корабле запускаются с использованием сжатого воздуха.
  • Иногда сжатый воздух используется для выбивания гребных винтов системы маневрирования корабля.

В двух словах, компрессор - это механическое устройство, работающее на принципах термодинамики, уменьшающих объем воздуха и повышающих его давление.

Этот воздух под высоким давлением при впрыске для работы либо основного двигателя, либо вспомогательных устройств, таких как теплообменник; котлы; пр.

Наиболее распространенным типом компрессоров, используемых в судостроении, являются поршневые воздушные компрессоры двойного действия. На судне предусмотрено несколько компрессоров для различных целей. Могут работать как главные, так и вспомогательные двигатели.

Иногда гребной винт корабля работает на сжатом воздухе, что увеличивает применение воздушного компрессора в морской промышленности.

Воздушные компрессоры никогда нельзя отказаться от корабля, поскольку они имеют широкое применение на борту от небольших задач по очистке фильтров до важнейшего процесса работы двигателя и даже приведения в движение корабля.

Заявление об ограничении ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом.Автор и компания «Марин Инсайт» не утверждают, что они точны, и не принимают на себя никакой ответственности за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight.

Ищете практичные, но доступные морские ресурсы? Ознакомьтесь с цифровыми руководствами Marine Insight: Электронные книги для палубного отдела - Ресурсы по различным темам, связанным с палубным оборудованием и операциями. Электронные книги для машинного отделения - Ресурсы по различным темам, связанным с механизмами и операциями машинного отделения. Экономьте по-крупному с помощью комбо-пакетов - Наборы цифровых ресурсов, которые помогут вам сэкономить по-крупному и включают дополнительные бесплатные бонусы. Электронные книги по судовым электрическим системам - Цифровые ресурсы по проектированию, обслуживанию и поиску и устранению неисправностей морских электрических систем

Теги: воздушный компрессор компрессор

Принцип работы воздушных компрессоров- Системы обслуживания машин и оборудование для теплоходов

Принципы работы воздушных компрессоров- Системы обслуживания машин и оборудования для теплоходов

Домашняя страница || Система технического обслуживания машин ||


Принцип работы воздушных компрессоров - Системы обслуживания машин и оборудования для теплоходов

Одноступенчатый компрессор, используемый для подачи воздуха под высоким давлением, необходимым для запуска дизельного двигателя, к сожалению, будет генерировать температуры сжатия на уровне, аналогичном тем, что в дизельном двигателе.Такого тепла было бы достаточно для воспламенения паров масла так же, как в двигателе с воспламенением от сжатия. Тепло, производимое на одной стадии сжатия, также будет расточительным по энергии.

Эта теплота сжатия добавляет энергию и вызывает результирующее повышение давления помимо повышения давления, ожидаемого от действия поршня. Однако, когда воздух охлаждается, повышение давления из-за выделяемого тепла теряется. Остается только давление от сжатия. Дополнительное давление из-за тепла бесполезно и фактически требует большей мощности для движения поршня вверх во время такта сжатия.


Рисунок 1: Конфигурация многоступенчатого воздушного компрессора

Идеальное охлаждение цилиндра одноступенчатого компрессора при постоянной (изотермической) температуре во время процесса устранит проблемы, но этого невозможно достичь. Многоступенчатые воздушные компрессорные агрегаты с различными конфигурациями цилиндров и формами поршней (рис. 1 выше) используются в сочетании с промежуточным и после охлаждения для обеспечения максимально возможного приближения к идеалу изотермического сжатия.

Рабочий цикл

На такте сжатия (рис. 2 ниже) теоретического одноцилиндрового компрессора давление повышается до немного выше давления нагнетания. Открывается подпружиненный обратный нагнетательный клапан, и сжатый воздух проходит через него с приблизительно постоянным давлением. В конце хода перепад давления на клапане с помощью пружины клапана закрывает выпускной клапан, задерживая небольшое количество воздуха под высоким давлением в зазоре между поршнем и головкой блока цилиндров.Во время такта всасывания воздух в зазоре расширяется, его давление падает до тех пор, пока подпружиненный всасывающий клапан не сядет на место и не начнется еще один такт сжатия.


Рисунок 2: Индикаторная диаграмма компрессора (любезно предоставлена ​​Hamworthy Engineering Ltd)

Охлаждение

Во время сжатия большая часть потребляемой энергии преобразуется в тепло, и любое последующее повышение температуры воздуха снижает объемный КПД компрессора. цикл.Чтобы минимизировать повышение температуры, тепло необходимо отводить. Хотя некоторые из них могут быть удалены через стенки цилиндра, относительно небольшая площадь поверхности и доступное время сильно ограничивают возможный отвод тепла, и, как показано на (Рисунок 3), практическое решение состоит в том, чтобы сжать более чем в одну стадию и охладить воздух. между этапами.

Для небольших компрессоров воздух может использоваться для охлаждения цилиндров и промежуточных охладителей, при этом внешние поверхности цилиндров расширяются ребрами, а промежуточные охладители обычно представляют собой секционные ребристые трубы, через которые обильный поток воздуха обдувается вентилятором, установленным на конец коленчатого вала.В более крупных компрессорах, используемых для запуска воздуха в главный двигатель, чаще используется водяное охлаждение как для цилиндров, так и для промежуточных охладителей.

Для этой цели обычно используется морская вода, охлаждающая жидкость циркулирует от насоса, приводимого в действие компрессором, или она может подаваться из основной системы циркуляции морской воды. Морская вода вызывает образование накипи в охлаждающих каналах. Предпочтительна пресная вода из центральной системы охлаждения, обслуживающей компрессоры и другое вспомогательное оборудование.


Рисунок 3: Идеальная индикаторная диаграмма для двухступенчатого компрессора с промежуточным охлаждением (любезно предоставлена ​​Hamworthy Engineering Ltd)

Ниже приведены некоторые основные процедуры обслуживания систем и оборудования машинного оборудования :

  1. Судовой воздушный компрессор

  2. Одноступенчатый компрессор, используемый для подачи воздуха с высоким давлением, необходимым для запуска дизельного двигателя, к сожалению, будет генерировать температуры сжатия на уровне, аналогичном тем, что в дизельном топливе.Такого тепла было бы достаточно для воспламенения паров масла так же, как в двигателе с воспламенением от сжатия. Тепло, производимое на одной ступени сжатия, также будет расточительным для энергии .....
  3. Пусковая система с воздуха

  4. Воздух под давлением от 20 до 30 бар требуется для запуска основных и вспомогательных дизельных двигателей на моторных судах и для вспомогательных двигателей. дизели пароходов. Управляющий воздух более низкого давления требуется для судов обеих категорий, и независимо от того, поступает ли он из компрессоров высокого давления через редукционные клапаны или из специальных компрессоров управляющего воздуха, он должен быть чистым, сухим и обезжиренным.....
  5. автоматический воздушный компрессор

  6. До общего внедрения оборудования управления воздушные компрессоры при необходимости останавливались и запускались персоналом машинного отделения для поддержания давления в воздушном ресивере. В порту или на море это обычно означало работу одного компрессора примерно на полчаса в день, если воздух не использовался для свистка (во время тумана), для работы на палубе или для других целей. ....
  7. Системы сжатого воздуха для пароходов

  8. Система сжатого воздуха необходима для подачи воздуха в воздушные двигатели сажеобдува котла, шланговые соединения на всем судне и, возможно, для запуска дизельного генератора.Воздушный компрессор общего назначения будет подавать воздух под давлением 8 бар, но для запуска дизеля потребуется более высокое давление (как для судов с дизельным двигателем) ...
  9. Двухступенчатый пусковой воздушный компрессор

  10. Тип Hamworthy 2TM6, который был разработан для подачи воздуха на открытом воздухе в диапазоне от 183 м3 в час при давлении нагнетания 14 бар до 367 м3 в час при 42 барах. Картер представляет собой жесткую отливку, которая поддерживает коленчатый вал из чугуна с шаровидным графитом в трех подшипниках ... конденсируется при разных температурах.Составляющие или фракции собираются отдельно в процесс дистилляции .....
  11. Перекачка топлива и риск возгорания

  12. Система жидкого топлива обеспечивает средства для доставки топлива от приемных станций на уровне верхней палубы, левого и правого борта, в двухдонные или глубокие бункерные цистерны. Краны для отбора проб устанавливаются на соединениях палубы для получения репрезентативного образца для (а) анализа берега; (б) испытания на борту; и (c) удержание на судне .....
  13. Обработка топлива с высокой плотностью

  14. Плотность топлива, испытанного при 15 ° C, может приближаться к плотности воды, быть равной ей или превышать ее.При использовании топлива с высокой плотностью уменьшение разницы в плотности между топливом и водой может вызвать проблемы с разделением, но не с обычными твердыми примесями .....
  15. Регулятор вязкости

  16. Непрерывная проба топлива прокачивается с постоянной скоростью через тонкая капиллярная трубка. Поскольку поток через трубку является ламинарным, перепад давления в трубке пропорционален вязкости. В этом агрегате электродвигатель приводит в действие шестеренчатый насос через редуктор со скоростью 40 об / мин.....
  17. Смесители топлива

  18. Обычно более дешевое остаточное топливо используется для больших низкооборотных дизельных двигателей, а генераторы работают на более легком и более дорогом дистиллятном топливе. Добавление небольшого количества дизельного топлива к тяжелому топливу значительно снижает его вязкость, и если для дальнейшего снижения вязкости используется нагревание, смесь можно использовать в генераторах с соответствующей экономией .....
  19. Подогреватели топлива

  20. Система который подает остаточное топливо из резервуара для ежедневного использования в дизельное топливо или котел, должен довести его до нужной вязкости путем нагрева.Для сжигания мазута в топке котла или двигателе с воспламенением от сжатия его необходимо предварительно нагреть ....
  21. Гомогенизатор

  22. Гомогенизатор представляет собой альтернативное решение проблемы воды в топливе с высокой плотностью. Его можно использовать для эмульгирования небольшого процента для впрыска в двигатель с топливом. Это противоречит обычной цели удаления всей воды, которая в свободном состоянии может вызвать газообразование топливных насосов, коррозию и другие проблемы ......
  23. Система сжигания котла в комплекте

  24. Простая автоматическая система сжигания на основе двухпламенная горелка используется во многих вспомогательных котлах.Горелка имеет увеличенный размер, чтобы показать детали. Для устройства используются различные различные системы управления .....
  25. Обработка смазочного масла

  26. Минеральные масла для смазки, как и топливо, получают из сырой нефти в процессе нефтепереработки. Базовые компоненты смешиваются для получения смазочных материалов с желаемыми свойствами и правильной вязкостью для конкретных задач. ....
Домашняя страница || Охлаждение || Машины || Сервис || Клапаны || Насосы || Вспомогательная сила || Вал гребного винта | Рулевые механизмы || Судовые стабилизаторы || Холодильное оборудование || Кондиционирование воздуха || Палубное оборудование | | Противопожарная защита || Судовая конструкция || Главная ||

Генеральное грузовое судно.com предоставляет информацию о грузовых судах, различных системах оборудования - процедурах обращения, мерах безопасности на борту и некоторых базовых знаниях о грузовых судах, которые могут быть полезны людям, работающим на борту, и тем, кто работает в терминале. По любым замечаниям, пожалуйста Свяжитесь с нами

Copyright © 2010-2016 General Cargo Ship.com Все права защищены.
Условия использования
Прочтите нашу политику конфиденциальности || Домашняя страница ||

Как работает воздушный компрессор

Несколько лет назад в магазинах было обычным делом иметь центральный источник энергии, который приводил в действие все инструменты через систему ремней, колес и приводных валов.Электроэнергия передавалась по рабочему пространству с помощью механических средств. Хотя ремни и валы могут исчезнуть, многие магазины по-прежнему используют механическую систему для перемещения энергии по цеху. Он основан на энергии, хранящейся в воздухе, находящемся под давлением, а сердцем системы является воздушный компрессор.

Вы найдете воздушные компрессоры, которые используются в самых разных ситуациях - от угловых заправочных станций до крупных производственных предприятий. И все больше и больше воздушных компрессоров находят применение в домашних мастерских, подвалах и гаражах.Модели, рассчитанные на любую работу, от надувных игрушек для бассейнов до электроинструментов, таких как гвозди, шлифовальные машины, дрели, ударные ключи, степлеры и краскопульты, теперь доступны в местных домашних центрах, у дилеров инструментов и в каталогах по почте.

Большим преимуществом пневмоэнергетики является то, что для каждого инструмента не нужен собственный громоздкий двигатель. Вместо этого один двигатель компрессора преобразует электрическую энергию в кинетическую. Это позволяет создавать легкие, компактные, простые в обращении инструменты, которые работают бесшумно и содержат меньше изнашиваемых деталей.

Типы воздушных компрессоров

Хотя существуют компрессоры, в которых для создания давления воздуха используются вращающиеся рабочие колеса, компрессоры объемного действия более распространены и включают модели, используемые домовладельцами, деревообработчиками, механиками и подрядчиками. Здесь давление воздуха увеличивается за счет уменьшения размера пространства, содержащего воздух. Большинство компрессоров, с которыми вы столкнетесь, выполняют эту работу с возвратно-поступательным поршнем.

Как и небольшой двигатель внутреннего сгорания, обычный поршневой компрессор имеет коленчатый вал, шатун и поршень, цилиндр и головку клапана. Коленчатый вал приводится в движение электродвигателем или газовым двигателем. Хотя есть небольшие модели, которые состоят только из насоса и двигателя, у большинства компрессоров есть воздушный резервуар для удержания количества воздуха в пределах заданного диапазона давления. Сжатый воздух в резервуаре приводит в движение пневматические инструменты, а мотоцикл включается и выключается, чтобы автоматически поддерживать давление в резервуаре.

В верхней части цилиндра вы найдете головку клапана, которая удерживает впускной и выпускной клапаны. Оба являются просто тонкими металлическими заслонками - одна установлена ​​под ней, а другая - наверху тарелки клапана. По мере того, как поршень движется вниз, над ним создается разрежение. Это позволяет наружному воздуху при атмосферном давлении открыть впускной клапан и заполнить область над поршнем. Когда поршень движется вверх, воздух над ним сжимается, удерживает впускной клапан закрытым и толкает выпускной клапан. Воздух движется из выпускного отверстия в резервуар.С каждым ходом в бак поступает больше воздуха, и давление повышается.

Типичные компрессоры выпускаются в 1- или 2-цилиндровых версиях, в зависимости от требований к оборудованию, которое они приводят в действие. На уровне домовладельца / подрядчика большинство двухцилиндровых моделей работают так же, как одноцилиндровые, за исключением того, что на один оборот приходится два хода, а не один. Некоторые коммерческие двухцилиндровые компрессоры представляют собой двухступенчатые компрессоры: один поршень нагнетает воздух во второй цилиндр, что дополнительно увеличивает давление.

Компрессоры

используют реле давления для остановки двигателя, когда давление в баллоне достигает заданного предела - около 125 фунтов на квадратный дюйм для многих одноступенчатых моделей.Однако в большинстве случаев такое давление не требуется. Следовательно, в воздуховоде будет регулятор, который вы настроите в соответствии с требованиями к давлению используемого вами инструмента. Манометр перед регулятором контролирует давление в баллоне, а манометр после регулятора контролирует давление в воздушной линии. Кроме того, в баке есть предохранительный клапан, который открывается при выходе из строя реле давления. Реле давления может также включать разгрузочный клапан, который снижает давление в баллоне при выключенном компрессоре.

Многие компрессоры с шарнирно-поршневыми поршнями смазываются маслом. То есть они имеют масляную ванну, которая смазывает подшипники и стенки цилиндра разбрызгиванием при вращении кривошипа. Поршни имеют кольца, которые помогают удерживать сжатый воздух наверху поршня и удерживают смазочное масло от воздуха. Однако кольца не совсем эффективны, поэтому некоторое количество масла попадет в сжатый воздух в виде аэрозоля.

Наличие масла в воздухе не обязательно является проблемой. Многие пневмоинструменты требуют смазки, и встроенные масленки часто добавляются для повышения равномерности подачи к инструменту.С другой стороны, эти модели требуют регулярных проверок масла, периодической замены масла, и они должны работать на ровной поверхности. Прежде всего, есть некоторые инструменты и ситуации, в которых требуется безмасляный воздух. Распыление масла в воздушном потоке вызовет проблемы с отделкой. Многие новые инструменты для деревообработки, такие как гвоздезабиватели и шлифовальные машины, не содержат масла, поэтому нет никаких шансов загрязнить деревянные поверхности маслом. В то время как решения проблемы воздушного масла включают использование маслоотделителя или фильтра в воздушной линии, лучшая идея - использовать безмасляный компрессор, в котором вместо масляной ванны используются подшипники с постоянной смазкой.

Разновидностью поршневого компрессора автомобильного типа является модель, в которой используется цельный поршень / шатун. Поскольку пальца отсутствует, поршень наклоняется из стороны в сторону, когда эксцентриковая шейка вала перемещает его вверх и вниз. Уплотнение вокруг поршня поддерживает контакт со стенками цилиндра и предотвращает утечку воздуха.

Там, где потребность в воздухе невысока, может быть эффективен мембранный компрессор. В этой конструкции мембрана между поршнем и камерой сжатия изолирует воздух и предотвращает утечку.

Мощность компрессора
Одним из факторов, используемых для определения мощности компрессора, является мощность двигателя. Однако это не лучший показатель. Вам действительно нужно знать количество воздуха, которое компрессор может подавать при определенном давлении.

Скорость, с которой компрессор может подавать объем воздуха, указывается в кубических футах в минуту (куб. Поскольку атмосферное давление играет роль в скорости движения воздуха в цилиндр, куб.футов в минуту будет изменяться в зависимости от атмосферного давления.Он также зависит от температуры и влажности воздуха. Чтобы установить равные условия игры, производители рассчитывают стандартные кубические футы в минуту (scfm) как кубические футы в минуту на уровне моря при температуре воздуха 68 градусов по Фаренгейту и относительной влажности 36%. Номинальные значения стандартных кубических футов в минуту приведены для конкретного давления, например, 3,0 кубических футов в минуту при 90 фунтах на квадратный дюйм. Если снизить давление, scfm повышается, и наоборот.

Вы также можете встретить рейтинг под названием displacement cfm. Эта цифра является произведением рабочего объема цилиндра и числа оборотов двигателя. По сравнению с scfm, он обеспечивает показатель эффективности компрессорного насоса.

Номинальные значения кубических футов в минуту и ​​фунтов на квадратный дюйм важны, поскольку они указывают инструменты, которыми может управлять конкретный компрессор. Выбирая компрессор, убедитесь, что он может подавать то количество воздуха и давление, которое необходимо вашим инструментам.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *