Из чего делают полиэтилен? Производство полиэтилена
Из чего делают полиэтилен? Производство полиэтилена
- Создано: 02.02.2018 20:17
История знает множество случаев, когда востребованные в той или иной отрасли материалы были получены в качестве побочного продукта при проведении научных опытов.
Ярким тому примером могут послужить анилиновые красители, которые совершили настоящий переворот в легкой промышленности. Аналогичная история случилась и с полиэтиленом.
История открытия
Впервые материал был случайно получен в 1899 году химиком Гансом фон Пехманном вследствие разогрева диамезотана. Химик обратил внимание на плотный и напоминающий воск материал, осевший на дно пробирки, однако эта случайность оказалось позабытой, и лишь через три десятилетия побочный продукт был вновь получен М. Перрином и Дж. Паттоном. В 1936 году был получен патент на низкоплотный полиэтилен, а уже через пару лет стартовало массовое производство.
Особенности
Полученный материал представляет собой белоцветный и твердый полимер, относящийся к органическим соединениям. Ключевым сырьем для получения полиэтилена служит этилен, от которого и пошло название. Данный газ полимеризуется при низком и высоком давлении, в результате чего получаются сырьевые гранулы для дальнейшей эксплуатации. В некоторых случа ях материал производится в порошковом виде.
Существует множество разновидностей данного материала, каждая из которых обладает своими особенностями и сферой применения. Полиэтилен может отличаться по степени давления в процессе производства, плотности и многим другим аспектам. В гранулированные вариации в процессе производства могут добавляться разнообразные красители, позволяющие получить тот или иной цвет.
Свойства
Материал устойчив к влаге, к множеству растворителей, органическим и неорганическим кислотам, а также не реагирует на соль. В процессе горения выделяется парафиновый запах, присутствует голубоватое свечение и слабый огонь.
Производство линейного полиэтилена
Метод производства варьируется в зависимости от типа материала. В случае линейной вариации полиэтилена температура нагрева должна достигать отметки 120 °С, давление в пределах 4 Мпа, а катализатором выступает смесь металлоорганического соединения с хлоридом титана. Процесс производства включает в себя выпадение материала в виде хлопьев, которые затем отделяют от раствора с дальнейшим процессом грануляции.
Производство полиэтилена низкого давления
ПНП может производиться тремя способа. В основном применяется суспензионная полимеризация, требующая постоянного перемешивания сырья и катализатора для запуска процесса. Второй способ — это полимеризация в растворе с определенной температурой и катализатором, которому свойственно вступать в реакцию, а потому метод не слишком эффективен. Последний из способов представляет собой газофазную полимеризацию, которая представляет собой процесс смешивания сырьевых газовых фаз под воздействием диффузии.
Производство полиэтилена высокого давления
Такая разновидность может быть получена при температурном режиме в диапазоне от 200 до 250°С. В качестве катализатора может применяться органический пероксид. Давление должно быть в диапазоне 150-300 МПа. В первой фазе масса находится в жидком состоянии, после чего отправляется к сепаратору, а затем к гранулятору.
Технология производства полиэтилена различных видов
Первый опыт полимеризации этилена в конце XIX века получил выходец из России — учёный Густавсон, проведя этот процесс с катализатором AlBr3. На протяжении долгих лет полиэтилен производился в небольших объемах, но в 1938 году процесс промышленного производства освоили англичане. В то время метод полимеризации был ещё не совершенен.
1952 год совершил прорыв в процессе промышленного производства полиэтилена. Немецкий химик Циглер изобрёл эффективный вариант полимеризации этилена под действием металл-органических катализаторов. Впрочем, настоящая технология производства полиэтилена основана именно на данном методе.
Сырье
Исходным материалом для получения является этен – простейший представитель ряда алкенов. Простота данного способа производства сильно зависит от наличия этилового спирта, который используется как сырьё. Современные промышленные линии для получения полимера разрабатывают с учётом их работы на нефтяных и попутных газах – легкодоступных фракций нефти.
Такие газы выделяются при пиролизе или крекинге нефтепродуктов при очень высоких температурах и содержат в себе примеси h3, Ch5, C2H6 и другие газы. Попутный газ в свою очередь содержит такие компоненты как газы-парафины, поэтому при подвергании их термической обработке с высоким выходом получают этилен.
Технология производства полиэтилена высокого давления
Процесс получения ПЭ идёт по радикальному механизму.
- 1 стадия – инициирование;
- 2 стадия – увеличение цепи;
- 3 стадия – обрыв цепи.
Цепь инициируется посредством выделения свободных радикалов при термической обработке их источника. Этен реагирует с выделившимся радикалом, наделяется определённой Еакт, увеличивая тем самым число молекул мономера вокруг себя. В дальнейшем наблюдается нарастание цепи.
Технология процесса
Существует два варианта процесса полимеризации – либо полиэтилен образуется в массе, либо в суспензии. Первый получил наибольшее распространение и представляет собой совокупность процессов.
Газ этилен, являющийся смесью, а не чистым веществом, вначале проходит путь фильтрации через тканевый фильтр, задерживающий механические примеси. Далее к очищенному этену подводят инициатор в баллоне, объём которого рассчитывается исходя из условий процесса. Поправка делается на наибольший выход полимера.
После, смесь транспортируют, фильтруют и подвергают сжатию в две стадии. На выходе из реактора получают практически чистый полиэтилен с примесью этилена, от которого избавляются дросселированием смеси в приёмнике под низким давлением.
Технология производства полиэтилена низкого давления
Источниками сырья для получения данного вида полиэтилена служат чистый, без примесей этилен и катализатор – триэтилат алюминия и тетрахлорид Ti. Заменой Al(C2H5)3 может послужить как хлорид диэтилалюминия, так и дихлорид этилата алюминия. Катализатор получается в 2 стадии.
Технология процесса
Для данного процесса получения ПЭ низкого давления характерна как периодичность, так и непрерывность. От выбора технологии зависит и схема процесса, каждая их которых различна по конструкции оборудования, объёму реакторов, методу очистки полиэтилена от примесей и др.
Самая распространённая схема получения полимера включает три непрерывных стадии: полимеризация сырья, очистка продукта от остатков катализатора и его высушивание. Аппараты для катализаторной подачи выделяют в мерники пятипроцентный раствор смешанного катализатора, после чего он поступает в бак, в котором смешивается с органическим растворителем до необходимой концентрации в 0.2%. Из бака готовая смесь катализатора отводится в реактор, где поддерживается при необходимом давлении.
Этилен подводится в реактор снизу, где впоследствии перемешиваясь с катализатором, образует рабочую смесь. Для производства полиэтилена при пониженном давлении характерно загрязнение продукта остатками катализаторной смеси, которые изменяют его окраску на коричневую. Очистка основного продукта производится нагреванием смеси, в результате чего происходит разрушение катализатора, дальнейшее отделение примесей и их прямая фильтрация от полиэтилена.
Увлажнённый продукт поступает на сушку в сушильные камеры бункера, где полностью очищается на кипящем слое азота (T = 373 K). Сухой порошок высыпается из бункера на пневмолинию, где отправляется на гранулирование. На эту же линию отправляется пыль с частицами полиэтилена, оставшаяся после очистки азота.
Как делают пластик? Простое пошаговое объяснение
Автор: Dr Payal Baheti
Пластик может быть «синтетическим» или «биологическим». Синтетические пластмассы получают из сырой нефти, природного газа или угля. В то время как пластмассы на биологической основе получают из возобновляемых продуктов, таких как углеводы, крахмал, растительные жиры и масла, бактерии и другие биологические вещества.
Подавляющее большинство пластика, используемого сегодня, является синтетическим из-за простоты методов производства, связанных с переработкой сырой нефти. Однако растущий спрос на ограниченные запасы нефти вызывает потребность в новых пластмассах из возобновляемых ресурсов, таких как отходы биомассы или отходы животноводства в промышленности.
В Европе лишь небольшая часть (около 4-6%) наших запасов нефти и газа идет на производство пластмасс, а остальная часть используется для транспорта, электричества, отопления и других целей (Ref)
Большая часть Используемый сегодня пластик получают в результате следующих этапов:
1. Добыча сырья (в основном сырая нефть и природный газ, но также и уголь) — это сложная смесь тысяч соединений, которые затем необходимо перерабатывать.
2. Процесс переработки превращает сырую нефть в различные нефтепродукты – они превращаются в полезные химические вещества, включая «мономеры» (молекулы, являющиеся основными строительными блоками полимеров). В процессе переработки сырая нефть нагревается в печи, которая затем направляется в дистилляционную установку, где тяжелая сырая нефть разделяется на более легкие компоненты, называемые фракциями. Одно из них, называемое нафтой, является ключевым соединением для производства большого количества пластика. Однако есть и другие средства, например, использование газа.
Рисунок 1. Графическое изображение производства пластмасс (рисунок адаптирован из ссылки)
3. Полимеризация — это процесс в нефтяной промышленности, в котором легкие олефиновые газы (бензин), такие как этилен, пропилен, бутилен (т.е. мономеры) превращаются в более высокомолекулярные углеводороды (полимеры). Это происходит, когда мономеры химически связаны в цепочки. Существует два различных механизма полимеризации:
- Аддитивная полимеризация
Реакция аддитивной полимеризации – это когда один мономер соединяется со следующим (димером), а димер со следующим (тримером) и так далее. Это достигается введением катализатора, обычно пероксида. Этот процесс известен как полимеры с ростом цепи, поскольку он добавляет по одному мономерному звену за раз. Типичными примерами аддитивных полимеров являются полиэтилен, полистирол и поливинилхлорид.
- Конденсационная полимеризация
Конденсационная полимеризация включает соединение двух или более различных мономеров путем удаления небольших молекул, таких как вода.
4. Компаундирование/обработка
При компаундировании различные смеси материалов смешиваются в расплаве (смешиваются плавлением) для получения составов для пластмасс. Обычно для этой цели используют экструдер того или иного типа, за которым следует гранулирование смеси. Экструзия или другой процесс формования затем превращает эти гранулы в готовый продукт или полуфабрикат. Компаундирование часто происходит на двухшнековом экструдере, где гранулы затем перерабатываются в пластиковые предметы уникального дизайна, различного размера, формы, цвета с точными свойствами в соответствии с заранее заданными условиями, заданными в обрабатывающей машине.
…
Более подробная информация о том, как производится пластик, представлена в следующих разделах:
- Полимер и пластик
- Что такое углеводороды?
- Как синтетический пластик создается из сырой нефти?
- Как из нафты получают пластик?
- Что является основным ингредиентом пластика?
- Какой пластик был сделан человеком первым?
- Что использовали до пластика?
- Можно ли сделать пластик без масла?
Все пластмассы по существу являются полимерами, но не все полимеры являются пластмассами.
Термин «полимер » и «мономер » произошли от греческих слов: где «поли» означает «много», «мер» означает «повторяющееся звено», а слово «моно» означает «один». Это буквально означает, что полимер состоит из множества повторяющихся мономерных звеньев. Полимеры представляют собой более крупные молекулы, образованные путем ковалентного соединения многих мономерных звеньев вместе в виде цепочек, подобных жемчужинам на нитке жемчуга.
Слово пластмасса происходит от слов «пластик» (лат. «способный к формованию») и «пластикос» (греч. «подходящий для формования»). Когда мы говорим о пластмассах, мы имеем в виду органические полимеры (синтетические или натуральные) с высокой молекулярной массой, смешанные с другими веществами.
Пластмассы представляют собой высокомолекулярные органические полимеры, состоящие из различных элементов, таких как углерод, водород, кислород, азот, сера и хлор. Они также могут быть получены из атома кремния (известного как силикон) вместе с углеродом; типичным примером являются силиконовые имплантаты груди или силикон-гидрогель для оптических линз.
«Пластичность» — это термин, используемый для описания свойства, характеристики и атрибута материала, который может необратимо деформироваться без разрушения. Пластичность описывает, выдержит ли полимер воздействие температуры и давления в процессе формования.
Химия позволяет нам изменять различные параметры для настройки свойств полимеров. Мы можем использовать различные элементы, изменять тип мономеров и перестраивать их по разным схемам, чтобы изменить форму полимера, его молекулярную массу или другие химические/физические свойства. Это позволяет разрабатывать пластики с правильными свойствами для конкретного применения.
Большая часть используемого сегодня пластика производится из углеводородов, получаемых из сырой нефти, природного газа и угля – ископаемого топлива.
Что такое углеводород?
Углеводороды представляют собой органические соединения (могут быть алифатическими или ароматическими), состоящие из углерода и водорода . Алифатические углеводороды не имеют циклических бензольных колец, тогда как ароматические углеводороды имеют бензольные кольца.
Углерод ( C , атомный номер = 6) имеет валентность четыре, что означает наличие четырех электронов на внешней оболочке. Он способен соединяться с четырьмя другими электронами любого элемента периодической таблицы, образуя химические связи (в случае углеводорода он образует пару с водородом). С другой стороны, водород ( H с атомным номером = 1) имеет только один электрон на валентной оболочке, поэтому четыре из этих атомов H готовы соединиться с атомом C, образуя одинарную связь, чтобы получить молекулу C-H 4 . Молекула CH 4 называется метаном, который является простейшим углеводородом и первым членом семейства алканов. Точно так же, если два атома углерода будут связаны вместе, они могут соединиться с шестью атомами водорода, по три на каждый атом углерода, чтобы получить химическую формулу CH 3 -CH . 3 (или C 2 H 6 ), известный как этан, и ряд продолжается следующим образом.
Семейство алканов : метан (CH 4 ), этан (CH 3 -CH 3 или C 2 H 6 ), пропан (CH 10 -CH 2 -СН 3 ), бутан (СН 3 -СН 2 -СН 2 -СН 3 ), пентан (СН 3 -СН 2 -СН 2 2 — CH 3 ), гексан, гептан, октан, нонан, додекан, ундекан и так далее.
Обратите внимание, что этот тип связи с углеродом и водородом представляет собой насыщенную связь (сигма-связь, обозначаемую как σ-связь). Также может быть ненасыщенная связь , где присутствует пи-связь (π-связь) вместе с сигма-связью, дающей углерод-углеродные двойные связи ( алкены ), или иметь две π-связи с сигма, дающей тройную углерод-углеродную связь ( алкины ), что очень сильно зависит от типа гибридизации между элементами.
Семейство алкенов : Этилен (CH 2 =CH 2 или C 2 H 4 ), пропилен (CH 2 =CH-CH 2 ), 1-бутилен (CH 2 190 2 -1 CH =CH- СН 3 ), 2-бутилен (СН 3 -СН=СН-СН 3 ) и так далее. (Обратите внимание, что 1-бутилен и 2-бутилен являются изомерами бутилена).
Углеводороды алкиновые : Этин (CH≡CH или C 2 H 2 ), пропин (CH≡C-CH 3 ), 1-бутин (CH≡C-CH 1-CH 903 ), 2-бутин (CH 3 -CH≡CH-CH 3 ) и так далее.
Что такое ископаемое топливо и откуда оно берется?
Ископаемое топливо – это в основном сырая нефть, природный газ и уголь, состоящие из углерода, водорода, азота, серы, кислорода и других минералов (рис. 1, ссылка). Общепринятая теория состоит в том, что эти углеводороды образуются из остатков живых организмов, называемых планктонами (крошечными растениями и животными), которые существовали в юрскую эпоху. Планктоны были погребены глубже под тяжелыми слоями отложений в мантии Земли из-за сжатия из-за огромного количества тепла и давления. Мертвые организмы разлагались без доступа кислорода, что превращало их в крошечные очаги нефти и газа. Затем сырая нефть и газ проникают в породы, которые в конечном итоге накапливаются в резервуарах. Нефтяные и газовые скважины находятся на дне наших океанов и под ними. Уголь в основном происходит из мертвых растений (ссылка).
Рис. 2. Элементный состав ископаемого топлива (ссылка).
Ученые также поставили под сомнение эту теорию. Недавнее исследование Nature Geoscience , проведенное Институтом Карнеги в сотрудничестве с российскими и шведскими коллегами, показало, что органическое вещество может не быть источником тяжелых углеводородов и что они могут уже существовать глубоко в недрах Земли. Эксперты обнаружили, что этан и другие тяжелые углеводороды могут быть получены, если условия давления и температуры можно сымитировать с теми, которые существуют глубоко внутри ядра Земли. Это означает, что углеводороды могут образовываться в верхней мантии, то есть в слое Земли между корой и ядром. Они демонстрируют это, подвергая метан лазерной термообработке в верхнем слое Земли, который затем превращается в молекулу водорода, этан, пропан, петролейный эфир и графит. Затем ученые подвергли этан тем же условиям, в которых обратимость произвела метан. Приведенные выше результаты показывают, что эти углеводороды могут быть созданы естественным путем без остатков растений и животных (ссылка).
3. Как из сырой нефти получают синтетический пластик?
Синтетический пластик производится в нефтехимической промышленности. Когда источник нефти под поверхностью Земли идентифицирован, в породах в земле бурятся отверстия для извлечения нефти.
Добыча нефти — Нефть перекачивается из-под земли на поверхность, где используются танкеры для транспортировки нефти на берег. Бурение нефтяных скважин также может осуществляться под океаном при поддержке платформ. Насосы разных размеров могут производить от 5 до 40 литров масла за ход (рис. 1).
Переработка нефти — Нефть перекачивается по трубопроводу, длина которого может составлять тысячи миль, и транспортируется на нефтеперерабатывающий завод (рис. 1). Разлив нефти из трубопровода во время перекачки может иметь как немедленные, так и долгосрочные последствия для окружающей среды, но для предотвращения и сведения к минимуму этого риска принимаются меры безопасности.
Рисунок 3: Фракционная перегонка сырой нефти
Перегонка сырой нефти и производство нефтехимической продукции — Сырая нефть представляет собой смесь сотен углеводородов, которая также содержит некоторое количество растворенных в ней твердых и некоторых газообразных углеводородов из семейства алканов (в основном это CH 4 и C 2 H 6 , но это может быть C 3 H 8 или C 4 H 10 ). Сырая нефть сначала нагревается в печи, затем полученная смесь в виде пара подается в колонну фракционной перегонки. Колонна фракционной перегонки разделяет смесь на разные отсеки, называемые фракциями. В дистилляционной колонне существует температурный градиент, когда верх холоднее основания. Смесь жидкой и паровой фракций разделяется в колонне в зависимости от их веса и температуры кипения (температура кипения – это температура, при которой жидкая фаза переходит в газообразную). Когда пары испаряются и встречаются с жидкой фракцией, температура которой ниже точки кипения пара, она частично конденсируется. Эти пары испаряющейся сырой нефти конденсируются при различной температуре в колонне. Пары (газы) наиболее легких фракций (бензин и нефтяной газ) стекают в верх колонны, жидкие фракции средней массы (керосиновые и дизельные дистилляты) задерживаются в середине, более тяжелые жидкости (называемые газойлями) отделяются ниже вниз , а самые тяжелые фракции (твердые вещества) с наиболее высокими температурами кипения остаются в основании колонны.
Каждая фракция в колонке содержит углеводороды с одинаковым числом атомов углерода, молекулы меньшего размера находятся вверху, а молекулы большей длины ближе к низу колонки (ссылка). Таким образом, нефть разлагается на нефтяной газ, бензин, парафин (керосин), нафту, светлую нефть, тяжелую нефть и т. д.
После этапа дистилляции полученные углеводороды с длинной цепью превращаются в углеводороды, которые затем могут быть превращены во многие важные химические вещества, которые мы используем для получения широкого спектра продуктов, от пластика до фармацевтических препаратов.
Крекинг углеводородов является основным процессом, который расщепляет смесь сложных углеводородов на более простые низкомолекулярные алкены/алканы (плюс побочные продукты) с помощью высокой температуры и давления.
Крекинг может осуществляться двумя способами: паровой крекинг и каталитический крекинг.
Паровой крекинг использует высокую температуру и давление для разрыва длинных цепей углеводородов без катализатора, в то время как каталитический крекинг добавляет катализатор, что позволяет процессу происходить при более низких температурах и давлениях.
Сырье, используемое в нефтехимической промышленности, в основном представляет собой нафту и природный газ, получаемые в результате нефтепереработки в нефтехимическом сырье. Паровой крекинг использует сырье из смеси углеводородов различных фракций, таких как газы-реагенты (этан, пропан или бутан) из природный газ или жидкости ( нафта или газойль ) (рис. 4).
Рисунок 4: Различные химические вещества, полученные из ископаемого топлива после переработки нефти.
(Нафта представляет собой смесь углеводородов C 5 и C 10 , полученную при перегонке сырой нефти).
Например, декановый углеводород расщепляется на такие продукты, как пропилен и гептан, где первый затем используется для производства поли(пропилена) (рис. 5).
Рис. 5. Схема крекинга декана с превращением в пропилен и гептан.
Молекулы сырья превращаются в мономеры, такие как этилен, пропилен, бутен и другие. Все эти мономеры содержат двойные связи, так что атомы углерода могут впоследствии реагировать с образованием полимеров.
Полимеризация — углеводородные мономеры затем соединяются друг с другом по механизму химической полимеризации для получения полимеров. В процессе полимеризации образуются густые вязкие вещества в виде смол, которые используются для изготовления пластмассовых изделий. Если мы посмотрим здесь на случай мономера этилена; этилен — газообразный углеводород. Когда он подвергается воздействию тепла, давления и определенного катализатора, он объединяется в длинные повторяющиеся углеродные цепи. Эти соединенные молекулы (полимер) представляют собой пластиковую смолу, известную как полиэтилен (ПЭ).
Производство пластика на основе полиэтилена – полиэтилен перерабатывается на заводе для производства пластиковых гранул. Гранулы засыпают в реактор, расплавляют в густую жидкость и отливают в форму. Жидкость остывает, затвердевает и превращается в твердый пластик, из которого получается готовый продукт. Переработка полимера также включает в себя добавление пластификаторов, красителей и антипиренов.
Типы полимеризации
Синтетический пластик производится в результате реакции, известной как полимеризация, которая может осуществляться двумя различными способами:
Полимеризация присоединением : Синтез включает соединение мономеров в длинную цепь. Один мономер соединяется со следующим и так далее, когда вводится катализатор, в процессе, известном как полимеры с ростом цепи, добавляя по одному мономерному звену за раз. Считается, что некоторые реакции аддитивной полимеризации не создают побочных продуктов, и реакцию можно проводить в паровой фазе (т.е. в газовой фазе), диспергированной в жидкости. Примеры: полиэтилен, полипропилен, поливинилхлорид и полистирол.
Конденсационная полимеризация : В этом случае два мономера объединяются в димер (две единицы) с выделением побочного продукта. Затем димеры могут соединяться, образуя тетрамеры (четыре единицы) и так далее. Эти побочные продукты необходимо удалить для успеха реакции. Наиболее распространенным побочным продуктом является вода, которая легко обрабатывается и утилизируется. Побочные продукты также могут быть ценным сырьем, которое возвращается обратно в поток сырья.
Примеры: нейлон (полиамид), полиэстер и полиуретан.
Пластик часто изготавливают из лигроина. Этилен и пропилен, например, являются основным сырьем для пластика на нефтяной основе, получаемым из нафты.
Что такое нафта?
Существуют различные типы нафты. Это термин, используемый для описания группы летучих смесей жидких углеводородов, полученных путем перегонки сырой нефти. Это смесь углеводородов от C 5 до C 10 .
Нафта подвергается термическому разложению при высокой температуре (~800 °C) в установке парового крекинга в присутствии паров воды, где она расщепляется на легкие углеводороды, известные как основные промежуточные продукты. Это олефины и ароматические соединения. Среди олефинов С 2 (этилен), С 3 (пропилен), С 4 (бутан и бутадиен). Ароматические соединения состоят из бензола, толуола и ксилола. Эти маленькие молекулы связаны друг с другом в длинные молекулярные цепи, называемые полимерами. Когда полимер выходит из химической фабрики, он все еще не в виде пластика — он в виде гранул или порошков (или жидкостей). Прежде чем они смогут стать пластиком для повседневного использования, они должны пройти ряд преобразований. Их месят, нагревают, плавят и охлаждают в объекты различной формы, размера, цвета с точными свойствами в соответствии с обрабатывающими трубками.
Например, для полимеризации этилена в полиэтилен (ПЭ) добавляют инициаторы для запуска цепной реакции, и только после образования ПЭ его направляют на переработку путем добавления некоторых химикатов (антиоксидантов и стабилизаторов). После этого экструдер превращает ПЭ в нити, после чего измельчители превращают его в гранулы ПЭ. Затем фабрики переплавляют их в конечные продукты.
Основным ингредиентом большинства пластиковых материалов является производное сырой нефти и природного газа.
Существует множество различных типов пластмасс: прозрачные, мутные, однотонные, гибкие, жесткие, мягкие и т. д.
Изделия из пластика часто представляют собой полимерную смолу, которая затем смешивается со смесью добавок (см. ). Добавки важны, поскольку каждая из них используется для придания пластику целевых оптимальных свойств, таких как прочность, гибкость, эластичность, цвет, или для того, чтобы сделать его более безопасным и гигиеничным для использования в конкретном случае (ссылка).
Тип пластика, из которого изготовлен продукт, иногда можно определить по номеру на дне пластикового контейнера. Некоторые из основных типов пластика и исходный мономер приведены ниже (таблица 1). В этой таблице показаны типы пластика и мономеры, входящие в его состав.
Таблица 1. Основные типы полимеров, мономеры и их химические структуры
Идентификационный код смолы | Полимеры | Мономеры |
♳ ПИТ | Полиэтилентерефталат (ПЭТФ) | Этиленгликоль и диметилтерефталат |
♴ ПЭВП | Полиэтилен высокой плотности (ПЭВП) | Этилен (СН 2 =СН 2 ) *(меньшее разветвление между полимерными цепями) |
♵ ПВХ | Поливинилхлорид (ПВХ) | Винилхлорид (CH 2 = CH-Cl) |
♶ ПЭНП | Полиэтилен низкой плотности (ПЭНП) | Этилен (СН 2 =СН 2 ) *(чрезмерное разветвление) |
♷ ПП | Полипропилен (ПП) | Пропилен (CH 3 -CH=CH 2 ) |
♸ ПС | Полистирол (ПС) | Стирол |
♹ Другие | Другие пластмассы, включая акрил, поликарбонаты, полимолочную кислоту (PLA), волокна, нейлон | Для конкретного полимера используются разные мономеры. Например, PLA из молочной кислоты |
*Мономер, используемый в ПЭНП и ПЭВП, представляет собой этилен, но существует разница в степени разветвления.
Мезоамериканские культуры (ольмеки, майя, ацтеки, 1500 г. до н. э.) использовали натуральный латекс и каучук, чтобы сделать контейнеры и одежду водонепроницаемыми.
Александр Паркес (Великобритания, 1856 г.) запатентовал первый искусственный биопластик, названный паркезин, сделанный из нитрата целлюлозы. Паркезин был твердым, гибким и прозрачным пластиком. Джон Уэсли Хаятт (США, 1860-е гг.) разбогател на изобретении Паркса. Братья Хаятт улучшили пластичность пластика нитрата целлюлозы, добавив камфору, и переименовали пластик в Celluloid. Цель состояла в том, чтобы производить бильярдные шары, которые до этого делались из слоновой кости. Многие считают изобретение самым ранним примером искусственного биопластика (ссылка).
Первым по-настоящему синтетическим пластиком был бакелит, изготовленный из фенола и формальдегидной смолы. Лео Бэкеланд (Бельгия, 1906 г.) изобрел бакелит, который был назван «Национальным историческим химическим памятником», поскольку он полностью произвел революцию во всех отраслях, присутствующих в современной жизни. Он обладает свойством высокой устойчивости к электричеству, теплу и химическим веществам. Обладает непроводящими свойствами, что крайне важно при конструировании электронных устройств, таких как корпуса радиоприемников и телефонов. (ссылка).
До рождения пластика мы использовали дерево, металл, стекло и керамику, а также материалы животного происхождения, такие как рог, кость и кожа.
Для хранения использовались формовочные глины (гончарные изделия), смешанные со стеклом, что означало, что контейнеры часто были тяжелыми и хрупкими.
Появились натуральные материалы из коры каучукового дерева — камедь (латексная смола), смесь была липкой и пластичной, но непригодной для хранения.
В 18 веке Чарльз Гудиер случайно открыл каучук — он добавил свойство, чтобы вернуться к исходной форме (ссылка).
Да, можно создать пластик из источников, отличных от нефти.
Хотя сырая нефть является основным источником углерода для современного пластика, множество вариантов производятся из возобновляемых материалов. Пластик, изготовленный без масла, продается как пластик на биологической основе или биопластик. Они сделаны из возобновляемой биомассы, такой как:
- Лигнин, целлюлоза и гемицеллюлоза,
- Терпены,
- Растительные жиры и масла,
- Углеводы (сахар из сахарного тростника и т.д.)
- Переработанные пищевые отходы
- Бактерии
Однако следует отметить, что биопластик не всегда автоматически является более устойчивой альтернативой. Биопластики различаются по способу их распада, и биопластики, как и любой другой материал, требуют ресурсов для своего производства.
Биопластики, такие как PLA, например, представляют собой биоразлагаемый материал, который будет разлагаться в определенных условиях окружающей среды, но может не разлагаться в любых климатических условиях. Поэтому требуется поток отходов пластика на основе PLA. В случае PLA это чувствительный полиэстер, который начинает разлагаться во время процедуры переработки и может в конечном итоге загрязнить существующий поток переработки пластика (ссылка).
Но биопластики могут иметь множество применений, если они разработаны с учетом надлежащего потока отходов.
Биопластики являются потенциальными материалами для изготовления одноразового пластика, необходимого для изготовления биоразлагаемых бутылок и упаковочных пленок. Например, в 2019 году исследователь из Университета Сассекса создал прозрачную пластиковую пленку из отходов рыбьей кожи и водорослей; под названием MarinaTex (Ref). Биополимеры также исследовались для медицинских применений, таких как контролируемое высвобождение лекарств, упаковка лекарств и рассасывающиеся хирургические нити (ссылка, ссылка).
Морис Лемуань (Франция, 19 лет)26) открыл первый биопластик, изготовленный из бактерий, полигидроксибутират (ПГБ) из бактерии Bacillus megaterium. Поскольку бактерии потребляют сахар, они будут производить полимеры (ссылка). Важность изобретения Лемуана игнорировалась до тех пор, пока разразившийся в середине 1970-х годов нефтяной кризис не подстегнул интерес к поиску заменителей нефтепродуктов.
Генри Форд (США, 1940 г.) использовал биопластик из соевых бобов для изготовления некоторых автомобильных деталей. Ford прекратил использование соевого пластика после Второй мировой войны из-за избытка дешевой нефти (ссылка).
Разработки в области метаболической и генной инженерии расширили исследования биопластиков, и стало известно о применении многочисленных типов биопластиков, особенно ПГБ и полигидроксиалканоатов (ПГА), хотя постоянно происходит много других интересных разработок.
Сравнение трех методов выделения иммуноглобулина А из желчи индейки
Сохранить цитату в файл
Формат: Резюме (текст)PubMedPMIDAbstract (текст)CSV
Добавить в коллекции
- Создать новую коллекцию
- Добавить в существующую коллекцию
Назовите свою коллекцию:
Имя должно содержать менее 100 символов
Выберите коллекцию:
Не удалось загрузить вашу коллекцию из-за ошибки
Повторите попытку
Добавить в мою библиографию
- Моя библиография
Не удалось загрузить делегатов из-за ошибки
Повторите попытку
Ваш сохраненный поиск
Название сохраненного поиска:
Условия поиска:
Тестовые условия поиска
Электронная почта: (изменить)
Который день? Первое воскресеньеПервый понедельникПервый вторникПервая средаПервый четвергПервая пятницаПервая субботаПервый деньПервый будний день
Который день? ВоскресеньеПонедельникВторникСредаЧетвергПятницаСуббота
Формат отчета: SummarySummary (text)AbstractAbstract (text)PubMed
Отправить максимум:
1 шт. 5 шт. 10 шт. 20 шт. 50 шт. 100 шт. 200 шт.
Отправить, даже если нет новых результатов
Необязательный текст в электронном письме:
Создайте файл для внешнего программного обеспечения для управления цитированием
Сравнительное исследование
. 1993 г., октябрь-декабрь; 37(4):1026-31.
П. К. Битэм 1 , Б. Глик, Дж. В. Дик
принадлежность
- 1 Департамент сельскохозяйственных исследований США, Керрвилл, Техас 78028.
- PMID: 8141729
Сравнительное исследование
P K Beetham et al.
Авиан Дис. 1993 окт.-дек.
. 1993 г., октябрь-декабрь; 37(4):1026-31.
Авторы
П. К. Битэм 1 , Б. Глик, Дж. В. Дик
принадлежность
- 1 Департамент сельскохозяйственных исследований США, Керрвилл, Техас 78028.
- PMID: 8141729
Абстрактный
IgA индеек выделяли из желчи тремя способами: осаждение сульфатом аммония, экстракция полиэтиленгликолем (ПЭГ) и экстракция лямбда-каррагинаном. Выделенные фракции иммуноглобулинов сравнивали с помощью двойной диффузии, иммуноэлектрофореза (ИЭ) и твердофазного иммуноферментного анализа (ИФА). Результаты показали, что всех трех методов выделения достаточно для начальной стадии выделения для очистки фракции иммуноглобулина в желчи индейки. Из-за контаминации IgG, IgM и других высокомолекулярных белков необходима дальнейшая очистка с помощью колоночной хроматографии для выделения чистого IgA. Метод экстракции лямбда-каррагинаном, по-видимому, является методом выбора для осаждения фракции иммуноглобулина в желчи из-за высокой активности антител после экстракции. Подобно осаждению сульфатом аммония, экстракция лямбда-каррагинаном и ПЭГ недостаточны в качестве одностадийных методов очистки и должны использоваться в качестве начальной стадии очистки IgA.
Похожие статьи
Очистка и идентификация иммуноглобулина индейки-А.
Lim OJ, Maheswaran SK. Лим О.Дж. и др. Авиан Дис. 1977 г., октябрь-декабрь; 21 (4): 675–96.
Авиан Дис. 1977. PMID: 606225
Выделение иммуноглобулина индейки-А.
Домс Дж. Э., Саиф Ю. М., Питтс Дж. Э. Dohms JE, et al. Авиан Дис. 1978 г., январь-март; 22(1):151-6. Авиан Дис. 1978 год. PMID: 417711
Выделение и характеристика иммуноглобулинов G и М индейки.
Саиф Ю.М., Домс Дж.Э. Саиф Ю.М. и др. Авиан Дис. 1976 г., январь-март; 20(1):79-95. Авиан Дис. 1976 год. PMID: 816343
Своеобразная секреторная система IgA выявлена у кур.
Ватанабе Х., Кобаяши К. Ватанабэ Х. и др. Дж Иммунол.