Получение чугуна из стали – Получение стали из чугуна » Привет Студент!

38 Получение чугуна. Исходные материалы. Сущность процесса доменной плавки

Процесс получения чугуна из железных руд называют доменным.

Исходные материалы:

— железные руды (магнитный, красный, бурый и шпатовый железняк+комплексные железные руды для улучшения св-в чугуна)

— топливо — кокс – топливо+нагрев печного пространства до необходимой температуры; обеспечивает восстановление окислов железа. Возможна частичная замена кокса газом или мазутом

— флюсы — известняк CaCO3 или доломитизированный известняк, содержащий CaCO3 и MgCO3, так как в шлак должны входить основные оксиды (CaC, MgO), которые необходимы для удаления серы из металла. В их состав входит минимальное количество вредных примесей.

Получение чугуна в доменной печи заключается в восстановлении железа из оксидов железной руды. Чтобы отделить примеси, содержащиеся в руде и коксе (продукте переработки каменного угля), их нужно расплавить, однако температура плавления у них намного выше, чем у чугуна.Ее понижают, вводя флюсы (плавни), чаще всего — известняк.

Загружаемая сверху в доменную печь шихта, содержащая железную руду, кокс и флюсы, постепенно перемещается вниз и попадает в зоны все более высокого нагрева. В нижней части домны (горне) температура возрастает до 1 600 °С. Сюда стекают жидкие чугун и шлак. Более легкий шлак скапливается над чугуном. Периодически шлак и чугун выпускают и направляют для дальнейшей переработки.

Вдуваемый в доменную печь воздух, нагретый до 700…800°С, обеспечивает горение кокса с образованием окиси углерода (СО), которая отнимает кислород у оксидов железа. При температуре около 1 000 “С имеет место науглероживание восстановленного железа и превращение его в чугун:

Пустая порода и флюсы также претерпевают определенные превращения и переходят в шлак. Азот воздуха, СО и С02 образуют доменный газ, удаляемый из домны через колошник по газопроводам.

В материалах шихты имеются вещества, дающие чугуну полезные (марганец, кремний) и вредные (сера, фосфор) примеси. Сера может быть удалена из чугуна при сильнооснбвном шлаке и высокой температуре процесса. Фосфор же удалить из чугуна нельзя. Чтобы чугун не содержал фосфора, шихта должна быть свободна от Р205.

39 Устройство и работа доменной печи схема

Доменная печь состоит: из колошника 1, куда при опускании колошникового затвора 2 поступают руда, плавень и топливо, шахты 3, в которой протекают реакции восстановления железа, «распара» 4, где заканчивается шлакообразование, и «заплечиков» 5, по которым загруженные материалы постепенно опускаются в горн 6, превращаясь в расплавленный чугун и расплавленный шлак. Горн выкладывают из высококачественного шамотного кирпича; снаружи он покрыт стальными листании и охлаждается водой. Доменная печь имеет стальной сварной кожух. Топливо сгорает у (воздушных фурм 7, к которым через кольцевую воздушную трубу 8 и отходящие от нее рукава подводится нагретый воздух. В нижней части горна имеется чугунная летка» 10 — отверстие для выпуска чугуна. Выше расположена «шлаковая летка» 11 для выпуска шлака. Горячие газы, образующиеся в печи, отводят через газопроод 12, очищают их и используют для подогрева воздуха, подаваемого в печь, и для других нужд завода (для нагревания мартеновских печей, в которых идет передел чугуна на сталь).

Руду, плавень (флюс) и кокс загружают в доменную печь сверху чередующимися слоями. По мере сгорания кокса и расплавления слоев, находящихся внизу, вся масса в печи постепенно опускается, сверху же загружают все новые порции материалов. Горение в доменной печи поддерживается воздухом, который вдувают под давлением около 1,5 ати, предварительно нагревая до 800—900°. Подогревают воздух в особых воздухо­нагревателях (устаревшее название «каупер»), представляющих собой круглую башню со стальным кожухом и внутренней кладкой из огнеупорного кирпича с вертикальными каналами.

Отходящие из доменной печи газы содержат значительное количество окиси углерода (СО). При горении она выделяет большое количество тепла. Газы очищают от пыли в специальном устройстве и направляют в воздухонагреватель, где СО сгорает, нагревая огнеупорную кладку. Затем в воздухонагреватель нагнетают воздух. Проходя через нагретые каналы огнеупорной кладки, воздух подогревается, газы же из доменной печи в это время направляются в другой воздухонагреватель. Материалы, загруженные в верхнюю часть доменной печи, высушиваются и постепенно прогреваются. В нижележащих зонах печи окись железа (Fe2O3 или Fe3O4), содержащаяся в руде, восстанавливается окисью углерода до закиси железа (FeO). Дальше закись железа восстанавливается до чистого железа: в средних и нижних зонах доменной печи появляются его первые губчатые комочки. Восстановленное железо, опускаясь в печи, постепенно насыщается углеродом. Получившийся карбид железа (Fe3C) растворяется в железе при высоких температурах и науглероживает его, понижая температуру плавления сплава. Поэтому в верхней части «заплечиков» при t = 1250—1300° появляются первые капли жидкого сплава, которые стекают вниз, еще больше насытившись углеродом и растворив часть кремния и марганца. Так образуется. чугун, содержащий до 3,5—4,0% углерода и стекающий в расплавленном состоянии на дно горна. Одновременно идет реакция между пустой породой и плавнями, в результате которой образуется жидкий шлак, также стекающий вниз. Шлак всплывает поверх чугуна, защищая его от окисления. Время от времени шлак сливают через шлаквую летку, чугун же периодически выпускают через нижнюю летку. Таким образом осуществляется непрерывный процесс выплавки чугуна. Для получения 1 т чугуна (передельного) примерно расходуется: железной руды 1,6 г, известняка 0,4 т, марганцевой руды 0,1 т,кокса 0,9 т.

studfiles.net

Из истории получения чугуна и стали.

История производства и использования железа берет свое начало в доисторической эпохе, скорее всего, с использования метеоритного железа. Выплавка в сыродутной печи применялась в 12 веке до н. э. в Индии, Анатолии и на Кавказе. Также отмечается использование железа при выплавке и изготовлении орудий и инструментов в 1200 году до н. э. в Африке южнее Сахары. Уже в первом тысячелетии до н. э. использовалось кованное железо.

Метеоритное железо

Использование железа началось намного раньше, чем его производство. Иногда находили куски серовато-чёрного металла, который, перекованный в кинжал или наконечник копья, давал оружие более прочное и пластичное, чем бронза, и дольше держал острое лезвие. Затруднение состояло в том, что этот металл находили только случайно. Теперь мы можем сказать, что это было метеоритное железо.

Сыродутная печь

Первым устройством для получения железа из руды была одноразовая сыродутная печь. При огромном количестве недостатков, долгое время это был единственный способ получить металл из руды.

Впервые железо научились обрабатывать народы Анатолии. Древнегреческая традиция считала открывателем железа народ халибов, для которых в литературе использовалось устойчивое выражение «отец железа», и само название народа происходит именно от греческого слова Χάλυβας («железо»).

«Железная революция» началась на рубеже I тысячелетия до н. э. в Ассирии. С VIII века до н.э. сварное железо быстро стало распространяться в Европе, в III веке до н. э. вытеснило бронзу в Галлии, во II веке новой эры появилось в Германии, а в VI веке нашей эры уже широко употреблялось в Скандинавии и в племенах, проживающих на территории будущей Руси. В Японии железный век наступил только в VIII веке нашей эры.

Первым шагом в зарождающейся чёрной металлургии было получение железа путём восстановления его из окиси. Руда перемешивалась с древесным углем и закладывалась в печь. При высокой температуре, создаваемой горением угля, углерод начинал соединяться не только с атмосферным кислородом, но и с тем, который был связан с атомами железа.

После выгорания угля в печи оставалась так называемая крица — комок вещества с примесью восстановленного железа. Крицу потом снова разогревали и подвергали обработке ковкой, выколачивая железо из шлака. Долгое время в металлургии железа именно ковка была основным элементом технологического процесса, причём, с приданием изделию формы она было связана в последнюю очередь. Ковкой получался сам материал.

Сварное оружие

Сталь производилась уже из готового железа путём науглероживания последнего. При высокой температуре и недостатке кислорода углерод, не успевая окисляться, пропитывал железо. Чем больше было углерода, тем твёрже оказывалась сталь после закалки.

Как можно было заметить, ни один из получаемых сплавов не обладает таким свойством, как упругость. Железный сплав может приобрести это качество, только если в нем возникает чёткая кристаллическая структура, что происходит, например, в процессе застывания из расплава.

Проблема древних металлургов заключалась в том, что расплавить железо они не могли. Для этого требуется разогреть его до 1540 градусов, в то время как технологии древности позволяли достичь температур в 1000−1300 градусов.

Т

Выплавка железа. Средневековая гравюра.

аким образом, ни железо, ни сталь сами по себе для изготовления оружия не годились. Орудия и инструменты из чистого железа выходили слишком мягкими, а из чистой стали — слишком хрупкими. Потому, чтобы изготовить, например, меч, приходилось делать бутерброд из двух пластин железа, между которыми закладывалась стальная пластина. При заточке мягкое железо стачивалось и появлялась стальная режущая кромка. Такое оружие называлось сварным. Общими недостатками этой технологии являлись излишняя массивность и недостаточная прочность изделий. Железу можно было придать какую угодно остроту, но и тупилась мягкая режущая кромка из железа почти мгновенно. Сталь же точиться не желала — режущая кромка крошилась.

Единственной мерой, позволяющей достичь сочетания остроты и твёрдости в рамках технологии сварки, была закалка изделия уже после его заточки. Недостатком такого метода было то, что заточка оказывалась возможна лишь однажды. Когда стальное лезвие иззубривалось и тупилось, весь клинок приходилось перековывать. Тем не менее, именно освоение техники сварки, несмотря на все её недостатки, произвело настоящий переворот во всех сферах человеческой деятельности. Сварные орудия были вполне функциональны и, при том, общедоступны. Только с их распространением каменные орудия оказались окончательно вытеснены, и наступил век металла.

Железные орудия решительно расширили практические возможности человека. Стало возможным, например, строить рубленные из брёвен дома – железный топор валил дерево уже в 3 раза быстрее, чем медный, и в 10 раз быстрее, чем каменный. Широкое распространение получило строительство из тёсаного камня. Такое строительство было возможно и в эпоху бронзы, но большой расход сравнительно мягкого и дорогого металла решительно ограничивал такие эксперименты. Значительно расширились также и возможности земледельцев.

studfiles.net

Производство чугуна и стали

ТОЛЬЯТТИНСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Машиностроительный факультет

Кафедра «Резание, станки и инструмент»

РЕФЕРАТ

«Технология производства чугуна и стали»

Студент: Сергеев Андрей

Группа: М – 104

Преподаватель: Малышев В.И.

Тольятти — 1999 г.

1.Производство чугуна и стали.

Железо имело промышленное применение уже до нашей эры. В древние времена его получали в пластичном состоянии в горнах. Шлак отделяли, выдавливая его из губчатого железа, ударами молота.

По мере развития техники производства железа постепенно повышалась температура, при которой велся процесс. Металл и шлак стали плавиться; стало возможным разделять их гораздо полнее. Но одновременно в металле повышалось содержание углерода и других примесей, — металл становился хрупким и нековким. Так появился чугун.

Позднее научились перерабатывать чугун; зародился двухступенчатый способ производства железа из руды. В принципе он сохраняется до настоящего времени: современная схема получения стали состоит из доменного процесса, в ходе которого из руды получается чугун, и сталеплавильного передела, приводящего к уменьшению в металле количества углерода и других примесей.

Современный высокий уровень металлургического производства основан на теоретических исследованиях и открытиях, сделанных в различных странах, и на богатом практическом опыте. Немалая доля в этом процессе принадлежит русским ученым. Например, российские ученые первыми широко применили природный газ для доменной плавки.

2. Производство чугуна.

2.1. Исходные материалы.

Железные руды. Главный исходный материал для производства чугуна в доменных печах – железные руды. К ним относят горные породы, содержащие железо в таком количестве, при котором выплавка становится экономически выгодной.

Железная руда состоит из рудного вещества и пустой породы. Рудным веществом чаще всего являются окислы, силикаты и карбонаты железа. А пустая порода обычно состоит из кварцита или песчаника с примесью глинистых веществ и реже – из доломита или известняка.

В зависимости от рудного вещества железные руды бывают богатыми, которых используют непосредственно, и бедными, которых подвергают обогащению.

В доменном производстве применяют разные железные руды.

Красный железняк (гематит) содержит железо в виде безводной окиси железа. Она имеет разную окраску( от темно-красной до темно-серой). Руда содержит много железа(45-65 %) и мало вредных примесей. Восстановим ость железа из руды хорошая.

Бурый железняк содержит железо в виде водных окислов. В нем содержится 25- 50% железа. Окраска меняется от желтой до буро-желтой. Пустая порода железняка глинистая иногда кремнисто-глиноземистая.

Магнитный железняк содержит 40-70% железа в виде закиси-окиси железа.

руда обладает хорошо выраженными магнитными свойствами, имеет темно-серый или черный с различными оттенками цвет. Пустая порода руды кремнеземистая с примесями других окислов. Железо из магнитного железняка восстанавливается труднее, чем из других руд.

Шпатовый железняк (сидерит) содержит железо в виде углекислой соли. В этом железняке содержится 30-37 % железа. Сидерит имеет желтовато-белый и грязно-серый цвет. Он легко окисляется и переходит в бурый железняк. Из всех железных руд он обладает наиболее высокой восстановимостью.

Марганцевые руды содержат 25-45% марганца в виде различных окислов марганца. Их добавляют в шихту для повышения в чугуне количества марганца.

2.2. Производство чугуна в доменной печи.

Выплавка чугуна производится в огромных доменных печах, выложенных из огнеупорных кирпичей достигающих 30 м высоты при внутреннем диаметре около 12 м.

Разрез доменной печи схематически изображен на рисунке.

Верхняя ее половина носит название шахты и заканчивается наверху отверстием – калашником, которая закрываетсяподвижной колонкой – кколашниковым затвором. Самая широкая часть печи называется распаром, а нижняя часть – горном. Через специальные отверстия в горне(фурмы) в печать вдувается горячий воздух или кислород.

Доменную печь загружают сначала коксом, а затем послойно агломератом и коксом. Агломерат – это определенным образом подготовленная руда, спеченная с флюсом. Горение и необходимая для выплавки чугуна температура поддерживаются вдуванием в горн подогретого воздуха или кислорода. Последний поступает в кольцевую трубу, расположенную вокруг нижней части печи, а из нее по изогнутым трубкам через фурмы в горн. В горне кокс сгорает, образуя СО2, который, поднимаясь вверх и проходя сквозь слои наколенного кокса, взаимодействует с ним и образует СО. Образовавшийся оксид углерода и восстонавливает большую часть руды, переходя снова в СО2.

Процесс восстановления руды происходит главным образом в верхней части шахты. Его можно выразить суммарным уравнением:

Fe2O3 + 3CO = 2Fe + 3CO2

Пустую породу в руде образуют, главным образом диоксид кремния SiO2.

Это – тугоплавкое вещество. Для превращения тугоплавких примесей в более легкоплавкие соединения к руде добавляются флюс . Обычно в качестве флюса используют CaCo3. При взаимодействии его с SiO2 образуется CaSiO2, легко отделяющийся в виде шлака.

При восстановлении руды железо получается в твердом состоянии. Постепенно оно опускается в более горячую часть печи – распар — и растворяет в себе углерод; образуется чугун. Последний плавится и стекает в нижнюю часть горна, а жидкие шлаки собираются на поверхности чугуна, предохраняя его от окисления. Чугун и шлаки выпускают по мере накопления через особые отверстия, забитые в остальное время глиной.

Выходящие из отверстия печи газы содержат до 25% СО. Их сжигают в особых аппаратах-кауперах, предназначенных для предварительного нагревания вдуваемого в печь воздуха. Доменная печь работает непрерывно. По мере того как верхние слои руды и кокса опускаются, в печь добавляют новые их порции. Смесь руды и кокса доставляется подъемниками на верхнюю площадку печи и загружается в чугунную воронку, закрытую снизу колошниковым затвором. При опускании затвора смесь попадает в печь. Работа печи продолжается в течение нескольких лет, пока печь не потребует капитального ремонта.

Процесс выплавки может быть ускорен путем применения в доменных печах кислорода. При вдувании в доменную печь обогащенного кислородом воздуха предварительный подогрев его становится излишним, а значит, отпадает необходимость в громоздких и сложных кауперах и весь процесс упрощается. Вместе с тем производительность печи повышается и уменьшается расход топлива. Такая доменная печь дает в 1,5 раза больше железа и требует кокса на ¼ меньше чем обычная.

3 Производство стали.

В стали по сравнению с чугуном содержится меньше углерода, кремния, серы и фосфора. Для получения стали из чугуна необходимо снизить концентрацию веществ путем окислительной плавки.

В современной металлургической промышленности сталь выплавляют в основном в трех агрегатах: конвекторах, мартеновских и электрических печах.

3.1. Производство стали в конверторах.

Конвертор представляет собой сосуд грушевидной формы. Верхнюю часть называют козырьком или шлемом. Она имеет горловину, через которую жидкий чугун и сливают сталь и шлак. Средняя часть имеет цилиндрическую форму. В нижней части есть приставное днище, которое по мере износа заменяют новым. К днищу присоединена воздушная коробка, в которую поступает сжатый воздух.

Емкость современных конвекторов равна 60 – 100 т. и более, а давление воздушного дутья 0,3-1,35 Мн/м. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Перед заливкой чугуна конвектор поворачивают до горизонтального положения, при котором отверстия фурм оказываются выше уровня залитого чугуна. Затем его медленно возвращают в вертикальное положение и одновременно подают дутье, не позволяющее металлу проникать через отверстия фурм в воздушную коробку. В процессе продувки воздухом жидкого чугуна выгорают кремний, марганец, углерод и частично железо.

При достижении необходимой концентрации углерода конвектор возвращают в горизонтальное положение и прекращают подачу воздуха. Готовый металл раскисляют и выливают в ковш.

Бессемеровский процесс. В конвертор заливают жидкий чугун с достаточно высоким содержанием кремния (до 2,25% и выше), марганца (0,6-0,9%), и минимальным количеством серы и фосфора.

По характеру происходящей реакции бессемеровский процесс мож

mirznanii.com

Получение чугуна и стали | Справочник конструктора-машиностроителя

Почти половина разведанных мировых запасов железа пребывает на территории стран СНГ.
Добывалось и производилось чугуна и стали в существующем СССР больше целых в универсуме.
Основаниями этого достижения были : несовершенство устройств и невысокая надежность автоматов и оборудования ;
невысокое качество выплавляемых чугунов и сталей ;
большие территории ;
огромная протяженность путей и коммуникаций ;
невысокая эффективность сельского производства строительных и путевых произведений.
Всё это требовало значительно больше металла, чем в иных сторонах.
И, кроме того, зарытого металла в землице на строительствах, оставленного на драках, в лесках, болотах и на полях было больше всех в мире.


полуавтомат дает модель
Производство модели

Мартеновское производство менее производительное, чем конверторное, но лучше регулируется процесс, используются чугунные чушки и металлолом.
Мартен это регенеративная пламенная печь.
Газ сгорает над плавильным пространством, где создается температура 1750… 1800 o С.
Газ и дух предварительно подогреваются ( до 1200…1250 o С ) в регенераторах.
За счет тепла сгоревших газов, происходящих в трубу.
Два регенератора : один делает, а другой накапливает тепловую энергию.
Для интенсификации процесса ванну продувают кислородом.
Раскисление ванны проводят ферросилицием и феромарганцем в ванной, а окончательное – алюминием и ферросилицием в сталеразливочном ковше.

В итоге длительной продувки воздухом из кусков руды получались почти без примесей кусочки настоящего железа, которые сваривались между собой кузнечным способом в зону, которые далее использовались для производства необходимых человеку изделий.
Это технически чистое железо держало весьма немного углерода и немного примесей ( настоящий древесный уголек и хорошая руда ), поэтому оно хорошо ковалось и сваривалось и практически не корродировало.
Процесс выступал при относительно низкой температуре ( до 1100…1350 ° С ), м еталл не плавился, т. е. восстановление металла выступало в решительной фазе.
В итоге получалось ковкое ( рев ) железо.
Просуществовал этот способ до XIV века, а в несколько усовершенствованном облике до начала XX века, но был помалу вытеснен кричным переделом.

Производство стали в элек­тропечах.
Применение электри­ческой энергии в производстве стали даёт возможность дости­гать более высокой температуры и точнее её регулировать.
По­этому в электропечах выплав­ляют любые марки сталей, в том числе содержащие тугоплавкие металлы — вольфрам, молибден и др.
Потери легирующих эле­ментов в печках меньше, чем в остальных печках.
При плавке с кислородом ускоряется плав­ление шихты и особенно окис­ление углерода в жидкой шихте, Применение кислорода позволя­ет ещё более повысить качество электростали, так как в ней остаётся меньше растворённых газов и неметаллических включений.

В итоге получается чугун – сплав железа с углеродом.
Содержание углерода – более 2%.
Часть расплавленного чугуна идёт на производство стали.
Сталь же держит меньше углерода, поэтому боте плавна.
Её варят в конверторах.
Конвертор обладает емкостью до 60 тонн.
Снизу через расплав пропускают кислород, в итоге чего все примеси начинают выгорать, образуя оксиды.
Оксиды образуются газообразные и твёрдые.
Последние всплывают и удаляются из конвертора.
Все сии процессы экзотермические, и железо остаётся в расплавленном состоянии в течение 10 — 20 минут.
За это времечко в расплав можно добавить легирующие элементы ( хром и никель для коррозийной стойкости, вольфрам для твёрдости, марганец для упругости и т.п. ).

Сталь отличается от чугуна меньшим содержанием углерода и обязательных примесей — кремния, марганца, серы и фосфора.
Она хорошо обрабатывается давлением, располагает более высокую крепость и пластичность, чем чугун.
Главным сырьем для получения стали служат предельный чугун и металлический ломик.
Суть процесса переработки чугуна в сталь заключается в снижении содержания в чугуне примесей путем их окисления.
В реальное время сталь производится следующими главными способами : конвертерным, мартеновским и электросталеплавильным.
Производство стали в конвертерах.
Конвертер для производства стали представляет собой сосуд грушевидной фигуры, вращающийся стали, вращающийся на полуосях ( цапфах ).
Кожух конвертера изготовляется из листовой стали и выкладывается внутри огнеупорным кирпичиком.
Схема получения стали в конвертере приведена на узоре.

Чугуном называется сплав железа с углеродом, включающий более 2% углерода.
Кроме железа и углерода, в чугуне присутствуют обязательные при его получении примеси — кремний, марганец, фосфор и сера.
Чугун не куется, не обладает свойствами пластичности.
Пример из чугуна после разрыва почти не имеет удлинения и сужения.
Благодаря способности хорошо отливаться и наименьшей стоимости в сравнении со стальными изделиями чугун в машиностроении получил широкое применение.
Первыми тканями для получения чугуна являются железные руды, топливо ( кокс или древесный уголек ) и флюс ( известняк ).

Область применения подобных электродов — сварка поврежденных деталей и заварка дефектов в отливках из бесцветного и высокопрочного чугуна.
В случае надобности можно также сваривать соединения серого и высокопрочного чугуна со сталью.
Сварные соединения, сделанные этими электродами, располагают удовлетворительную обрабатываемость, плотность и довольно высокую крепость.
К способам, обеспечивающим получение в наплавленном металле низкоуглеродистой стали, можно также отнести механизированную сварку короткими участками электродной проволокой марок Св — 08ГС или Св — 08Г2С диаметром 0, 8..
1 мм в углекислом газе.
Мощность сварочного тока составляет 50 …
75 А, напряжение дуги 18 …
21 В, скорость сварки 10 …
12 м/ч.

Мифы о булате популярны во многом потому, что имеют под собой при всем при том, что и сильно искаженное заблуждениями, но вполне реальное основание.
Без сомнений, великий русский металлург Д.К. Чернов писал, что «…
самая добрейшая сталь, которая когда-либо, где-либо производилась, есть, без сомнения, булат.
«Однако не каждый узорчатый металл, называясь булатом, обладает свойствами сверхстали.
Неграмотно изготовленное, плохо прокованное узорчатое оружие …
не располагает иных добродетелей, кроме узора «и, как с досадой выразился один русский офицер в половине предыдущего века,» …
крайне не часто оправдывает непомерно высокую цену, за него заплачен — ную.
«Согласно выполненной в то время описи, в русской кавалерии было около 4000 узорчатых сабельных клинков, созданных в различных сторонах, в неодинаковое время и по различным технологиям.
Из них только 100 клинков соответствовали жестким запросам к качеству, предъявляемых к строевому оружию, и лишь четыре клинка, т.е. 0, 1 % от общего числа, превосходили по сво — им свойствам стальное, узорное оружие.
Итак, булат может располагать важнейшие по сравнению со сталью собственный — ства, но не каждый.
Для получения «сверхстали» нужно подбирать режимы обработки металла, предварительно осознав «идею булата».
Эта «идея» заключается в том, что разнородная, узорная сталь при обусловленной обработке переходит в иное качество, становясь как бы не просто сталью и даже не совершенно металлом.

Включенная в действие доменная печь функционирует непрерыв­но в течение нескольких лет.
Руду, кокс и флюсы периодически до­бавляют через верхнее отверстие ( колошник ) печи.
Также периоди­чески производится выпуск из нее чугуна и шлака — через любые 4 — 6 ч.
При этом 99 — 99, 8% железа переходит в чугун и только 0, 2 — 1, 0% — в шлак.
Кроме углерода в составе чугуна присутствуют элементы кремния, марганца, серы, фосфора и пр.
По назначению доменные чугуны разделяют на литейный и передельный.
Литейный чугун переплавляют, и из него отливают чугунные изделия.
Из пере­дельного чугуна получают сталь.
Он составляет около 90% всей вы­плавки чугуна.
В нем содержится повышенное количество углерода, 0, 3 — 1, 2% Si, 0, 2 — 1, 0% Mn, 0, 2 — 1, 0% Р, 0, 02 — 0, 07% 5.

Высокопрочные чугуны получают добавлением в сплав некоторых легирующих элементов ( магния, церия и др. ).
Серый чугун держит в своём составе почти весь углерод в виде графита, поэтому изгиб его имеет серебристо — серый тон.
Серый чугун хорошо обрабатывается режущим инструментом, поэтому он широко применяется как конструкционный материал.
Серый чугун дешевле стали, различается хорошими литейными свойствами, высокой износостойкостью, способностью гасить вибрации, хорошей обрабатываемостью.
Негативными его характеристиками являются пониженная крепость и тонкая хрупкость.

Великое значение для практики имеет свойство модификации γ — Fе растворять до 2, 14% углерода при температуре 1147°С с образо­ванием твердого раствора и с внедрением атомов углерода в крис­таллическую решетку.
При повышении и снижении температуры растворимость углерода в модификации γ — Fе уменьшается.
Крепкий раствор углерода и прочих элементов ( азот, водород ) в модифика­ции γ — Fе называется аустенитом ( по имени ученого Р. Аустена ), почти в 100 раз меньше углерода может открыться в модифика­ции α — Fе, причем крепкие растворы углерода и прочих элементов в модификации α — Fе называют ферритом.

При всем при том, что в коллекционных образцах оружия нередок и так называемый «дикий» узор Дамаска, образующийся в результате довольно беспорядочного перемешивания металла в результате ручной ковки, мастера все же предпочитают ковать клинки из «штемпельного» дамаска с его регулярным узором, о чем писал еще Б.Бьянчини.
«Штемпельным» узор назвали в Германии по способу его формирования путем набивки специальным шаблоном — штемпелем строго упорядоченного рельефа на заготовку клинка, после сошлифовки которого слои искажаются в заданном режиме.
Картин сих рисунков мало и большинство из них были славны еще в прошлом веке.
К ним относятся ступенчатый, холмистый, ромбический ( сетчатый ) и кольчатый.
Ступенчатый узор характеризуется относительно узкими прядями линий, расположенными поперек клинка.

spravconstr.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *