Принцип действия датчика температуры: Как работает датчик температуры?

Содержание

типы, устройство, принцип работы, схемы подключения

Контроль температуры повсеместно задействуется в технологических процессах, позволяя выбирать подходящий режим работы или отслеживать изменения состояния материала. Температурный режим одинаково важен как при включении духовки на кухне, так и в доменных печах при плавлении стали, а отклонение от нормальной работы может привести к аварии и травмированию людей. Чтобы избежать неприятных последствий и обеспечить возможность регулирования степени нагрева используется датчик температуры.

Разновидности, устройство и принцип работы

В ходе развития и совершенствования технологий датчик температуры, как измерительное приспособление, претерпел множественные изменения и модернизации. Благодаря чему сегодня они представлены в большом разнообразии, которые можно разделить по нескольким критериям. Так, в зависимости от способа передачи и отображения данных об измерениях температуры они подразделяются на цифровые и аналоговые. Цифровые устройства являются более современным решением, так как информация в них отображается на дисплее и передается по электронным каналам коммуникации, аналоговые имеют циферблатное отображение данных, электрический или механический способ передачи измерений.

В зависимости от принципа действия все датчики можно подразделить на:

  • термоэлектрические;
  • полупроводниковые;
  • пирометрические;
  • терморезистивные;
  • акустические;
  • пьезоэлектрические.

Термоэлектрические

В основе работы термоэлектрического датчика лежит принцип термопары (см. рисунок 1) – у всех металлов существует определенная валентность (количество свободных электронов на внешних атомарных орбитах, не задействованных в жестких связях). При воздействии внешних факторов, сообщающих свободным электронам дополнительную энергию, они могут покинуть атом, создавая движение заряженных частиц. В случае совмещения двух металлов с различным потенциалом выхода электронов и последующим нагреванием места соединения возникнет разность потенциалов, получившая название эффекта Зеебека.

Рис. 1. Устройство термопары

На практике применяется несколько разновидностей термоэлектрических датчиков температуры, так, согласно п.1.1  ГОСТ Р 50342-92 они подразделяются на:

  • вольфрамрений-вольфрамрениевые (ТВР) – применяется в средах с большой рабочей температурой порядка 2000°С;
  • платинородий-платинородиевые (ТПР) – отличаются высокой себестоимостью и высокой точностью измерений, применяются я в лабораторных измерениях;
  • платинородий-платиновые (ТПП) – оснащаются защитной трубкой из металла и керамической изоляцией, обладают высоким температурным пределом;
  • хромель-алюмелевые (ТХА)  – широко применяются в промышленности, способны охватывать диапазон температуры до  1200°С, используются в кислых средах;
  • хромель-копелевые (ТХК) –  характеризуются средним температурным показателем, монтируются только в неагрессивных средах;
  • хромель-константановые (ТХК) – актуальны для газовых смесей и разжиженных аэрозолей нейтрального или слабокислого состава;
  • никросил-нисиловые (ТНН) – применяются для устройств среднего температурного диапазона, но обладают длительным сроком эксплуатации;
  • медь-константановые (ТМК) – характеризуется наименьшим пределом измерений до 400°С, но отличается устойчивостью к влаге и некоторым категориям агрессивных сред;
  • железо-константановые (ТЖК) – применяются в среде с разжиженной атмосферой или вакуумного пространства.

Такое разнообразие температурных датчиков на основе термопары позволяет охватывать любые сферы человеческой деятельности.

Полупроводниковые

Изготавливаются на основе кристаллов с заданной вольтамперной характеристикой. Такие датчики температуры работают в режиме полупроводникового ключа, аналогично классическому биполярному транзистору, где степень нагревания сравнима с подачей потенциала на базу. При повышении температуры полупроводниковый датчик  начнет выдавать большее значение тока. Как правило, самостоятельно полупроводник не используется для измерения нагрева, а подключается через цепь усилителя (см. рисунок 2).

Рис. 2. Подключение полупроводникового датчика через усилитель

Отличаются широким диапазоном производимых измерений и возможностью подстройки датчика в соответствии с рабочими параметрами оборудования. Являются высокоточным типом, мало зависящим от продолжительности эксплуатации. Обладают небольшими габаритами, за счет чего легко устанавливаются в схемах, радиоэлементах и т. д.

Пирометрические

Работают за счет специальных датчиков – пирометров, которые позволяют улавливать малейшие температурные колебания рабочей поверхности любого предмета. Непосредственно сам чувствительный элемент представляет собой матрицу, реагирующую на определенную частоту температурного диапазона. Этот принцип положен в основу измерений бесконтактным термометром, который получил широкое распространение в период борьбы с коронавирусом. Помимо этого их применение активно используется для тепловизионного контроля конструктивных элементов, оборудования, зданий и сооружений.

Рис. 3. Принцип действия пирометрического датчика

Терморезистивные

Такие датчики температуры выполняются на основе терморезисторов – устройств с определенной зависимостью сопротивления от степени нагрева основного материала. С повышением температуры, изменяется и проводимость резистора, благодаря чему вы можете следить за состоянием нужного объекта.

Основным недостатком терморезистивного датчика  является малый диапазон измеряемой температуры, но он способен обеспечивать хороший шаг измерений и высокую точность в десятых и сотых долях градусов Цельсия. Из-за чего их нередко включают в цепь с применением усилителя, расширяющего рабочие пределы.

Акустические

Акустические датчики температуры функционируют по принципу определения скорости прохождения звуковых колебаний в зависимости от температуры материала или поверхности . Непосредственно сам сенсор производит сравнение скорости звука, генерируемого источником, которая будет отличаться, в зависимости от степени нагрева (см. рисунок 4). Такой тип является бесконтактным и позволяет производить замеры в труднодоступных местах или на объектах повышенной опасности.

Рис. 4. Звуковой датчик температуры

Пьезоэлектрические

Работа датчика основана на эффекте распространения колебаний кварцевого кристалла при прохождении электрического тока. Но, в зависимости от температуры окружающей среды, будет меняться и частота колебаний кристалла. Принцип фиксации температурных изменений заключается в измерении частоты колебаний и последующем сравнении с установленной градуировкой номиналов для разных температур.

Схемы подключения

Основные отличия в подключении датчика температур обуславливаются сферой его применения и конструктивными особенностями. Так, в рамках статьи, мы рассмотрим несколько наиболее распространенных и интересных вариантов. Таковыми является подключение с помощью двухпроводной и трехпроводной схемы.

Рис. 5. Двухпроводная схема подключения

На рисунке 5 приведен вариант двухпроводного присоединения измерительного устройства. Этот принцип рекомендуется для всех датчиков  температуры с небольшим расстоянием до контролируемого объекта. Так как сопротивление самого чувствительного элемента  Rt мало измениться от сопротивления соединительных проводников R1 и R2, соответственно, поправка на измерения будет минимальной.

Рис. 6. Трехпроводная схема подключения

При больших расстояниях, от 150 м и более, подключение датчика следует выполнять по трехпроводной схеме, в которой существенно снижается погрешность на сопротивление в проводах R1, R2, R3.

Рис. 7. Схема подключения датчика температуры двигателя

Практически в каждом современном авто осуществляется постоянный контроль температурных параметров мотора. Поэтому использование датчика является обязательным требованием безопасности. Согласно двухпроводной схемы (рисунок 7) датчик подключается одним выводом на отдельно стоящий концевик капота, который не имеет каких-либо подключений к цепи. А второй вывод, подсоединяется к блоку сигнализации установленным порядком, в соответствии с моделью.

Рис. 8. Схема подключения цифрового датчика температуры

На рисунке 8 приведен пример включения цифрового датчика Dallas. Это модель с тремя выводами, первый из которых, согласно распиновки GND подключается к заземляющему выводу микроконтроллера, второй DATA к выводу PIN 2, а третий к клемме питания +5 В. Между третей и второй ножкой включается резистор на 4,7кОм.

Примение

Сфера применения датчиков температуры охватывает как бытовые приборы, так и оборудование общепромышленного назначения, сельскохозяйственную отрасль, военную промышленность, аэрокосмический сектор. Каждый из вас может встретить их у себя дома в нагревательных приборах – бойлерах, духовках, мультиварках или хлебопечках.

В тяжелой промышленности тепловые сенсоры позволяют контролировать степень нагрева печей, воздуха в рабочей области, состояние трущихся поверхностей. В медицине их используют для контроля температуры в труднодоступных местах или для упрощения различных процедур.

Многие автолюбители часто сталкиваются с анализаторами температуры, контролирующими состояние масла или другой охлаждающей жидкости. На сети железных дорог они позволяют отслеживать нагрев букс и колесных пар. В энергетике с их помощью обследуются контактные соединения и качество прилегания поверхностей.

Как подобрать?

При выборе датчика температуры необходимо руководствоваться такими критериями:

  • если датчик будет соприкасаться или располагаться внутри измеряемой среды, то берется контактная модель, если находиться вне объекта, то бесконтактная;
  • условия и состояние среды, в которой он будет функционировать (влажность, агрессивные вещества и т. д.) должны соответствовать возможностям датчика;
  • шаг и градуировка измерений должны обеспечивать удобную эксплуатацию и датчика, и оборудования;
  • если датчик подлежит замене в ходе эксплуатации, то устанавливаются сменные варианты;
  • при выборе датчика температуры для замены неисправного, лучше воспользоваться его VIN кодом;
  • предел рабочих температур должен охватывать все возможные значения нагрева, некоторые из них приведены в таблице ниже.

Таблица: температурные пределы датчиков термоэлектрического типа

ТипСоставДиапазон температур
Tмедь / константанот -250 °C до 400 °C
Jжелезо / константанот -180 °C до 750 °C
Eхромель / константанот -40 °C до 900 °C
Kхромель / алюмельот -180 °C до 1 200 °C
Sплатина-родий (10 %) / платинаот 0 °C до 1 700 °C
Rплатина-родий (13 %) / платинаот 0 °C до 1 700 °C
Bплатина-родий (30 %) / платина-родий (6 %)от 0 °C до 1 800 °C
Nнихросил / нисилот -270 °C до 1 280 °C
Gвольфрам / рений (26 %)от 0 °C до 2 600 °C
Cвольфрам-рений (5 %) / вольфрам-рений (26 %)от 20 °C до 2 300 °C
Dвольфрам-рений (3 %) / вольфрам-рений (25 %)от 0 °C до 2 600 °C

Использованная литература

  1. Виглеб Г  «Датчики», 1989
  2. Фрайден Дж «Современные датчики. Справочник» 2005
  3. Ананьева Н.Г., Ананьева М.С., Самойлов В.Н «Измерение температуры» 2015
  4. Дж. Вебстер “Справочник по измерениям, сенсорам и приборам” 2006

Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

Переменный резистор: типы, устройство и принцип работы

20 Сентября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью335

#резистор

Тумблеры

25 Мая 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью 350

Как проверять транзисторы тестером – отвечаем

14 Апреля 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра.

Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью 280

Как пользоваться мультиметром

21 Марта 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью 698

Выпрямитель напряжения: принцип работы и разновидности

24 Февраля 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью 1045

Переключатель фаз (напряжения): устройство, принцип действия, виды

20 Января 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью 397

Как выбрать паяльник для проводов и микросхем

23 Декабря 2021 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью 600

Что такое защитный диод и как он применяется

20 Декабря 2021 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью 2627

Варистор: устройство, принцип действия и применение

20 Сентября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью862

#варистор

Виды отверток по назначению и применению

21 Сентября 2021 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью 650

Виды шлицов у отверток

14 Августа 2021 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью 1162

Виды и типы батареек

14 Августа 2021 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью 1137

Для чего нужен контактор и как его подключить

20 Сентября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2201

#контрактор

Как проверить тиристор: способы проверки

20 Сентября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью942

#тиристор

Как правильно выбрать акустический кабель для колонок

20 Апреля 2021 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью 1130

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью1321

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

20 Сентября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью3125

#варистор

Герконовые реле: что это такое, чем отличается, как работает

23 Января 2021 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы.

Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью 4399

Диоды Шоттки: что это такое, чем отличается, как работает

17 Декабря 2020 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью 5147

Как правильно заряжать конденсаторы

13 Ноября 2020 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью 2476

Светодиоды: виды и схема подключения

20 Июля 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение.

Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью 4140

Микросборка

25 Мая 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью 2798

Применение, принцип действия и конструкция фототиристора

20 Сентября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью206

#тиристор #фототиристор

Схема подключения теплового реле – принцип работы, регулировки и маркировка

17 Мая 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью 5807

Динисторы – принцип работы, как проверить, технические характеристики

17 Мая 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью 1649

Маркировка керамических конденсаторов

17 Мая 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью 1374

Компактные источники питания на печатную плату

17 Мая 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью 809

SMD-резисторы: устройство и назначение

17 Мая 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью 36

Принцип работы полевого МОП-транзистора

17 Мая 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью 2675

Проверка микросхем мультиметром: инструкция и советы

29 Октября 2021 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью 8546

Характеристики, маркировка и принцип работы стабилитрона

28 Июля 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью 7438

Что такое реле: виды, принцип действия и устройство

14 Октября 2020 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью 160

Конденсатор: что это такое и для чего он нужен

20 Июля 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью 9540

Все о танталовых конденсаторах — максимально подробно

29 Октября 2021 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью 13376

Как проверить резистор мультиметром

14 Октября 2020 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью 3190

Что такое резистор

14 Октября 2020 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью 2252

Как проверить диодный мост мультиметром

14 Октября 2020 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью 13611

Что такое диодный мост

05 Августа 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью 985

Виды и принцип работы термодатчиков

17 Мая 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью 4355

Заземление: виды, схемы

17 Мая 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью 2375

Как определить выводы транзистора

29 Октября 2021 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью 1439

Назначение и области применения транзисторов

14 Октября 2020 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью 2000

Как работает транзистор: принцип и устройство

20 Февраля 2021 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью 7191

Виды электронных и электромеханических переключателей

17 Мая 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью 794

Как устроен туннельный диод

20 Июля 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью 3779

Виды и аналоги конденсаторов

21 Мая 2020 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью 5853

Твердотельные реле: подробное описание устройства

25 Мая 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью 3617

Конвертер единиц емкости конденсатора

29 Октября 2021 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью 1967

Графическое обозначение радиодеталей на схемах

14 Октября 2020 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью 1698

Биполярные транзисторы: принцип работы, характеристики и параметры

17 Мая 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью 3183

Как подобрать резистор по назначению и принципу работы

17 Мая 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью 340

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

20 Сентября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т. е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью1497

#тиристор

Зарубежные и отечественные транзисторы

20 Января 2021 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью 2898

Исчерпывающая информация о фотодиодах

20 Июля 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью 3809

Калькулятор цветовой маркировки резисторов

14 Октября 2020 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью 2392

Область применения и принцип работы варикапа

14 Октября 2020 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью 5623

Маркировка конденсаторов

14 Октября 2020 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью 6444

Виды и классификация диодов

14 Октября 2020 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью 376


Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

Переменный резистор: типы, устройство и принцип работы

20 Сентября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью335

#резистор

Тумблеры

25 Мая 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью 350

Как проверять транзисторы тестером – отвечаем

14 Апреля 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью 280

Как пользоваться мультиметром

21 Марта 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью 698

Выпрямитель напряжения: принцип работы и разновидности

24 Февраля 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью 1045

Переключатель фаз (напряжения): устройство, принцип действия, виды

20 Января 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью 397

Как выбрать паяльник для проводов и микросхем

23 Декабря 2021 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью 600

Что такое защитный диод и как он применяется

20 Декабря 2021 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью 2627

Варистор: устройство, принцип действия и применение

20 Сентября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью862

#варистор

Виды отверток по назначению и применению

21 Сентября 2021 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью 650

Виды шлицов у отверток

14 Августа 2021 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью 1162

Виды и типы батареек

14 Августа 2021 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью 1137

Для чего нужен контактор и как его подключить

20 Сентября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2201

#контрактор

Как проверить тиристор: способы проверки

20 Сентября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью942

#тиристор

Как правильно выбрать акустический кабель для колонок

20 Апреля 2021 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью 1130

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью1321

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

20 Сентября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью3125

#варистор

Герконовые реле: что это такое, чем отличается, как работает

23 Января 2021 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы. Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью 4399

Диоды Шоттки: что это такое, чем отличается, как работает

17 Декабря 2020 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью 5147

Как правильно заряжать конденсаторы

13 Ноября 2020 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью 2476

Светодиоды: виды и схема подключения

20 Июля 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью 4140

Микросборка

25 Мая 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью 2798

Применение, принцип действия и конструкция фототиристора

20 Сентября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью206

#тиристор #фототиристор

Схема подключения теплового реле – принцип работы, регулировки и маркировка

17 Мая 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью 5807

Динисторы – принцип работы, как проверить, технические характеристики

17 Мая 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью 1649

Маркировка керамических конденсаторов

17 Мая 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью 1374

Компактные источники питания на печатную плату

17 Мая 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью 809

SMD-резисторы: устройство и назначение

17 Мая 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью 36

Принцип работы полевого МОП-транзистора

17 Мая 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью 2675

Проверка микросхем мультиметром: инструкция и советы

29 Октября 2021 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью 8546

Характеристики, маркировка и принцип работы стабилитрона

28 Июля 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью 7438

Что такое реле: виды, принцип действия и устройство

14 Октября 2020 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью 160

Конденсатор: что это такое и для чего он нужен

20 Июля 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью 9540

Все о танталовых конденсаторах — максимально подробно

29 Октября 2021 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью 13376

Как проверить резистор мультиметром

14 Октября 2020 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью 3190

Что такое резистор

14 Октября 2020 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью 2252

Как проверить диодный мост мультиметром

14 Октября 2020 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью 13611

Что такое диодный мост

05 Августа 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью 985

Виды и принцип работы термодатчиков

17 Мая 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью 4355

Заземление: виды, схемы

17 Мая 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью 2375

Как определить выводы транзистора

29 Октября 2021 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью 1439

Назначение и области применения транзисторов

14 Октября 2020 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью 2000

Как работает транзистор: принцип и устройство

20 Февраля 2021 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью 7191

Виды электронных и электромеханических переключателей

17 Мая 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью 794

Как устроен туннельный диод

20 Июля 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью 3779

Виды и аналоги конденсаторов

21 Мая 2020 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью 5853

Твердотельные реле: подробное описание устройства

25 Мая 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью 3617

Конвертер единиц емкости конденсатора

29 Октября 2021 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью 1967

Графическое обозначение радиодеталей на схемах

14 Октября 2020 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью 1698

Биполярные транзисторы: принцип работы, характеристики и параметры

17 Мая 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью 3183

Как подобрать резистор по назначению и принципу работы

17 Мая 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью 340

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

20 Сентября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т. е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью1497

#тиристор

Зарубежные и отечественные транзисторы

20 Января 2021 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью 2898

Исчерпывающая информация о фотодиодах

20 Июля 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью 3809

Калькулятор цветовой маркировки резисторов

14 Октября 2020 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью 2392

Область применения и принцип работы варикапа

14 Октября 2020 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью 5623

Маркировка конденсаторов

14 Октября 2020 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью 6444

Виды и классификация диодов

14 Октября 2020 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью 376


курсов PDH онлайн. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов HVAC; не только экологические курсы или курсы по энергосбережению

 

 

Рассел Бейли, ЧП

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам

познакомив меня с новыми источниками

информации».

 

Стивен Дедак, ЧП

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они

очень быстро отвечали на вопросы.

Это было на высшем уровне. Буду использовать

снова. Спасибо».

Блэр Хейуорд, P.E.0003 «Веб-сайт прост в использовании. Хорошо организован. Я действительно буду пользоваться вашими услугами снова.

Я передам название вашей компании

другим сотрудникам.»

 

Рой Пфлейдерер, ЧП

Нью-Йорк

«Справочный материал был превосходным, и курс был очень информативным, особенно потому, что я думал, что уже знаком

с деталями Канзас

Авария в City Hyatt.»

Майкл Морган, ЧП

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится, что я могу просмотреть текст перед покупкой. Я обнаружил, что класс

Информативный и полезный

в моей работе. «

Уильям Сенкевич, стр.

Флорида

познавательный. Вы

— лучшие, которые я нашел. «

Рассел Смит, P.E.

Pennsylvania

Я считаю, что подход упрощает для рабочего инженера.

материала.»

 

Хесус Сьерра, Ч.П. На самом деле

человек изучает больше

от неудач. «

Джон Скондры, P.E.

Пенсильвания

«. Курс был хорошо поставлен вместе, и используется.

Путь обучения. «

Jack Lundberg, P.E.

Висконсин

» Я очень увлекаюсь тем, как вы представляете курсы; т. е. позволяя

Студент. Для рассмотрения курса

Материал перед оплатой и

Получение викторины. «

Arvin Swanger, P.E.

Virgina

«. курсы. Я, конечно, многому научился и

получил огромное удовольствие».0002 «Я очень доволен предлагаемыми курсами, качеством содержания материалов и простотой поиска

онлайн-курсов

Уильям Валериоти, ЧП

Техас

«Этот материал во многом оправдал мои ожидания. Курс был прост для понимания. Фотографии в основном давали хорошее представление о

обсуждаемых темах.»

 

Майкл Райан, ЧП

Пенсильвания

«Именно то, что я искал. Нужен 1 балл по этике, и я нашел его здесь.»

 

 

 

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых кредитов PDH. Это было

информативно, выгодно и экономично.

Я настоятельно рекомендую это

всем инженерам. «

Джеймс Шурелл, P.E.

Ohio

Я ценю вопросы« Реальный мир »и соответствует моей практике. , и

не основаны на каком-то неясном разделе

законов, которые не применяются

к «нормальной практике».0005

Марк Каноник, ЧП

Нью-Йорк

«Большой опыт! Я многому научился, чтобы вернуться в свою медицинскую организацию

».

 

 

Иван Харлан, ЧП

Теннесси

«Материал курса имеет хорошее содержание, не слишком математический, с хорошим акцентом на практическое применение технологий».

 

 

Юджин Бойл, ЧП

California

«Это был очень приятный опыт. Тема была интересной и хорошо представленной,

, а онлайн -формат был очень

и простые в

. Благодарность.»

Патрисия Адамс, ЧП

Канзас

«Отличный способ добиться соответствия непрерывному обучению физкультуры в рамках временных ограничений лицензиата».

 

 

Джозеф Фриссора, ЧП

Нью-Джерси

«Должен признаться, я действительно многому научился. Это помогает иметь

обзор текстового материала. Я

3 оценил также просмотрев предоставлены

фактические случаи».

Жаклин Брукс, ЧП

Флорида

«Общие ошибки ADA в проектировании объектов очень полезны. Проверка

потребовало исследования в

Документ Но Ответы были

Проще говоря.»

Гарольд Катлер, ЧП

Массачусетс

«Это было эффективное использование моего времени. Спасибо за разнообразие выбора

в инженерии дорожного движения, который мне нужен

, чтобы выполнить требования

Сертификация PTOE. «

Джозеф Гилрой, стр. способ заработать CEU для моих требований PG в штате Делавэр. До сих пор все курсы, которые я посещал, были отличными.

Надеюсь увидеть больше 40%

Курсы с дисконтированием ».

Кристина Николас, P.E.

New York

» только что завершены. дополнительные

курсы. Процесс прост, и

намного эффективнее, чем

необходимость путешествовать.0004

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для инженеров-профессионалов

в получении единиц PDH

в любое время. Очень удобно.»

 

Пол Абелла, ЧП

Аризона

«Пока все было отлично! Поскольку я постоянно работаю матерью двоих детей, у меня не так много

времени, чтобы исследовать, куда

получить мои кредиты от. »

 

Кристен Фаррелл, ЧП

Висконсин

2 90 «Это было очень познавательно. Легко для понимания с иллюстрациями

и графиками; определенно облегчает

  впитывание всех

теорий.»

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов полупроводников. Мне понравилось проходить курс по телефону

My Sope Pace во время моего Morning

Subway Commute 9000

до работы. .»

Клиффорд Гринблатт, ЧП

Мэриленд

«Просто найти интересные курсы, скачать документы и получить

викторина. Я буду Emong Рекомендовать

You To Every PE, нуждающийся в

CE. тем во многих областях техники». 0004

«У меня перепроизводили вещи, которые я забыл. Я также рад получить финансово

на Ваше промо-электронное письмо , которая

на 40%.»

Conrado Casem, P.E.

Теннесси

«Отличный курс по разумной цене. Буду пользоваться вашими услугами в будущем.»

 

 

 

Чарльз Флейшер, П.Е.

Нью-Йорк

«Это был хороший тест, и я фактически проверил, что я прочитал кодексы профессиональной этики

и правила Нью-Мексико

».

 

Брун Гильберт, Ч.П.

Калифорния

«Мне очень понравились занятия. Они стоили времени и усилий.»

 

 

 

Дэвид Рейнольдс, ЧП

Канзас

«Очень доволен качеством тестовых документов. Будет использовать CEDengineerng

, когда потребуется дополнительная сертификация

 

Томас Каппеллин, ЧП

Иллинойс

«У меня истек срок действия курса, но вы все равно выполнили обязательство и поставили

Me, за что я заплатил — много

! » для инженера».0004

Хорошо расположено. «

Глен Шварц, P.E.

Нью -Джерси

Вопросы были подходящими для уроков, а материал урока —

.

для дизайна дерева.»

 

Брайан Адамс, ЧП

Миннесота

0004

 

 

 

Роберт Велнер, ЧП

Нью -Йорк

«У меня был большой опыт, когда я получил прибрежное строительство — проектирование

Building и

High Рекомендую его».

 

Денис Солано, ЧП

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики штата Нью-Джерси были очень

хорошо подготовлено.»

 

 

Юджин Брекбилл, ЧП

Коннектикут

3

2 90Very experience

2

2 90Very Experience
Мне нравится возможность загрузить учебный материал до

Обзор везде, где бы ни был и

всякий раз, когда ».

Тим Чиддикс, P.E.

Colorado

» Отлично! Сохраняйте широкий выбор тем на выбор».

 

 

 

Уильям Бараттино, ЧП

Вирджиния

«Процесс прямой, никакой чепухи. Хороший опыт.»

 

 

 

Тайрон Бааш, ЧП

Иллинойс

«Вопросы на экзамене были наводящими и демонстрировали понимание

материала. Тщательный

и всеобъемлющий. «

Майкл Тобин, P.E.

Аризона

» Это мой второй курс, и мне понравилось то, что мне предложил курс, что

помогу моя линия

работы. Я обязательно воспользуюсь этим сайтом снова.»

 

 

 

Анджела Уотсон, ЧП

Монтана

«Простота в исполнении. Никакой путаницы при подходе к сдаче теста или записи сертификата.»

 

 

 

Кеннет Пейдж, ЧП

Мэриленд

«Это был отличный источник информации о нагревании воды с помощью солнечной энергии.

 

 

Луан Мане, ЧП

Conneticut

«Мне нравится подход, позволяющий зарегистрироваться и иметь возможность читать материалы в автономном режиме, а затем

вернуться, чтобы пройти тест. »

 

 

Алекс Млсна, ЧП

Индиана

«Я оценил количество информации, предоставленной для класса. Я знаю

Это вся информация, которую я могу

В реальных жизненные ситуации. «

Натали Дриндер, P.E.

South Dakota

курс.»0004

«веб -сайт прост в использовании, вы можете загрузить материал для изучения, затем вернуться

и пройти тест. .»

Майкл Гладд, ЧП

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

 

 

 

Деннис Фундзак, ЧП

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать сертификат PDH

. Спасибо, что сделали этот процесс простым. »

 

Фред Шайбе, ЧП

Висконсин

«Положительный опыт. Быстро нашел курс, который соответствует моим потребностям, и закончил

PDH за один час за

Один час. «

Стив Торкильдсон, P.E.

Южная Каролина

» Мне нравилось загрузить документы для рассмотрения контента

и приготовимости.

наличие для оплаты

материалов.»

Richard Wymelenberg, P.E.0005

«Это хорошее пособие по ЭЭ для инженеров, не являющихся электриками.»

 

 

 

Дуглас Стаффорд, ЧП

Техас

«Всегда есть место для улучшения, но я не могу придумать ничего в вашем

процессе, который нуждается в

улучшении.»

 

Томас Сталкап, ЧП

Арканзас

«Мне очень нравится удобство прохождения онлайн-викторины и немедленного получения сертификата

. »

 

 

Марлен Делани, ЧП

Иллинойс

«Обучающие модули CEDengineering — очень удобный способ доступа к информации по

многим различным техническим областям

3 вне

0003 Специализация самого Без

. , мы все используем разные типы датчиков.Из этого следует, что датчик температуры — это один из видов датчиков, который чаще всего используется в различных формах, таких как микроволновые печи, водонагреватели, холодильники, термометры и т. д. Как правило, эти типы датчиков используются в широкий спектр приложений для измерения количества холода или тепла устройства и преобразования его в удобочитаемую единицу.

Знаете ли вы, как измеряется температура зданий, дамб, скважин, почвы:? Что ж, это можно сделать с помощью специального датчика температуры, чтобы вычислить показания температуры с помощью электрических сигналов. В этой статье обсуждается обзор датчиков температуры и их работы с типами и приложениями.

Что такое датчик температуры?

Датчик, который используется для измерения или поддержания фиксированной температуры в любом устройстве, называется датчиком температуры. Датчики такого типа играют ключевую роль в различных приложениях. Физические измерения, такие как температура, являются наиболее распространенными в промышленных приложениях. Датчик температуры обеспечивает измерение температуры в понятной форме с помощью электрического сигнала.

Температурный датчик

Эти типы датчиков доступны в различных формах, которые используются для различных методов управления температурой. Работа датчика температуры в основном зависит от напряжения на клеммах диода. Итак, изменение температуры прямо пропорционально сопротивлению диода.

Измерение сопротивления на клеммах диода может быть выполнено и для изменения читаемых единиц измерения температуры, таких как Цельсий, Фаренгейт, Цельсия и отображается в виде числовых единиц измерения. В области геотехнического мониторинга датчики температуры используются для расчета внутренней температуры различных конструкций, таких как здания, плотины, мосты, электростанции и т. д.

Цепь датчика температуры

Ниже показана электрическая схема релейного переключателя, использующего датчик температуры. Как только цепь нагревается, реле запускает нагрузку. К этому реле можно приложить любое напряжение, например, 110 В переменного тока или 220 В переменного или постоянного тока, чтобы мы могли регулярно контролировать его при предпочтительной температуре. Эта схема проста и дешева в изготовлении. Для начинающих электроников это идеальная схема.

Цепь датчика температуры с релейным переключателем

Для создания этой схемы датчика температуры необходимы следующие компоненты: источник постоянного тока на входе 9 В, термистор 10 кОм, транзистор BC547B, реле 6 В, диод 1N4007 и переменный резистор 20 кОм. Работа этой схемы может осуществляться с помощью 9-вольтовой батареи, адаптера или трансформатора. Эта схема включает 2 транзистора BC547B типа пары Дарлингтона. Таким образом, с помощью этих транзисторов можно увеличить чувствительность схемы, а также коэффициент усиления.

Требуемый диапазон нагрева можно отрегулировать с помощью переменного резистора, при котором вы хотите активировать реле. В этой схеме термистор играет ключевую роль, поскольку он обнаруживает тепло. Работа этой схемы довольно проста. Как только термистор нагреется, его сопротивление уменьшится, и это позволит потоку тока активировать транзисторы.

Когда оба транзистора срабатывают, они позволяют активировать напряжение на реле. Итак, теперь нагрузка, которая подключена к этому реле, будет активирована. Эта схема очень полезна, например, при работе вентилятора при заданной температуре. Он активирует сигнал тревоги в чрезвычайных ситуациях, когда вы не хотите перегреваться.

Типы датчиков температуры

Датчики температуры подразделяются на два типа: контактные и бесконтактные, где датчики контактного типа в основном используются в опасных зонах. Кроме того, эти типы датчиков подразделяются на различные типы, которые обсуждаются ниже.

Датчик температуры контактного типа

Датчик температуры контактного типа используется для определения величины температуры внутри цели посредством прямого физического контакта с ней. Эти датчики можно использовать для обнаружения твердых тел, жидкостей или газов в широком диапазоне температур. Датчики температуры контактного типа доступны в различных типах, таких как RTD, термопара, термометр, термистор и т. д.

Среди них термопары обычно менее дороги из-за использования простого материала и модели. Другой тип датчика — термистор, сопротивление которого уменьшается при повышении температуры.

Термопара

Наиболее популярным и часто используемым датчиком температуры является термопара из-за его чувствительности, точности, широкого диапазона температур, простоты и надежности. Как правило, этот тип датчика состоит из двух разных металлических секций, таких как медь и константан, которые соединяются в процессе сварки.

Термопара

Конструкция этого датчика может быть выполнена из двух разных металлов, которые соединяются двумя проводами в двух точках. Напряжение между этими проводами повторяет изменение температуры. Хотя по сравнению с РДТ точность будет несколько меньше. Диапазон температур этого датчика составляет от -200 ° C до -1750 ° C, но они дороги.

Когда соединение двух металлов охлаждается или нагревается, может формироваться напряжение, которое может быть связано обратно с температурой. Поэтому это называется термоэлектрическим эффектом. Как правило, они не дорогие, когда их материалы и дизайн просты.

Выход термопары в основном зависит от ее типа, при этом обычная термопара подразделяется на различные типы, такие как K, J, T, N и E, которые называются термопарами из недрагоценных металлов. Термопары типов S, B и R называются термопарами из благородных металлов, а типы C и D называются термопарами из тугоплавких металлов.

Температурный диапазон термопар варьируется в зависимости от их типов, как показано ниже.

  • Диапазон температур термопары типа «J» составляет от 0° до 750°C
  • Диапазон температур термопары типа «К» составляет от -200° до 1250°C
  • Диапазон температур термопары типа «Е» составляет от -200° до 900°C
  • Диапазон температур термопары типа «Т» составляет от -250° до 350°C
  • Диапазон температур термопары типа «N» составляет от 0° до 1250°C
Термисторы

Термисторы, также известные как термочувствительные резисторы, изготовлены из керамических материалов, таких как определенные оксиды металлов, покрытых стеклом. Принцип работы термистора заключается в том, что при повышении температуры его сопротивление увеличивается.

Термисторный датчик

В соответствии с принципом датчики подразделяются на два типа: с положительным температурным коэффициентом (PTC) и с отрицательным температурным коэффициентом (NTC). При положительном температурном коэффициенте, когда температура материала увеличивается, сопротивление увеличивается, тогда как при NTC температура уменьшается, а сопротивление уменьшается. Сопротивление термистора будет увеличиваться при повышении температуры.

Этот тип датчика температуры демонстрирует предсказуемые, точные и значительные изменения при изменении различных температур. Огромное изменение — это не что иное, как температура, которая будет отражена быстро и точно. Термисторы более точны по сравнению с термопарами. Эти датчики изготавливаются из полимеров или керамики.

Термостаты

Датчики этого типа включают биметаллический сегмент, изготовленный из двух разнородных металлов, таких как никель, алюминий, медь или вольфрам. Эти металлы могут быть соединены вместе, чтобы получить биметаллическую полосу. Основной принцип работы термостата зависит от разности коэффициентов линейного расширения металлов. Таким образом, это подталкивает их к механическому движению из-за увеличения температуры.

Термостат

Биметаллическая пластина используется в качестве электрического переключателя в термостатическом управлении. Широкое использование этого заключается в управлении нагревательными элементами горячей воды в котлах, баках-аккумуляторах горячей воды, печах; системы охлаждения радиатора в транспортных средствах и т. д.

Резистивный датчик температуры или резистивный датчик температуры

Резистивный датчик температуры может быть изготовлен из точных проводящих металлов, таких как платина, заключенных в катушку. Электрическое сопротивление RTD изменяется при изменении температуры. RTD также называется термометром сопротивления и рассчитывает температуру через сопротивление элемента RTD, используя температуру.

RTD

RTD или резистивные датчики температуры представляют собой металлическую фольгу термисторов, и это самый точный и дорогой тип датчиков температуры. RTD имеют PTC (положительные температурные коэффициенты), но отличаются от термисторов. Выход этого очень линейный, генерирующий очень точные измерения температуры.

Обычные типы резистивных датчиков температуры изготавливаются из платины, известной как ПТС или платиновый термометр сопротивления. Наиболее часто доступным типом датчика является датчик Pt100, который включает типичное значение сопротивления, например, 100 Ом при 0°C.

ICS на основе полупроводников

Эти типы интегральных схем на основе датчиков температуры доступны в двух различных типах, таких как локальная температура и удаленный цифровой тип. IC типа локальной температуры используется для расчета их температуры с помощью физических свойств транзистора. Удаленный цифровой тип используется для расчета внешней температуры транзистора.

Местные датчики температуры используют либо аналоговые, либо цифровые выходы. Аналоговые выходы представляют собой либо ток, либо напряжение, тогда как цифровые выходы можно наблюдать в различных форматах, таких как SMBus, I²C, SPI и 1-Wire. Эти датчики определяют температуру на печатных платах. Небольшой датчик температуры, такой как MAX31875, можно использовать в различных приложениях с батарейным питанием.

Работа удаленных цифровых датчиков температуры аналогична работе локальных датчиков температуры, которые используют физические свойства транзистора. Основное отличие состоит в том, что транзистор расположен вдали от микросхемы датчика. Некоторые ПЛИС и микропроцессоры содержат биполярный чувствительный транзистор для расчета температуры кристалла ИС.

Термометры

Устройство, подобное термометру, используется для расчета температуры жидкостей, твердых тел или газов. Как следует из названия, это комбинация двух терминов, таких как термос и метр, где термос — это не что иное, как тепло.

Термометр содержит жидкость, такую ​​как ртуть или спирт, внутри стеклянного цилиндра. Величина термометра линейно пропорциональна температуре. Как только температура повышается, увеличивается и количество термометров.

Термометр

При нагревании жидкости термометра она увеличивается в тонкой трубке. Этот термометр включает калиброванную шкалу, которая определяет температуру. Термометр имеет отмеченные числа рядом со стеклянной трубкой, которая указывает температуру, когда линия ртути достигает этой точки. Эта температура может быть сохранена в таких шкалах, как Кельвин, Цельсий или Фаренгейт. Таким образом, всегда разумно отметить, для какой шкалы отрегулирован измеритель.

Бесконтактный датчик температуры

Датчики температуры бесконтактного или бесконтактного типа не соприкасаются с целью. Таким образом, они рассчитывают температуру, используя излучение источника тепла. Распространенным типом бесконтактного датчика является ИК (инфракрасный) датчик, основная функция которого заключается в удаленном обнаружении энергии объекта и генерации знака для схемы, которая определяет температуру объекта с помощью точного плана калибровки.

Измерители такого типа не находятся в непосредственном контакте с целью, и они рассчитывают количество холода или тепла по всему излучению, испускаемому источником тепла. Датчики температуры бесконтактного типа используются в широком диапазоне. В Ковид 19пандемия, он используется для проверки температуры людей.

Еще несколько датчиков температуры обсуждаются ниже.

Температурный датчик LM35

LM35 IC — это датчик температуры, генерирующий аналоговый сигнал, аналогичный выходному. Выход этой ИС изменяется в зависимости от температуры вокруг нее. Этот тип ИС очень мал по размеру, а также дешев. Основной функцией этой ИС является расчет температуры в диапазоне от -55°C до 150°C.

Интерфейс этой ИС может быть выполнен с использованием любого микроконтроллера, который содержит функцию АЦП.
Эта микросхема может получать питание от подачи регулируемого напряжения +5 В на контакт i/p, а контакт GND может быть подключен к GND схемы.

Инфракрасный датчик температуры

Инфракрасный датчик температуры обнаруживает электромагнитные сигналы в диапазоне от 700 до 14 000 нм. Раз ИК-спектр расширяется до 1 000 000 нм, то эти датчики не рассчитывают более 14 000 нм. Работа ИК-датчиков может осуществляться путем фокусировки ИК-энергии, генерируемой объектом, на фотодетекторы.

Эти фотосенсоры преобразуют энергию в электрический сигнал, который сравним с инфракрасной энергией, генерируемой объектом. Потому что ИК-энергия, генерируемая любым объектом, может быть пропорциональна его температуре. Электрический сигнал обеспечивает точное считывание температуры объекта. ИК-сигналы подаются на ИК-датчик через пластиковое окно.

Как правило, пластик не пропускает инфракрасные частоты; датчики используют прозрачную форму для определенных частот. Этот пластиковый материал отфильтровывает ненужные частоты, чтобы защитить электронику внутри ИК-датчика от грязи, пыли и т. д.

Датчик температуры воды

Датчик такого типа позволяет блоку управления распознавать перегрев двигателя или ненормальное повышение температуры. Подключение этого датчика может быть сделано в автомобилях рядом с термостатом в зависимости от производителей.

В некоторых автомобилях есть два типа датчиков температуры; один датчик используется для передачи данных от системы двигателя автомобиля к блоку управления, а другой используется от блока управления к панели управления. Когда температура двигателя автомобиля изменяется, потенциальная неодинаковость выхода устройства также может быть изменена, и это можно рассчитать с помощью блока управления двигателем.

Датчик температуры охлаждающей жидкости

Датчик температуры охлаждающей жидкости или ECTS (датчик температуры охлаждающей жидкости двигателя) или датчик ECT в основном используются для измерения температуры охлаждающей жидкости в системе охлаждения, которая дает знак того, насколько высока температура двигателя в машина отдает. Датчик температуры охлаждающей жидкости работает через ЭБУ автомобиля, постоянно контролируя, чтобы убедиться, что двигатель автомобиля работает при оптимальной температуре или нет.

Для получения точных показаний температуры автомобиля ЭБУ передает регулируемое напряжение на CTS. Сопротивление датчика температуры охлаждающей жидкости меняется в зависимости от температуры; вот так ЭБУ отслеживает изменение температуры.

ЭБУ использует это показание для расчета температуры охлаждающей жидкости и, исходя из этого, регулирует состав топливной смеси, впрыск топлива, момент зажигания и управляет включением/выключением электрического вентилятора системы охлаждения. Эти данные также можно использовать для передачи точных показаний температуры двигателя на панель управления.

Датчик температуры тела человека

Температура тела человека, как и MAX30205, используется для расчета температуры тела человека. Этот датчик имеет точность до 0,1°C в диапазоне измерений от 37°C до 39°C.°C и разрешение 16 бит. Этот датчик температуры человеческого тела имеет сигнал тревоги перегрева для включения вентилятора через выходной гистерезис операционной системы.

Этот датчик преобразует измерения температуры в цифровую форму с помощью АЦП и сигма-дельта. Датчик температуры MAX30205 имеет три линии выбора адреса, используя 32 доступных адреса. Напряжение питания этого датчика находится в диапазоне от 2,7 В до 3,3 В, а ток питания составляет 600 мкА, а интерфейс с защитой от блокировки, совместимый с I2C, можно использовать в различных приложениях. Эта микросхема может использоваться в корпусе TDFN с 8 выводами и работает в диапазоне температур от 0 NC до -+50 NC.

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о датчиках температуры MCQ

Преимущества

Преимущества датчиков температуры включают следующее.

  • Диапазон температур чрезвычайно широк: от -200°C до +2500°C
  • Мостовая схема не требуется
  • Время отклика очень быстрое
  • Быстро реагирует на изменение температуры
  • Они просты в дизайне
  • Начальная стоимость меньше
  • Сильный
  • Термопара измеряет температуру в диапазоне от -200°C до +2500°C
  • RTD измеряет температуру в диапазоне от -200°C до +850°C
  • Термистор измеряет температуру в диапазоне от -100°C до +260°C
  • Датчики IC измеряют температуру в диапазоне от -45°C до 150°C
  • Термопара не потребляет дополнительной энергии, они очень просты в конструкции и прочны, имеют меньшую стоимость и т. д.
  • Термометры сопротивления
  • имеют высокую точность, более стабильны, более линейны по сравнению с термопарой
  • Термисторы работают очень быстро и обеспечивают более высокую выходную мощность.
  • Датчики
  • IC не дороги, имеют максимальный выход и более линейны по сравнению с другими типами.

Недостатки

К недостаткам датчика температуры относятся следующие.

  • Недостатки термопар: наименьшая стабильность, нелинейность, низкое напряжение, требуемое задание, чувствительность и т. д.
  • Недостатки RTD: дорогой, абсолютное сопротивление лёссовое, требуемый источник тока не сильный по сравнению с термопарой.
  • Недостатки термистора: требуемый источник тока, самонагрев, хрупкость, нелинейность, поддержка ограничена и т. д.
  • Недостатки датчика IC: медленная работа, требуется электропитание, самонагрев, ограничения по конфигурациям, температура до 150°C и т. д.

Применения

Применения датчиков температуры включают следующее.

  • Применяются в электродвигателях, накладных панелях, бытовой технике, компьютерах, оборудовании в промышленности, нагревательных электрических радиаторах, производстве пищевых продуктов, алкотестере и т. д.
  • Другие области применения датчиков температуры включают транзит, энергетику и коммунальные услуги, HVAC, теплообменники, калибровку и контрольно-измерительные приборы, промышленные процессы, бурение, системы отопления, энергетику, лаборатории и т. д.
  • Эти датчики используются для контроля температуры двигателя и управления его работой.
  • Температура бурения может контролироваться оператором бурения в рамках применения геотермальной энергии.
  • Эти датчики используются для защиты электрических кабелей от возгорания от перегрева
  • Пользователь может проверить температуру воды, чтобы можно было управлять водонагревателем для экономии энергии.
  • Оператор может контролировать температуру подшипника и моторного масла
  • С помощью этого датчика можно контролировать комнатную температуру, управляя системой охлаждения.

Перейдите по этой ссылке, чтобы узнать больше о типах резисторов.

Перейдите по этой ссылке, чтобы узнать больше о технологии сенсорного экрана MCQ.

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о MCQ для измерения температуры

Таким образом, это обзор датчика температуры и его работы. Датчики температуры в основном применяются в медицинских устройствах, кухонных приборах, автомобилях, компьютерах и других видах оборудования. Вот вопрос к вам, как вы проверяете датчик температуры?

Принцип работы высокотемпературного датчика

1.Принцип работы датчика температуры высоких температур-реферат

Датчик температуры заключается в том, что температура преобразуется в полезную выходную букву с использованием физических свойств материала с изменением числа температуры. Датчик температуры Датчик является основной частью прибора для измерения температуры, который имеет различные типы. В соответствии с характеристиками материалов датчика и электронных компонентов тепловое сопротивление и термопара делятся на две категории: контактного типа и бесконтактного типа. Современный датчик температуры имеет очень маленькую форму, чтобы его можно было широко использовать в различных областях производственной практики, что также обеспечивает бесчисленные удобства и функции для нашей жизни.

2. Принцип работы датчика температуры высокой температуры-классификация

Существует четыре основных типа датчиков температуры: термопара, термистор, датчик температуры сопротивления (RTD) и датчик температуры IC. Датчик температуры IC имеет два типа: выход и цифровой выход.

Далее поговорим о том, как работают такие датчики температуры. Если вам интересно узнать больше, поехали!

3. Принцип работы датчика температуры высоких температур-термопара

Комбинация двух разных проводников или полупроводников называется термопарой. Термоэлектрический потенциал EAB (T, T0) синтезируется контактным потенциалом и термоэлектрическим потенциалом. Контактный потенциал относится к электрическому потенциалу, генерируемому двумя разными проводниками или полупроводниками при контакте, который связан со свойствами двух проводников или полупроводников и температурой точек контакта.
Когда есть два разных проводника и полупроводника A и B из контура A, оба его конца соединены, если температура двух узлов различна, конечная температура T, называемая рабочим концом или горячим концом, другой конец температуры ТО, известный как свободный конец, образующийся в петле тока, который существует в петле электродвижущей силы, называется тепловым. Это явление электродвижущей силы из-за различных температур называется эффектом Зебека.


4. Принцип работы датчика температуры высоких температур-инфракрасный датчик температуры

В природе, когда температура объекта выше абсолютного нуля, из-за его внутреннего теплового движения вокруг него будет продолжаться излучение электромагнитной волны, которая включает в себя полосу 0,75 ~ 100 микрон инфракрасного излучения, по этому принципу используется инфракрасный датчик температуры.

Smtir9901/02 представляет собой широко используемый на рынке инфракрасный датчик, основанный на кремниевом инфракрасном датчике на основе термобатареи. Множество термопар, сложенных на подстилающем кремнии, высокая температура на нижнем переходе и низкотемпературный контакт с очень тонким слоем мембраны, разделяющей их тепло, и высокотемпературный черный поглощающий слой над контактом будут преобразовывать излучение в тепло энергии, термоэлектрический эффект показывает, что выходное напряжение пропорционально излучению, обычно используется термобатарея BiSb и NiCr в качестве термопары.


5. Принцип работы датчика температуры высоких температур-аналоговый датчик температуры

AD590 — это тип выходного тока датчика температуры, диапазон напряжения питания от 3 до 30 В, выходная мощность от 223 мкА до 423 мкА, чувствительность до 1 мкА/℃. Когда в цепь включен выборочный резистор R, напряжение на обоих концах резистора R можно использовать в качестве выходного напряжения. Сопротивление R не слишком велико, чтобы гарантировать, что напряжение AD590 не менее 3В. Расстояние передачи сигнала выходного тока AD590 может достигать более 1 км. Как источник тока с высоким импедансом, до 20 мОм, поэтому не нужно рассматривать выбор переключателя или дополнительное сопротивление, вызванное мультиплексором CMOS, вызванное ошибкой. Он подходит для многоточечного измерения температуры и дистанционного измерения температуры.


6. Принцип работы датчика температуры высоких температур-аналоговый датчик температуры

Высокотемпературный датчик температуры использует цифровой датчик температуры, изготовленный с помощью кремниевого процесса, который использует структуру PTAT, которая имеет хорошие выходные характеристики, связанные с точностью и температурой. Выход PTAT преобразуется в цифровой сигнал с помощью компаратора, а соотношение между соотношением воздуха и температурой выглядит следующим образом: DC = 0,32 + 0,0047 * t, t — по Цельсию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *