Полиэтилен характеристика – () : — , ,

Полиэтилен, виды, характеристики, свойства и получение

Полиэтилен, виды, характеристики, свойства и получение.

 

 

Полиэтилен – термопластичный полимер этилена. Является органическим соединением и имеет длинные молекулы.

 

Описание и характеристики полиэтилена

Физические, химические и иные свойства полиэтилена

Физические свойства полиэтилена (таблица)

Виды полиэтилена

Получение полиэтилена

 

Описание и характеристики полиэтилена:

Полиэтилен – термопластичный полимер этилена, относится к классу полиолефинов. Также называется политеном.

Полиэтилен  является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода. Таким образом, молекула полиэтилена имеют простую химическую структуру и представляет собою цепочку атомов углерода, к каждому из которых присоединены две молекулы водорода.

Химическая формула полиэтилена

2H4)n. Молекулярный вес – до 500 000 г/моль.

Химическая формула этилена, из которого производится полиэтилен, C2H4. Рациональная формула этилена CH2=CH2.

В свою очередь полиолефины представляют собой класс высокомолекулярных соединений (полимеров), получаемых из низкомолекулярных веществ – олефинов (мономеров) – непредельных углеводородов (этилена, пропилена, бутилена и других альфа-олефинов). Они вырабатываются из нефти или природного газа путём полимеризации одинаковых (гомополимеризации) или разных (сополимеризации) мономеров в присутствии катализатора.

Полиэтилен внешне представляет собой твердую массу белого цвета (тонкие листы прозрачны и бесцветны).

Существует две модификации полиэтилена: линейный и нелинейные полиэтилен. Они отличаются друг от друга по структуре и соответственно по свойствам. В первой –линейной форме мономеры связаны в линейные цепи со степенью полимеризации обычно 5000 и более. Они не имеют боковых ответвлений от основной цепи. В другой – нелинейной форме имеются многочисленные боковые ответвления мономеров, которые присоединены к основной цепи случайным способом.

Полиэтилен проявляет различные свойства. Разнообразие свойств полиэтилена можно объяснить его молекулярной структурой, молекулярной массой и степенью кристалличности, которая, в свою очередь, зависит от молекулярной массы и степени ветвления мономеров. Чем меньше разветвлены полимерные цепи и чем меньше молекулярная масса, тем выше кристалличность полиэтилена и тем более он плотный. Таким образом, существует линейная зависимость между плотностью и степенью кристалличности.

Полиэтилен самый распространенный из полимеров. Каждый год его производится более 100 миллионов тонн, что составляет 34 % от общего объема производства всех пластмасс.

 

Физические, химические и иные свойства полиэтилена:

– чистый полиэтилен имеет белый цвет, непрозрачен в толстом слое, тонкие листы прозрачны и бесцветны,

– кристаллизуется в диапазоне температур от -60 °С до минус 369 °С,

– не имеет запаха,

– имеет небольшой вес и различную плотность, которая зависит от разновидности и способа получения определенного вида полиэтилена,

– не чувствителен к удару, является амортизатором,

– имеет чрезвычайно низкую адгезию,

– обладает низким коэффициентом трения,

– характеризуется абсолютной водонепроницаемостью. Он не смачивается водой и не впитывает ее. Однако кратковременная обработка полиэтилена кислотой или окислителями приводит к окислению поверхности и смачиванию ее водой, полярными жидкостями и клеями. В этом случае изделия из полиэтилена можно склеивать,

– при нагревании до 80-120°С размягчается. Полиэтилен не способен противостоять высоким температурам, что не дает возможность использовать его в экстремальных условиях,

– характеризуется морозостойкостью. Полиэтилен может эксплуатироваться при температурах от -70°С до 100 °С. Некоторые виды полиэтилена сохраняют свои полезные свойства при температурах ниже -120°С. Морозостойкость полиэтилена зависит от разновидности и способа получения определенного вида полиэтилена,

– полиэтилен в виде тонких пленок обладает высокой гибкостью и прозрачностью, а в виде листов становится жестким и непрозрачным,

– является диэлектриком,

– устойчив к действию воды,

– обладает отличной пароизоляцией и гидроизоляцией. Но проницаем для кислорода и углекислого газа,

– под действием солнечного света становится хрупким. В качестве добавки-стабилизатора от воздействия ультрафиолетового излучения используют углеродную сажу,

– является химически стойким веществом,

– не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой. Но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При температурах выше 60 °С серная и азотная кислоты также быстро его разрушают.

– при комнатной температуре не растворяется в органических растворителях. При температуре выше 80 °С сначала набухает, а затем растворяется в ароматических углеводородах и их галогенопроизводных,

– горит голубоватым пламенем, со слабым светом и желтым кончиком, при этом издаёт запах парафина, то есть такой же, какой исходит от горящей свечи. Материал продолжает гореть на удалении источника пламени и производит потеки,

– из-за своей химической стойкости в естественной среде разлагается в течение порядка 500 лет, что существенно ухудшает экологическую обстановку. Поэтому для борьбы с загрязнением окружающей среды полиэтиленовыми пакетами около 40 стран ввели запрет или ограничение на продажу и (или) производство пластиковых пакетов. Однако если в состав полиэтилена ввести специальные добавки-деграданты время разложения в естественной среде составляет до 1,5-3 лет. Благодаря добавкам-биодеградантам он разлагается на элементарные составляющие: воду, углекислый газ и биомассу,

– биологически инертен.

 

Физические свойства полиэтилена (таблица):

Наименование показателя:Значение:
Молекулярная масса, г/мольдо 500 000*
Плотность, г/см3от 0,88 до 0,96*
Температура плавления, оСот 115 до 180*

* зависит от вида полиэтилена.

 

Виды полиэтилена:

В основе классификации полиэтилена положена его плотность. Полиэтилен классифицируется на следующие виды:

полиэтилен низкой плотности (высокого давления). Обозначается ПЭНП, ПЭВД, ПВД, LDPE (Low Density Polyethylene).

полиэтилен высокой плотности (низкого давления), ПЭВП, ПЭНД, ПНД, HDPE (High Density Polyethylene),

полиэтилен среднего давления (высокой плотности), ПЭСД,

линейный полиэтилен средней плотности, ПЭСП, MDPE или PEMD,

линейный полиэтилен низкой плотности, ЛПЭНП, LLDPE или PELLD,

полиэтилен очень низкой плотности, VLDPE,

полиэтилен сверхнизкой плотности, ULDPE,

металлоценовый линейный полиэтилен низкой плотности, MPE,

сшитый полиэтилен, PEX или XLPE, XPE,

высокомолекулярный полиэтилен, ВМПЭ, HMWPE или PEHMW или VHMWPE,

сверхвысокомолекулярный полиэтилен, СВМПЭ, UHMWPE.

 

Получение полиэтилена:

Полиэтилен получают путем полимеризации этилена. Первоначально полиэтилен производится в гранулах от 2 до 5 мм, окончательную форму он приобретает в процессе термической обработки на специальном оборудовании.

Каждый вид полиэтилена получают различными способами. Рассмотрим на примере полиэтилена низкой плотности (высокого давления), полиэтилена среднего давления и полиэтилена высокой плотности (низкого давления).

 

Полиэтилен низкой плотности (высокого давления, ПЭНП, ПЭВД, ПВД, LDPE) образуется в автоклавном или трубчатом реакторах при:

– температуре 200-260 °C,

– давлении 150-300 МПа,

– в присутствии инициатора (кислород или органический пероксид).

Реакция происходит по радикальному механизму в расплаве. Жидкий продукт впоследствии гранулируют. Получаемый по этому методу полиэтилен имеет молекулярную массу 80 000 – 500 000 г/моль и степень кристалличности 50-60 %.

Полиэтилен среднего давления (высокой плотности, ПЭСД) образуется при:

– температуре 100-120 °C,

– давлении 3-4 МПа,

– в присутствии катализатора (например, катализаторов Циглера-Натта).

В результате реакции продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет молекулярную массу 300 000 – 400 000 г/моль и степень кристалличности 80-90 %.

Полиэтилен высокой плотности (низкого давления, ПЭНД, ПЭВП, ПНД, HDPE) образуется при:

– температуре 120-150 °C,

– давлении ниже 0,1-2 МПа,

– в присутствии катализатора (например, катализаторов Циглера-Натта).

Полимеризация происходит в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет молекулярную массу 80 000 – 300 000 г/моль и степень кристалличности 75-85 %.

В процессе полимеризации полиэтилена последний может быть химически модифицирован. Благодаря чему получаются новые виды. Например, металлоценовый линейный полиэтилен низкой плотности, биоразлагаемый полиэтилен, квантовый полиэтилен.

 

© Фото https://www.pexels.com, https://pixabay.com,

 

карта сайта

полиэтилен описание материала
кабель сшитый вспененный полиэтилен низкого высокого давления химические физические свойства описание трубы технические характеристики материала
уравнение реакция получения полиэтилена из этилена высокого низкого давления

 

Коэффициент востребованности 638

comments powered by HyperComments

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Полиэтилен и его свойства, способы применения и разновидности

12:49:30 - 03.07.2019
________________

Полиэтилен – это материал, получаемый из этилена. Это термопластичный полимер, который в толстом слое становится непрозрачным. Его химическая структура – это цепочка атомов углерода, к каждому из которых присоединяется по две молекулы водорода.


Гранулы полиэтилена

Полиэтилен нашел широкое распространение среди упаковочных материалов, на то есть свои причины. Он устойчив к воздействию солей, водных растворов, щелочей и кислот. При температуре выше 60 градусов Цельсия азотная и серная кислота могут разрушить материал, но в обычных условиях он зарекомендовал себя как прочный, надежный, долговечный. 

Современные производители предлагают изделия из полиэтилена двух разновидностей. Первую группу составляют материалы высокого давления или низкой плотности, а вторую – полиэтилен низкого давления или высокой плотности. Последние часто называют линейными полиэтиленами. Поскольку группы материалов различаются по свойствам: температуре плавления, плотности, прочности, твердости, их используют для различных целей. Тонкие пленки отличаются повышенной гибкостью и прозрачностью, а листы из данного материала являются жесткими и матовыми. 

Данный полимер отличается устойчивостью к ударным нагрузкам. Помимо этого, он является морозостойким. Упаковки из полиэтилена сохраняют свои качества при температурах от -70 до +60 градусов Цельсия. Некоторые разновидности материала могут выдерживать температуры до -120 градусов.

Как и любого состава, у полиэтилена есть и недостатки. Главным из них считается быстрое старение материала. Чтобы снизить воздействие данного фактора, в состав полимера производители вводят противостарители: специальные амины, фенолы, газовую сажу. 

Какие изделия можно получить из полиэтилена? В первую очередь это пленки толщиной от 0,03 до 0,30 мм и шириной до 1400 мм.  Помимо тонких пленок, из данного материала получают листы шириной до 1400 мм и толщиной в 1-6 мм. Они находят свое применение в качестве электроизоляционного и футировочного изделия. Меньшая часть полиэтилена идет на изготовление мешков, сумок, облицовки коробок и ящиков, а также на получение другой тары. 


Полиэтиленовая пленка

Пленки применяются при упаковке замороженных продуктов, а в сельском хозяйстве полиэтиленовые листы заменяют стекла в парниках и теплицах. Черная пленка способна задерживать тепло, поэтому используется при выращивании бобовых и плодово-ягодных культур, овощей. Также черной полиэтиленовой пленкой выстилают дно водоемов и каналов, силосные ямы. Все чаще данный материал используют для оформления навесов над оборудованием и транспортом, над помещениями для хранения урожая. 


Пленка для выращивания растений

Если необходимо использовать материал повышенной прочности, то можно обратиться к армированному полиэтилену. Он состоит из двух пленок, между которыми проходят армирующие нити из природных или синтетических волокон. Иногда роль армирования выполняет редкая стеклянная ткань. 


Армированная пленка

Таким образом, полиэтилен можно назвать универсальным упаковочным материалом, незаменимым в быту и на производстве.

Полимерные цепи полиэтилена

Показатель ПЭВД ПЭСД ПЭНД
Общее число групп СН3 на 1000 атомов углерода: 21,6 5 1,5
Число концевых групп СН3 на 1000 атомов углерода: 4,5 2 1,5
Этильные ответвления 14,4 1 1
Общее количество двойных связей на 1000 атомов углерода 0,4—0,6 0,4—0,7 1,1-1,5
в том числе:
винильных двойных связей (R-CH=CH2), % 17 43 87
винилиденовых двойных связей (), % 71 32 7
транс-виниленовых двойных связей (R-CH=CH-R’), % 12 25 6
Степень кристалличности, % 50-65 75-85 80-90
Плотность, г/см? 0,91-0,93 0,93-0,94 0,94-0,96

   Почитать по теме:

  1. Качественный упаковочный материал — залог успешного переезда!
  2. Воздушно пузырчатая пленка
  3. Полиэтиленовая стретч пленка

________________


cpereezd.ru

Строение, свойства, получение и применение полиэтилена

Полиэтилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации этилена. Твердое вещество белого цвета. Выпускается в форме полиэтилена низкого давления (полиэтилена высокой плотности), получаемого суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе, и полиэтилена высокого давления (полиэтилен низкой плотности), получаемого при высоком давлении полимеризацией этилена в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Кроме того, существует несколько подклассов полиэтилена, отличающиеся от традиционных более высокими эксплуатационными характеристиками. В частности, сверхвысокомолекулярный полиэтилен, линейный полиэтилен низкой плотности, полиэтилен, получаемый на металлоценовых катализаторах, бимодальный полиэтилен.
Как правило, полиэтилен выпускают в виде стабилизированных гранул диаметром 2-5 миллиметров в окрашенном и неокрашенном виде. Но возможен и промышленный выпуск полиэтилена в виде порошка.

Обычное обозначение полиэтилена на российском рынке – ПЭ, но могут встречаться и другие обозначения: PE (полиэтилен), ПЭНП или ПЭВД или LDPE или PEBD или PELD (полиэтилен низкой плотности, полиэтилен высокого давления), ПЭВП или ПЭНД или HDPE или PEHD (полиэтилен высокой плотности, полиэтилен низкого давления), ПЭСП или MDPE или PEMD (полиэтилен средней плотности), ULDPE (полиэтилен сверхнизкой плотности), VLDPE (полиэтилен очень низкой плотности), ЛПЭНП или LLDPE или PELLD (линейный полиэтилен низкой плотности), LMDPE (линейный полиэтилен средней плотности), HMWPE или PEHMW или VHMWPE (высокомолекулярный полиэтилен). HMWHDPE (высокомолекулярный полиэтилен высокой плотности), PEUHMW или UHMWPE (сверхвысокомолекулярный полиэтилен), UHMWHDPE (ультравысокомолекулярный полиэтилен высокой плотности), PEX или XLPE (сшитый полиэтилен), PEC или CPE (хлорированный полиэтилен), EPE (вспенивающийся полиэтилен), mLLDPE или MPE (металлоценовый линейный полиэтилен низкой плотности).

Условное обозначение отечественного суспензионного полиэтилена низкого давления, состоит из названия материала «полиэтилен», восьми цифр, характеризующих конкретную марку, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Первая цифра 2 указывает на то, что процесс полимеризации этилена протекает на комплексных металлоорганических катализаторах при низком давлении. Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена. Полиэтилен низкого давления подвергается усреднению холодным смешением, которое обозначается цифрой 0. Пятая цифра условно определяет группу плотности полиэтилена:
6 – 0,931-0,939 г/см3;
7 – 0,940-0,947 г/см3;
8 – 0,948-0,959 г/см3;
9 – 0,960-0,970 г/см3.
При определении группы плотности берут среднее значение плотности данной марки. Следующие цифры, написанные через тире, указывают десятикратное среднее значение показателя текучести расплава данной марки.
Пример обозначения базовой марки суспензионного полиэтилена низкого давления порядкового номера марки 10, усредненного холодным смешением, плотностью 0,948-0,959 г/см3 и средним показателем текучести расплава 7,5 г/10 мин:
Полиэтилен 21008-075 ГОСТ 16338-85.
Обозначение композиции полиэтилена низкого давления, не содержащей добавки красителя, состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Пример обозначения композиции суспензионного полиэтилена низкого давления базовой марки 21008-075 с добавками в соответствии с рецептурой 04:
Полиэтилен 210-04 ГОСТ 16338-85.
Пример обозначения композиции газофазного полиэтилена низкого давления марки 271 с добавками в соответствии с рецептурой 70:
Полиэтилен 271-70 ГОСТ 16338-85.
Обозначение композиции полиэтилена низкого давления с добавкой красителя состоит из наименования материала «полиэтилен», трех первых цифр базовой марки, написанного через тире номера рецептуры добавки (при ее наличии), написанного через запятую наименования цвета, трехзначного числа, обозначающего рецептуру окраски, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Пример обозначения базовой марки полиэтилена низкого давления 21008-075 и композиции 210-04 на ее основе, окрашенных в красный цвет по рецептуре 101:
Полиэтилен 210, красный рец. 101 ГОСТ 16338-85,
Полиэтилен 210-04, красный рец. 101 ГОСТ 16338-85.

Базовые марки суспензионного полиэтилена низкого давления: 20108-001; 20208-002; 20308-005; 20408-007; 20508-007; 20608-012; 20708-016; 20808-024; 20908-040; 21008-075.

Базовые марки газофазного полиэтилена низкого давления: 271-70; 271-82; 271-83; 273-71; 273-73; 273-79; 273-80; 273-81; 276-73; 276-75; 276-83; 276-84; 276-85; 276-95; 277-73; 277-75; 277-83; 277-84; 277-85; 277-95.

Условное обозначение отечественного полиэтилена высокого давления состоит из названия «полиэтилен», восьми цифр, сорта и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Первая цифра – 1 указывает на то, что процесс полимеризации этилена протекает при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа.
Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена:
0 — без гомогенизации в расплаве;
1 — гомогенизированный в расплаве.
Пятая цифра условно определяет группу плотности полиэтилена, г/см3.
1 – 0,900-0,909
2 – 0,910-0,916
3 – 0,917-0,921
4 – 0,922-0,926
5 – 0,927-0,930
6 – 0,931-0,939
При определении группы плотности берут её номинальное значение для данной марки.
Следующие цифры, написанные через тире, указывают десятикратное значение показателя текучести расплава.
Пример обозначения полиэтилена высокого давления порядкового номера марки 15, без гомогенизации в расплаве, плотностью 0,917-0,921 г/см3и номинальным значением показателя текучести расплава 7 г/10 мин 1-го сорта:
Полиэтилен 11503-070, сорт 1, ГОСТ 16337-77
Обозначение композиций полиэтилена высокого давления состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, цвета и рецептуры окрашивания, сорта и обозначения стандарта, в соответствии с которым изготовлен полиэтилен.
Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 03, 1-го сорта:
Полиэтилен 102-03, сорт 1, ГОСТ 16337-77
В случае окрашенных композиций полиэтилена высокого давления к обозначению добавляется цвет и трехзначное число, обозначающее рецептуру окраски.
Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003, окрашенной в розовый цвет по рецептуре 104, 1-го сорта:
Полиэтилен 102, розовый 104, сорт 1, ГОСТ 16337-77
В обозначении полиэтилена высокого давления, предназначенного для изготовления пленок различного назначения, изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, а также полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Базовые марки полиэтилена высокого давления, полученного в реакторах с перемешивающим устройством: 10204-003; 10604-007; 10703-020; 10803-020; 11304-040; 11503-070; 12003-200; 12103-200.

Базовые марки полиэтилена высокого давления, полученного в реакторах трубчатого типа: 15003-002; 15303-003; 15503-004; 16305-005; 17603-006; 17504-006; 16005-008; 17703-010; 16603-011; 17803-015; 15803-020; 16204-020; 16405-020; 18003-030; 18103-035; 16904-040; 18203-055; 16803-070; 18303-120; 17403-200; 18404-200.

В кабельной промышленности используются композиции на основе полиэтилена высокого давления (низкой плотности) и низкого давления (высокой плотности) со стабилизаторами и другими добавками, предназначенные для наложения изоляции, оболочек и защитных покровов проводов и кабелей методом экструзии.
Марки композиций полиэтилена для кабельной промышленности устанавливаются на основе базовых марок полиэтилена высокого давления 10204-003, 15303-003, 10703-020, 18003-030, 17803-015 и рецептур добавок 01, 02, 04, 09, 10, 93-97, 99, 100, марки 10703-020 и рецептур 61 и полиэтилена низкого давления (суспензионный метод) 20408-007, 20608-012, 20708-016, 20808-024 и рецептур добавок 07, 11, 12, 19, 57 полиэтилена низкого давления (газофазный метод) на основе марки 271-порошок и рецептур добавок 70, 82, 83, марки 273-порошок и рецептур добавок 71, 81.
Обозначение марок композиций полиэтилена для кабельной промышленности состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки полиэтилена, номера рецептуры добавок, написанного через тире, и буквы «К», обозначающей применение композиций полиэтилена в кабельной промышленности, и обозначения стандарта, в соответствии с которым изготовлен полиэтилен для кабельной промышленности.
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 09:
Полиэтилен 102-09К ГОСТ 16336-77
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена низкого давления базовой марки 20408-007 с добавками в соответствии с рецептурой 07:
Полиэтилен 204-07К ГОСТ 16336-77

При заказе полиэтилена после обозначения марки указывают сорт. Для полиэтилена, предназначенного для изготовления электротехнических изделий и изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, контактирующих и не контактирующих с полостью рта, а также для полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Но на рынке присутствуют и другие марки полиэтилена, поскольку большинство производителей работает в соответствии с собственными ТУ, отражающими развитие индустрии полимерных материалов, за которым система стандартизации не всегда успевает.

Строение: Полиэтилен является продуктом полимеризации этилена, химическая формула которого С2Н4. В процессе полимеризации происходит разрыв двойной связи этилена и образуется полимерная цепь, элементарное звено которой состоит из двух атомов углерода и четырех атомов водорода:

Н Н
| |
– С – С –
| |
Н НВ процессе полимеризации может происходить разветвление полимерной цепи, когда к растущей главной цепи сбоку присоединяется короткая полимерная группа.
Разветвленность полимерной цепи препятствует плотной упаковке макромолекул и приводит к образованию рыхлой аморфно-кристаллической структуры материала и, как следствие, к уменьшению плотности полимера и понижению температуры размягчения. Различная степень разветвленности полимерной цепи полиэтиленов высокого и низкого давления и определяет различие свойств этих материалов.
Так у полиэтилена высокого давления разветвленность цепи 15-25 ответвлений на 1000 атомов углерода цепи, а у полиэтилена низкого давления – 3-6 на 1000 атомов углерода цепи. Соответственно, плотность, температуры плавления и размягчения, степень кристалличности у ПЭВД, который еще называют «полиэтиленом с разветвленной цепью», меньше, чем у ПЭНД, способ полимеризации которого обусловливает малую разветвленность.

Свойства: Полиэтилен – пластический материал с хорошими диэлектрическими свойствами. Ударостойкий, не ломающийся, с небольшой поглотительной способностью. Физиологически нейтральный, без запаха. Обладает низкой паро и газопроницаемостью. Полиэтилен не реагирует со щелочами любой концентрации, с растворами любых солей, карбоновыми, концентрированной соляной и плавиковой кислотами. Устойчив к алкоголю, бензину, воде, овощным сокам, маслу. Разрушается 50%-ной азотной кислотой, а также жидкими и газообразными хлором и фтором. Не растворим в органических растворителях и ограниченно набухает в них. Полиэтилен стоек при нагревании в вакууме и атмосфере инертного газа. Но на воздухе деструктируется при нагревании уже при 80 °С. Устойчив к низким температурам до –70 °С. Под действием солнечной радиации, особенно ультрафиолетовых лучей, подвергается фотодеструкции (в качестве светостабилизаторов используется сажа, производные бензофенонов). Практически безвреден, из него не выделяются в окружающую среду опасные для здоровья человека вещества.
Полиэтилен легко перерабатывается всеми основными способами переработки пластмасс. Легко подвергается модификации. Посредством хлорирования, сульфирования, бромирования, фторирования ему можно придать каучукоподобные свойства, улучшить теплостойкость, химическую стойкость. Сополимеризацией с другими олефинами, полярными мономерами повысить стойкость к растрескиванию, эластичность, прозрачность, адгезионные характеристики. Смешением с другими полимерами или сополимерами улучшить ударную вязкость и другие физические свойства.
Химические, физические и эксплуатационные свойства полиэтилена зависят от плотности и молекулярной массы полимера, а потому различны для различных видов полиэтилена. Так, например, ПЭВД(полиэтилен с разветвленной цепью) мягче, чем ПЭНД, следовательно пленки из полиэтилена низкого давления более жесткие и плотные, чем из полиэтилена высокого давления. Их прочность при растяжении и сжатии выше, сопротивление раздиру и удару ниже, а проницаемость в 5-6 раз ниже, чем у пленок из ПЭВД.
Сверхвысокомолекулярный полиэтилен с молекулярной массой более 1 000 000 имеет повышенные прочностные качества. Температурный интервал его эксплуатации от -260 до +120 °С. Он обладает низким коэффициентом трения, высокой износостойкостью, стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах.

Свойства ПЭНД в соответствии с ГОСТ 16338-85.
1. Плотность – 0,931-0,970 г/см3.
2. Температура плавления – 125-132 °С.
3. Температура размягчения по Вика в воздушной среде – 120-125 °С.
4. Насыпная плотность гранул – 0,5-0,6 г/см3.
5. Насыпная плотность порошка – 0,20-0,25 г/см3.
6. Разрушающее напряжение при изгибе –19,0-35,0 МПа
7. Предел прочности при срезе – 19,0-35,0 МПа.
8. Твердость по вдавливанию шарика под заданной нагрузкой – 48,0-54,0 МПа.
9. Удельное поверхностное электрическое сопротивление – 1014 Ом.
10. Удельное объемное электрическое сопротивление – 1016-1017 Ом·см.
11. Водопоглощение за 30 суток – 0,03-0,04 %.
12. Тангенс угла диэлектрических потерь при частоте 1010 Гц – 0,0002-0,0005.
13. Диэлектрическая проницаемость при частоте 1010 Гц – 2,32-2,36.
14. Удельная теплоемкость при 20-25 °С – 1680-1880 Дж/кг·°С.
15. Теплопроводность – (41,8-44)·10-2 В/(м·°С).
16. Линейный коэффициент термического расширения – (1,7-2,0)·10-41/°С.

Свойства ПЭВД в соответствии с ГОСТ 16337-77.
1. Плотность – 0,900-0,939 г/см3.
2. Температура плавления – 103-110 °С.
3. Насыпная плотность – 0,5-0,6 г/см3.
4. Твердость по вдавливанию шарика под заданной нагрузкой – (1,66-2,25)·105 Па; 1,7-2,3 кгс/см2.
5. Усадка при литье – 1,0-3,5 %.
6. Водопоглощение за 30 суток – 0,020 %.
7. Разрушающее напряжение при изгибе – (117,6-196,07)·105 Па; 120-200 кгс/см2.
8. Предел прочности – (137,2-166,6)·105 Па; 140-170 кгс/см2.
9. Удельное объемное электрическое сопротивление – 1016-1017 Ом·см.
10. Удельное поверхностное электрическое сопротивление – 1015 Ом.
11. Температура хрупкости для полиэтилена с показателем текучести расплава в г/10 мин
0,2-0,3 – не выше минус 120 °С,
0,6-1,0 – не выше минус 110 °С,
1,5-2,2 – не выше минус 100 °С,
3,5 – не выше минус 80 °С,
5,5 – не выше минус 70 °С,
7-8 – не выше минус 60 °С,
12 – не выше минус 55 °С,
20 – не выше минус 45 °С.
12. Модуль упругости (секущий) для полиэтилена плотностью в г/см2
0,917-0,921 – (882,3-1274,5)·105 Па; 900-1300 кгс/см2,
0,922-0,926 – (1372-1764,7)·105 Па; 1400-1800 кгс/см2,
0,928 – 2107,8 ·105 Па; 2150 кгс/см2.
13. Тангенс угла диэлектрических потерь при частоте 10100 Гц – 0,0002-0,0005.
14. Диэлектрическая проницаемость при частоте 1010 Гц – 2,25-2,31.

Сравнительный анализ характеристик ПЭНД и ПЭВД показывает, что ПЭНД, вследствие более высокой плотности, имеет более высокие прочностные показатели: теплостойкость, жесткость и твердость, обладает большей стойкостью к растворителям, чем ПЭВД, но менее морозоустойчив. Несколько хуже, чем у ПЭВД (из-за остатков катализаторов), высокочастотные электрические характеристики, однако это не ограничивает применения ПЭНД в качестве электроизоляционного материала. Кроме того, наличие остатков катализаторов не позволяет использовать ПЭНД в контакте с пищевыми продуктами (требуется отмывка от катализаторов). Благодаря более плотной упаковке макромолекул проницаемость ПЭНД ниже, чем у ПЭВД примерно в 5-6 раз. По химической стойкости ПЭНД также превосходит ПЭВД (особенно по стойкости к маслам и жирам). Но пленки из ПЭВД более проницаемы для газов, а потому непригодны для упаковки продуктов, чувствительных к окислению.

Получение: В промышленности полиэтилен получают полимеризацией этилена при высоком (ПЭВД, ПЭНП) и низком давлениях (ПЭНД, ПЭВП).

Полиэтилен высокого давления (низкой плотности) получается полимеризацией этилена при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа.
Полиэтилен высокого давления выпускают без добавок – базовые марки, или в виде композиций на их основе со стабилизаторами и другим и добавками в окрашенном и неокрашенном виде.

Полиэтилен низкого давления (высокой плотности), получают суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе или полимеризацией этилена в растворе в присутствии титан-магниевого катализатора или CrO3 на силикагеле.
Полиэтилен, получаемый суспензионным методом (суспензионный полиэтилен), выпускают без добавок (базовые марки) и в виде композиций на их основе со стабилизаторами, красителями и другими добавками.
Полиэтилен, получаемый газофазным методом (газофазный полиэтилен), выпускают в виде композиций со стабилизаторами.

Процесс полимеризации при высоком давлении протекает по радикальному механизму, инициаторами являются кислород, пероксиды, например, лаурила или бензоила, или их смесей.
При производстве ПЭВД в трубчатом реакторе этилен, смешанный с инициатором, сжатый компрессором до 25 МПа и нагретый до 70 °С, поступает сначала в первую зону реактора, где подогревается до 180°С, а затем во вторую, где полимеризуется при 190-300 °С и давлении 130-250 МПа. Среднее время пребывания этилена в реакторе 70-100 с, степень превращения 18-20% в зависимости от количествава и типа инициатора. Из полиэтилена удаляют непрореагировавший этилен, расплав охлаждают до 180-190 °С и гранулируют. Гранулы, охлажденные водой до 60-70 °С, подсушивают теплым воздухом и упаковывают в мешки.
Принципиальная схема производства ПЭВД в автоклаве с перемешивающим устройством отличается от производства в трубчатом реакторе тем, что инициатор в парафиновом масле подается специальным насосом высокого давления непосредственно в реактор. Процесс проводят при 250 °С и давлении 150 МПа. Среднее время пребывания этилена в реакторе – 30 с. Степень превращения – около 20%.
Товарный полиэтилен высокого давления выпускают окрашенным и неокрашенным, в гранулах диаметром 2-5 мм.

Процесс полимеризации при низком давлении протекает по координационно-ионному механизму.
Получения ПЭНД в суспензии включает следующие стадии: приготовление суспензии катализатора и раствора активатора в виде комбинации триэтилалюминия и производных титана; полимеризацию этилена при температуре 70-95 °С и давлении 1,5-3,3 МПа; удаление растворителя, сушку и гранулирование полиэтилена. Степень превращения этилена – 98%. Концентрация полиэтилена в суспензии – 45%. Единичная мощность реакторов с усовершенствованной системой теплосъема – до 60-75 тыс. т/год.
Технологическая схема получения ПЭНД в растворе осуществляется, как правило, в гексане при 160-250 °С и давлении 3,4-5,3 МПа в присутствии титан-магниевого катализатора или CrO3 на силикагеле. Время контакта с катализатором 10-15 мин. Полиэтилен из раствора выделяют удалением растворителя последовательно в испарителе, сепараторе и вакуумной камере гранулятора. Гранулы полиэтилена пропаривают водяным паром при температуре, превышающей температуру плавления полиэтилена, чтобы в воду перешли низкомолекулярные фракции полиэтилена и нейтрализовались остатки катализатора. Преимущества полимеризации в растворе перед полимеризацией в суспензии в том, что исключаются стадии отжима и сушки полимера, появляется возможность утилизации теплоты полимеризации для испарения растворителя, облегчается регулирование молекулярной массы полиэтилена.
Газофазную полимеризацию этилена проводят при 90-100 °С и давлении 2 МПа с хромсодержащими соединениями на силикагеле в качестве катализатора. В нижней части реактор имеет перфорированную решетку для равномерного распределения подаваемого этилена с целью создания кипящего слоя, в верхней – расширенную зону, предназначенную для снижения скорости газа и улавливания частиц образовавшегося полиэтилена.
Товарный полиэтилен низкого давления выпускают окрашенным и неокрашенным, обычно в гранулах диаметром 2-5 мм, реже – в виде порошка.

Применение различных катализаторов позволяет поручать разновидности полиэтилена с улучшенными эксплуатационными качествами.
Так, полимеризацией в растворителе в присутствии оксидов Со, Мо, V при 130-170 °С и давлении 3,5-4 МПа получают полиэтилен среднего давления (ПЭСД), разветвленность цепи которого менее 3 ответвлений на 1000 атомов углерода, что повышает его прочностные качества и термостойкость по сравнению с ПЭНД.
Металлоценовые катализаторы делают возможной управляемую полимеризацию по длине цепи, что позволяет получать полиэтилен с заданными потребительскими характеристиками.
Если процесс полимеризации происходит при низком давлении в присутствии металлоорганических соединений, то получается полиэтилен с высокой молекулярной массой и строголинейной структурой, который в отличие от обычного ПЭНД обладает повышенными прочностными показателями, низким коэффициентом трения и высокой износостойкостью, стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах.
Химической модификацией ПЭВД получен линейный полиэтилен низкой плотности – ЛПЭНП, который представляет собой легкий эластичный кристаллизующийся материал с теплостойкостью по Вика до 118 °С. Более стоек к растрескиванию, имеет большую ударную прочность и теплостойкость, чем ПЭВД.
При наполнении ПЭВД крахмалом может быть получен материал, представляющий интерес в качестве биоразрушаемого материала.

Основные производители полиэтилена низкого давления для российского рынка:
Ставролен – в частности, Ставролен РЕ4FE69, Ставролен РЕ4EC04S, Ставролен РЕ3IM61, Ставролен РЕ0ВМ45, Ставролен РЕ3ОТ49, Ставролен РЕ4ВМ42, Ставролен, РЕ4ВМ50В, Ставролен РЕ4ВМ41, Ставролен РЕЕС05, Ставролен РЕ4РР25В;
Казаньоргсинтез – в частности, ПНД 277-73, ПНД 276-73, ПНД 293-285Д, ПНД 273-83, ПНД ПЭ80Б-275, ПНД ПЭ80Б-285Д, ПНД 273-79;
Шуртанский ГХК – в частности, B-Y456, B-Y460, I-0760, I-1561.

Основные производители полиэтилена высокого давления для российского рынка:
Казаньоргсинтез – в частности, ПВД 15813-020, ПВД 15313-003, ПВД 10803-020;
Томскнефтехим – в частности, ПВД 15803-020, ПВД 15313-003;
Уфаоргсинтез – в частности, ПВД 15803-020.

Основные производители полиэтилена кабельных марок для российского рынка:
Казаньоргсинтез – в частности, ПВД 153-02К, ПВД 153-10К, 271-274К;
Шуртанский ГХК – в частности, WC-Y436.

Полиэтилен трубных марок P-Y337 MDPE, P-Y342 HDPE, P-Y456 HDPE производит Шуртанский ГХК. Это же предприятие выпускает пленочный полиэтилен F-Y346, F-0220S, F-0120S, F0120, F0220.

Применениe: Полиэтилен – наиболее широко использующийся полимер. Он лидирует в мировом выпуске полимерных материалов – 31,5% от общего объема производимых полимеров. Технология изготовления изделий из полиэтилена сравнительно проста. Он может быть подвержен переработке всеми известными методами. Сваривается всеми основными способами: горячим газом, присадочным прутком, трением, контактной сваркой.
Для работы с полиэтиленом не требуется применения узкоспециализированного оборудования, как например, для переработки ПВХ, а современная промышленностью выпускает сотни марок добавок и красителей для придания изделиям из полиэтилена самых разнообразных потребительских качеств.
Применяя литье под давлением, из полиэтилена изготавливают широкий спектр товаров бытового назначения, канцтоваров, игрушек. При использовании экструзии получают полиэтиленовые трубы (существует специальные марки – трубный PE63, PE80, PE100), полиэтиленовые кабели (весьма перспективен сшитый полиэтилен), листовой полиэтилен для упаковки и строительства, а также самые разнообразные полиэтиленовые пленки для нужд всех отраслей промышленности. Экструзионно-выдувным и ротационным формованием из полиэтилена создают разного рода емкости, сосуды, тару. Термовакуумным формованием – разнообразные упаковочные материалы. Различные специальные виды полиэтилена, такие как сшитый, вспененный, хлорсульфированный, сверхвысокомолекулярный успешно применяются для создания специальных стройматериалов. Отдельный сегмент современного рынка – рециклинг полиэтилена. Многие компании в России и мире специализируются на покупке полиэтиленовых отходов с дальнейшей переработкой и продажей или использованием вторичного полиэтилена. Как правило, для этого применяется технология экструдирования очищенных отходов и последующим дроблением и получением вторичного гранулированного материала пригодного для изготовления изделий.
Наиболее широко полиэтилен применяют для производства пленок технического и бытового назначения. Преимущества всех типов полиэтилена для упаковочных целей: малая плотность, хорошая химическая стойкость, незначительное водопоглощение, хорошая прозрачность, легкая перерабатываемость, хорошая свариваемость, непроницаемость для водяного пара, высокая вязкость, гибкость, растяжимость и эластичность. Полиэтиленовые пленки используются для производства пакетов для хлеба, овощей, мяса, птицы, мешков для мусора, упаковочных пленок для закрепления грузов. ПЭВД используется для изготовления комбинированных пленок соэкструзией с другими термопластичными полимерами и для нанесения на бумагу, картон, целлофан, алюминиевую фольгу. Во всех этих комбинированных пленках слой ПЭВД придает пленке отличную свариваемость, а другие слои – прочность и непроницаемость для запахов. Для получения определенных свойств осуществляют преобразование полиэтилена винилацетатом. Эти пленки при хорошей прочности более прозрачны и лучше свариваются. Благодаря этому при нагреве и адгезии с другими материалами, они становятся пригодны также для нанесения на картон и другие упаковочные материалы. Отечественный сополимер этилена с винилацетатом, получаемый совместной полимеризацией этилена и винилацетата в массе под высоким давлением, известен под торговой маркой Сэвилен, который широко используется при производстве витых шлангов для воздухоотсосов от различного оборудования.
Полиэтилен используется для производства:
пленок: сельскохозяйственных, упаковочных, термоусадочных, стретч;
труб: газовых, водопроводных, напорных, ненапорных;
емкостей: цистерн, канистр, бутылей;
стройматериалов;
волокон;
предметов домашнего обихода;
санитарно-технических изделий;
деталей автомашин и другой техники;
изоляции электрокабелей;
пенополиэтилена;
протезов внутренних органов;
И это далеко не предел возможностей использования полиэтилена. Тем более, что на рынок постоянно выходят новые марки этого полимера с новыми потребительскими свойствами.
Например, сверхвысокомолекулярный полиэтилен (СВМПЭ), применяемый для изготовления высокопрочных технических изделий, стойких к удару, растрескиванию и истиранию: шестерен, втулок, муфт, роликов, валиков, звездочек, а также изолирующих деталей аппаратуры, работающей в диапазоне высоких и сверхвысоких частот. Кроме того, СВМПЭ находит широкое применение в изготовлении пористых изделий: фильтров, глушителей шума, прокладок, а в эндопротезировании – при создании суставов, черепных и челюстно-лицевых протезов.

Основные производимые марки полиэтилена:
Композиция полиэтилена высокой плотности ПЭ2НТ26-16
Композиция сэвилена 113-27
Композиция сэвилена 113-31
Линейный полиэтилен низкой плотности F-0120
Линейный полиэтилен низкой плотности F-0220
Линейный полиэтилен низкой плотности F-Y620
Линейный полиэтилен низкой плотности F-Y720
Полиэтилен высокого давления (ПЭВД) 15303-003 ГОСТ 16337-77 высшего сорта
Полиэтилен высокого давления (ПЭВД) 15303-003 ГОСТ 16337-77 первого сорта
Полиэтилен высокого давления (ПЭВД) 15803-020 ГОСТ 16337-77 высшего сорта
Полиэтилен высокого давления (ПЭВД) 15803-020 ГОСТ 16337-77 первого сорта
Полиэтилен высокой плотности B-Y250
Полиэтилен высокой плотности B-Y456
Полиэтилен высокой плотности B-Y460
Полиэтилен высокой плотности F-Y346
Полиэтилен высокой плотности I-0754
Полиэтилен высокой плотности I-0760
Полиэтилен высокой плотности I-1561
Полиэтилен высокой плотности O-Y446
Полиэтилен высокой плотности O-Y750
Полиэтилен высокой плотности O-Y762
Полиэтилен высокой плотности P-Y342
Полиэтилен высокой плотности P-Y456
Полиэтилен высокомолекулярный низкого давления 21606 второго сорта
Полиэтилен высокомолекулярный низкого давления 21606 первого сорта
Полиэтилен для кабельной промышленности 153-01К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-01К ГОСТ 16336-77 первого сорта
Полиэтилен для кабельной промышленности 153-02К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-02К ГОСТ 16336-77 первого сорта
Полиэтилен для кабельной промышленности 153-10К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-10К ГОСТ 16336-77 первого сорта
Полиэтилен марки HFP-4612H
Полиэтилен марки HMI-6582M
Полиэтилен марки HXF 4810H
Полиэтилен марки HXF-4607
Полиэтилен марки HXF-5115
Полиэтилен марки LLI-2420
Полиэтилен марки MXP-3920H
Полиэтилен марки SHF-2680РН
Полиэтилен марки SHF-3080H
Полиэтилен марки SMF 2210
Полиэтилен марки SMF-1810
Полиэтилен марки SMF-1810H
Полиэтилен марки НХВ 5115Н
Полиэтилен марки НХВ 5210Н
Полиэтилен низкого давления марки 271-70 К
Полиэтилен низкого давления марки 271-81 К
Полиэтилен низкого давления марки 273-79
Полиэтилен низкого давления марки 273-83
Полиэтилен низкого давления марки 276-73
Полиэтилен низкого давления марки 277-73
Полиэтилен низкого давления марки F 3802B
Полиэтилен низкого давления марки РЕ 3 OT 49
Полиэтилен низкого давления марки РЕ 4 BM 41
Полиэтилен низкого давления марки РЕ 4 FE 69
Полиэтилен низкого давления марки РЕ 4 ЕС 04S
Полиэтилен низкого давления марки РЕ 4 РР 21 В
Полиэтилен низкого давления марки РЕ 4 РР 25 В
Полиэтилен низкого давления марки РЕ 6 GP 26 B
Полиэтилен низкой плотности I-0525
Полиэтилен низкой плотности I-1625
Полиэтилен низкой плотности WC-Y436
Полиэтилен низкой плотности WC-Y736
Полиэтилен средней плотности F-Y240
Полиэтилен средней плотности F-Y336
Полиэтилен средней плотности P-Y337
Полиэтилен средней плотности R-0333 U
Полиэтилен средней плотности R-0338 U
Сэвилен 11104-030
Сэвилен 11205-040
Сэвилен 11306-075
Сэвилен 11407-027
Сэвилен 11507-070
Сэвилен 11607-040
Сэвилен 11708-210
Сэвилен 11808-340
Сэвилен 11908-125
Сэвилен 12206-007
Сэвилен 12306-020
Сэвилен 12508-150

polymers.com.ua

Ответы@Mail.Ru: Характеристика полиэтилена

ПОЛИЭТИЛЕН — термопластичный полимер, являющийся продуктом полимеризации этилена и представляющий собой полупрозрачный, химически инертный, малопластичный материал с высокими электроизоляционными свойствами [-Ch3-Ch3-]n. Полиэтилен — полимер, получаемый полимеризацией этилена: nCh3=Ch3 (-Ch3-Ch3)n Радикальную полимеризацию этилена проводят при высоком давлении (120-150МПа) и при 300-350 С. В качестве инициатора радикальной реакции используют кислород. Таким способом получают полиэтилен высокого давления (ПЭНП) или в отечественной номенклатуре (ПЭВД) со степенью полимеризации примерно 50000. Полученный полимер имеет разветвленную структуру и низкую плотность. Плотность 910-935 кг/м3. Выпускают стабилизированным и в виде гранул. Если полимеризация провидится путем пропускания этилена через инертный растворитель, содержащий суспензию катализатора — TiCl4 и Al(C2H5)3, то процесс протекает при температуре 60 С и под давлением порядка 500кПа. В этих условиях получают полиэтилен строго линейной структуры со степенью полимеризации до 300 000. Полученный полимер полиэтилен низкого давления (ПЭВП) или отечественная номенклатура (ПЭНД) обладает большой плотностью, большой прозрачностью и растяжимостью. Полиэтилен — прозрачный материал, обладает высокой химической. Он термопластичен (температура размягчения 100-130 С) , плохо проводит тепло. В настоящее время, кроме уже ставших традиционными ПЭНП и ПЭВП, производятся сверхвысокомолекулярный полиэтилен (СВМПЭ) , линейный полиэтилен низкой плотности (ЛПЭНП) , высокомолекулярный полиэтилен высокой плотности (ВМПЭВП) , сополимеры этилена с винилацетатом (СЭВА) , с пропиленом (СЭП) и ряд других марок. Применение полиэтилена весьма широко — от труб диаметром до 1500мм до микронных капилляров, пленок толщиной от 3-5мкм до 200-500мкм и шириной полотна до 40м. На основе полиэтилена получают волокна с модулем упругости до 250 ГПа.

Полиэтиле́н — термопластичный полимер этилена. Самый распространенный в мире пластик [1]. Представляет собой воскообразную массу белого цвета (тонкие листы прозрачны и бесцветны) . Химически- и морозостоек, изолятор, не чувствителен к удару (амортизатор) , при нагревании размягчается (≅80—120 °С) , при охлаждении застывает, адгезия — чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном — похожим материалом растительного происхождения.

Характер нордический, но при необходимости способен складываться и растягиваться.

Полиэтилен – общие сведения Полиэтилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации этилена. Твердое вещество белого цвета. Выпускается в форме полиэтилена низкого давления (полиэтилена высокой плотности) , получаемого суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе, и полиэтилена высокого давления (полиэтилен низкой плотности) , получаемого при высоком давлении полимеризацией этилена в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Кроме того, существует несколько подклассов полиэтилена, отличающиеся от традиционных более высокими эксплуатационными характеристиками. В частности, сверхвысокомолекулярный полиэтилен, линейный полиэтилен низкой плотности, полиэтилен, получаемый на металлоценовых катализаторах, бимодальный полиэтилен. Как правило, полиэтилен выпускают в виде стабилизированных гранул диаметром 2-5 миллиметров в окрашенном и неокрашенном виде. Но возможен и промышленный выпуск полиэтилена в виде порошка. Полиэтилен – строение Полиэтилен является продуктом полимеризации этилена, химическая формула которого С2Н4. В процессе полимеризации происходит разрыв двойной связи этилена и образуется полимерная цепь, элементарное звено которой состоит из двух атомов углерода и четырех атомов водорода. В процессе полимеризации может происходить разветвление полимерной цепи, когда к растущей главной цепи сбоку присоединяется короткая полимерная группа. Разветвленность полимерной цепи препятствует плотной упаковке макромолекул и приводит к образованию рыхлой аморфно-кристаллической структуры материала и, как следствие, к уменьшению плотности полимера и понижению температуры размягчения. Различная степень разветвленности полимерной цепи полиэтиленов высокого и низкого давления и определяет различие свойств этих материалов. Так у полиэтилена высокого давления разветвленность цепи 15-25 ответвлений на 1000 атомов углерода цепи, а у полиэтилена низкого давления – 3-6 на 1000 атомов углерода цепи. Соответственно, плотность, температуры плавления и размягчения, степень кристалличности у ПЭВД, который еще называют «полиэтиленом с разветвленной цепью» , меньше, чем у ПЭНД, способ полимеризации которого обусловливает малую разветвленность. Свойства полиэтилена Полиэтилен – пластический материал с хорошими диэлектрическими свойствами. Ударостойкий, не ломающийся, с небольшой поглотительной способностью. Физиологически нейтральный, без запаха. Обладает низкой паро и газопроницаемостью. Полиэтилен не реагирует со щелочами любой концентрации, с растворами любых солей, карбоновыми, концентрированной соляной и плавиковой кислотами. Устойчив к алкоголю, бензину, воде, овощным сокам, маслу. Разрушается 50%-ной азотной кислотой, а также жидкими и газообразными хлором и фтором. Не растворим в органических растворителях и ограниченно набухает в них. Полиэтилен стоек при нагревании в вакууме и атмосфере инертного газа. Но на воздухе деструктируется при нагревании уже при 80 °С. Устойчив к низким температурам до –70 °С. Под действием солнечной радиации, особенно ультрафиолетовых лучей, подвергается фотодеструкции (в качестве светостабилизаторов используется сажа, производные бензофенонов) . Практически безвреден, из него не выделяются в окружающую среду опасные для здоровья человека вещества. Полиэтилен легко перерабатывается всеми основными способами переработки пластмасс. Легко подвергается модификации. Посредством хлорирования, сульфирования, бромирования, фторирования ему можно придать каучукоподобные свойства, улучшить теплостойкость, химическую стойкость.

Практически все знают, что с помощью полимеризации органического газа этилена изготавливают классический полиэтилен. В определенных условиях, молекулы данного газа создают полимерные цепочки, образовывая таким образом уникальный продукт. ПНД изготавливают практически по такой же схеме, только устанавливают точные значения давления и температуры, которые поддерживает барокамера. При этом, давление равно 20 атмосферам, а температура 150 градусам. Больше: <a rel=»nofollow» href=»http://ogodom.ru/tehnicheskie-harakteristiki-trub-pnd-diametryi-razmeryi-osobennosti.html» target=»_blank»>http://ogodom.ru/tehnicheskie-harakteristiki-trub-pnd-diametryi-razmeryi-osobennosti.html</a>

характеристики различных видов полиэтилена сможете найти на сайте <a rel=»nofollow» href=»http://gostprice.ru/» target=»_blank»>http://gostprice.ru/</a>

Полиэтилен подходит для изготовления изделий хозяйственного и бытового назначения, производства бутылей для воды, сока, молока и прочее выдувным методом <a rel=»nofollow» href=»http://zaobelis.ru/» target=»_blank»>http://zaobelis.ru/</a>

практические характеристики полиэтилена как сырья для пакетов можно ознакомится здесь <a rel=»nofollow» href=»https://paket.kiev.ua/tip-polietilena» target=»_blank»>https://paket.kiev.ua/tip-polietilena</a> <img src=»//otvet.imgsmail.ru/download/223315688_865bda637d595db712001df0c8ac4f52_800.jpg» alt=»» data-lsrc=»//otvet.imgsmail.ru/download/223315688_865bda637d595db712001df0c8ac4f52_120x120.jpg» data-big=»1″>

Здесь про полиэтилен все <a rel=»nofollow» href=»http://propolyethylene.ru/» target=»_blank» >propolyethylene.ru</a>

Почитала ответы, хочу немного расширить описание за счет двух разновидностей полиэтилена: высокомолекулярного полиэтилена и сверхвысокомолекулярного полиэтилена, из которых изготавливают ролики для конвейеров любых уровней нагрузки и всех типов (гладкие, амортизирующие, дефлекторные). Корпус подшипника из таких полимеров дает возможность понизить сопротивление вращению и уменьшить расход электричества, а полиэтиленовые уплотнители могут превосходно выполнять свои функции при температуре от -60° С до +250° С. Почитать подробнее можно на сайте «ТД Пластмасс Групп» — <a rel=»nofollow» href=»http://plastmass-group.ru/articles/roliki_dlya_conveierov» target=»_blank»>тут</a> http: //plastmass-group.ru/articles/roliki_dlya_conveierov . <img src=»https://otvet.imgsmail.ru/download/u_a879c54fd6100e3d8d2e255eb6af2562_800.jpg» alt=»» data-big=»1″ data-lsrc=»//otvet.imgsmail.ru/download/u_a879c54fd6100e3d8d2e255eb6af2562_120x120.jpg»>

touch.otvet.mail.ru

Полиэтилен.

12 февраля, 2014

Химическая формула

(—СН2СН2—)n

Другие названия и торговые марки.

Полиэтилен, ПЭ, ПЭВД, ПЭСД, ПНД, ПВП, ПЭНП, PE, HDPE, LDPE, ALKATEN, HOSTALEN LD, LUPOLEN, MALEN-E и др.

О материале.

Полиэтилен – один из самых популярных и широко применяемых полимерных материалов. Относится к полиолефинам. Получают полиэтилен путём полимеризации газа «этилен», при этом молекулы газа выстраиваются в длинные цепи и образуют молекулы полимера. Получившийся материал обладает хорошей химической стойкостью, диэлектрическими свойствами, дёшев, хорошо перерабатывается, имеет удовлетворительные физико-механические свойства, низкую температуру плавления и плохую термостойкость. Наиболее широко полиэтилен применяется в производстве товаров широкого спроса, в производстве тары, упаковки, товаров бытового и медицинского назначения. В технике полиэтилен применяется в качестве изоляционного, прокладочного и химически стойкого материала. Невысокие физико-механические свойства материала и низкая термостойкость не позволяют использовать полиэтилен в качестве конструкционного пластика. В уплотнительной технике из полиэтилена изготавливают уплотнительные кольца и фланцевые прокладки для лёгких условий эксплуатации, а также отдельные элементы сложных уплотнений.

Отдельным масштабным направлением является производство трубопроводных систем, включая трубы, фитинги и трубопроводную арматуру из полиэтилена. При этом герметичность достигается путём сварки, а уплотнения подвижных элементов выполняются из эластомеров (резины).

Виды и получение

Различают полиэтилен низкой плотности (высокого давления, ПЭВД, LDPE), средней плотности(среднего давления), высокой плотности (низкого давления, ПЭНД, HDPE).

Они различаются методом получения, и как следствие, различной молекулярной структурой, что достаточно серьезно сказывается на физико-механических свойствах материалов.

ПЭВД – имеет разветвлённую структуру, и представляет собой мягкий, эластичный материал.

ПЭНП – имеет большую степень кристалличности, и является гораздо более жёстким и упругим.

Основные свойства

ФИЗИКО—ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИЭТИЛЕНА НИЗКОГО ДАВЛЕНИЯ (ПНД)

ГОСТ      16338-85

Плотность, г/см3               0,931-0,970

Температура для плавления, °С    125-132

Температура для размягчения в воздушной среде по Вика, °С          120-125

Разрушающее напряжение при изгибе, МПа          19,0-35,0

Предел прочности при срезе, МПа             19,0-35,0

Твердость по вдавливанию под заданной нагрузкой шарика, МПа   48,0-54,0

Удельное электрическое поверхностное сопротивление, Ом          1014

Водопоглощение за 30 суток, %   0,03-0,04

Тангенс угла диэлектрических потерь при частоте 1010 Гц                0,0002-0,0005

Диэлектрическая проницаемость при частоте 1010 Гц        2,32-2,36

Удельная теплоемкость при 20-25 °С, Дж/кг·°С       1680-1880

Теплопроводность, В/(м·°С)           0,41 – 0,44

 

ФИЗИКО—ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИЭТИЛЕНА ВЫСОКОГО ДАВЛЕНИЯ (ПВД)

ГОСТ      16337-77

Плотность, г/см3               0,900-0,939

Температура для плавления, °С    103-110

Разрушающее напряжение при изгибе, Па (кгс/см2)           (117,6-196,07)·105 (120-200)

Предел прочности при срезе, Па (кгс/см2)              (137,2-166,6)·105 (140-170)

Предел прочности при разрыве, не менее Па (кгс/см2)      113-105, 137-105

Удельное электрическое поверхностное сопротивление, Ом          1015

Водопоглощение за 30 суток, %   0,02

Диэлектрическая проницаемость при частоте 1010 Гц        2,25-2,31

Температура хрупкости, не выше °С           от -100 до -120

Теплопроводность, В/(м·°С)           0,36 – 0,40

 

Модификации и сополимеры

Сополимеры и композиты.

Свойства полиэтилена могут быть существенно изменены путем получения сополимеров с другими мономерами и композиций с полимерами и эластомерами. Например, полиэтиленами другого типа, полипропиленом, винилацетатом, полиизобутиленом, различными каучуками. В результате можно существенно изменить физико-механические свойства, улучшить термостойкость и снизить горючесть.

 

ПЭ-С (PE-X).

Также улучшить свойства полиэтилена можно за счёт так называемой «сшивки», благодаря которой создаются дополнительные связки на молекулярном уровне. Сшитые полиэтилены обозначаются ПЭ-С (PE-X).

 

Сверхвысокомолекулярный полиэтилен (СВМПЭ).

Сверхвысокомолекулярный полиэтилен (СВМПЭ) – достаточно новый материал, обладающий уникальными свойствами. Свойства материала обусловлены очень большой длинной моно молекул и высокой плотностью структуры. Материал имеет уникальную прочность, стойкость к абразивному воздействию, низкий коэффициент трения, стойкость к агрессивным средам и имеет хорошие перспективы для применения в различных областях техники.

 

sealing.su © 2014

Перепечатка без ссылки на источник запрещена.

Дополнительные материалы по теме:

Таблица международных обозначений полимерных материалов >>>

Читайте также:

Полиэтиленовые фитинги 2016. Обзор. >>>

sealing.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *