Подключение магнитного реверсивного пускателя: Схема подключения магнитного пускателя на 220 В, 380 В

Содержание

Схема подключения магнитного пускателя на 220 В, 380 В

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше. 

Содержание статьи

  • 1 Контакторы и пускатели — в чем разница
  • 2 Устройство и принцип работы
  • 3 Схемы подключения магнитного пускателя с катушкой на 220 В
    • 3.1 Подключение пускателя с катушкой 220 В к сети
    • 3.2 Схема с кнопками «пуск» и «стоп»
  • 4 Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В
  • 5 Реверсивная схема подключения электродвигателя через пускатели

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В.  На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

Устройство магнитного пускателя

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Так выглядит в разобранном виде

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп».  Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

Подключение контактора с катушкой на 220 В

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки  (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

 

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой  пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Магнитный пускатель с установленной на нем контактной приставкой

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Реверсивный пускатель: схема правильного подключения

Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад. По сути, реверс обеспечивается наличием еще одной контактной группы на пускателе. Но ее нужно правильно подключить. Например, имеются три фазы А, В и С, которые подключены к контактной колодке электромотора. При этом вал вращается по часовой стрелке. Чтобы заставить вращаться его в обратную сторону, достаточно поменять любые две фазы местами. Например, подключить в таком порядке – В, А, С.

Особенности реверсивных пускателей

Используются такие схемы подключения в конструкциях лифтов, подъемных кранов, сверлильных станков. Если сильно не вдаваться в детали, то может показаться, что схема включения мотора с использованием реверса сложнее. Но на деле оказывается, что сложного нет ничего – в конструкцию добавилась еще одна силовая часть и управление.

Стоимость таких устройств немного выше за счет использования большего количества элементов. По сути, это два электромагнитных пускателя, объединенных в один корпус. Принцип работы у схемы специфический, потребуется внимательно рассмотреть все нюансы.

Исходное положение элементов

Схема реверсивного магнитного пускателя в изначальном состоянии разомкнута — напряжение поступает только на верхние контакты и «дежурит» до того момента, пока не начнет работать система управления. Фазы располагаются в таком виде:

  1. От фазы «А» производится питание цепи управления.
  2. Провод от фазы «А» поступает на кнопку остановки.
  3. Фаза также поступает на контакты кнопок SB2 и SB3.
  4. Обязательно осуществляется защита цепей – силовых и управления.

В таком виде схема готова к началу работы, остается только нажать на кнопку «Влево» или «Вправо», чтобы запустить электродвигатель. И нужно изучить более подробно процессы, протекающие в схеме реверсивного пускателя с кнопками управления при вращении ротора двигателя.

Ротор вращается против часовой стрелки

Как только происходит нажатие на кнопку SB2, через нормально-замкнутую группу контактов КМ2.2 проходит фаза «А» на катушку пускателя. При этом происходит срабатывание обмотки, контакты, которые были разомкнутые, замыкаются. А замкнутые размыкаются.

Как только произойдет замыкание контактов КМ1.1, магнитный пускатель переводится в режим самоподхвата.

Следовательно, как только происходит замыкание группы силовых контактов, все три фазы подаются на обмотки электрического двигателя. И ротор начинает разгоняться, двигаясь в направлении против часовой стрелки. Нормально-замкнутая группа контактов КМ1.2, которая находится в цепи, питающей катушку пускателя КМ2, размыкается и противодействует подаче напряжения на катушку КМ2 (КМ1 при этом работает). В народе такую схему называют «защитой от дурака».

Двигатель вращается по часовой стрелке

Как было сказано ранее, для вращения мотора в противоположную сторону, достаточно просто поменять местами две фазы. Именно это и делает в схеме реверсивного пускателя двигателя элемент, обозначенный КМ2. Но, прежде чем изменить направление движения, необходимо остановить мотор. Для этого используется кнопка «Стоп». Обычно она имеет красный цвет. Как только оператор нажмет на кнопку, произойдет разрыв цепи питания катушки магнитного пускателя КМ1.

При этом пружина воздействует на контакты и возвращает их в исходное состояние. Электрический двигатель обесточивается, на обмотках пропадает напряжение и ротор останавливается. При нажатии на кнопку SB3 происходит передача фазы «А» по нормально-замкнутому контакту КМ1.2 на катушку электромагнита КМ2. Пускатель выходит в режим самоподхвата при помощи силового контакта КМ2.1.

В них переброшены две фазы – например, «А» и «В». Группа контактов КМ2.2, которая находится в цепи питания магнитного пускателя КМ1, размыкается и не позволяет включиться в работу КМ1. Магнитный пускатель КМ2 в это время работает.

Схема силовой цепи

В общем, схема подключения реверсивного пускателя в трехфазной сети может быть реализована несколькими способами. Самое главное – можно использовать два пускателя, если нет возможности поставить один.

Важно правильно произвести переброс фаз, чтобы осуществить реверс. Распределяются фазы в магнитном пускателе КМ1 таким образом:

  1. «А» подается к обмотке «1».
  2. «В» поступает на обмотку мотора «2»
  3. «С» подается на обмотку «3».

При этом вращение ротора происходит против часовой стрелки. На пускателе КМ2 фазы распределены таким образом:

  1. «А» на обмотку «1».
  2. «С» поступает к обмотке «2».
  3. «В» подается на обмотку мотора «3».

Следовательно, отличие только в том, что поменялись местами две фазы – «В» и «С». Фаза под литерой «А» остается все также на первом контакте. Но ротор будет вращаться в противоположную сторону – в обмотках происходит сдвиг фаз.

Практическая схема реверсивного пускателя

Схема подключения реверсивного пускателя трехфазного типа производится таким образом:

  1. Первой подсоединяется к контактам фаза «А». Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2.
  2. Выходы обоих пускателей соединяются параллельно при помощи перемычки.
  3. Фаза с обозначением «В» соединяется со средним контактом КМ1, а также при помощи перемычки с крайним правым КМ2.
  4. Фаза «С» соединяется с крайним правым контактом на КМ1 и средним на КМ2.

Именно таким образом происходит смена направления движения ротора.

Схема подключения реверсивного пускателя реализуется только лишь при помощи соединения силовых контактов и смены их порядка. Но обязательно в конструкции привода должна иметься защита от случайного включения двух магнитных пускателей одновременно.

Как осуществляется защита

Обязательно перед тем как произвести смену направления движения ротора, необходимо полностью застраховаться от различных ошибок. Допустим, конструкция не содержит в себе элементов, которые позволяют защитить схему. Тогда при вращении мотора против часовой стрелки магнитный пускатель КМ1 находится в рабочем состоянии. Все фазы поступают к соответствующим обмоткам мотора.

Если сразу же произвести включение магнитного пускателя КМ2, то фазы «В» и «С» окажутся замкнутыми. Следовательно, произойдет обычное межфазное замыкание, которое может привести к пожару или выходу из строя различных компонентов. Для предотвращения такого явления используются контакты нормально-замкнутого типа.

Они монтируются непосредственно в цепи питания катушек пускателей. Именно с их помощью появляется возможность включения только одного магнитного пускателя и полностью исключается вероятность включения в цепь питания одного пускателя до полного отключения второго. В противном случае постоянно будут выбивать автоматы защиты, оператору придется их включать.

Заключение

«Защита от дурака» имеется в любой электрической схеме. Если в схеме реверсивного пускателя не использовать такого типа защиту, то при эксплуатации возникнет множество проблем. Операторы, которые включают электропривод, обычно не имеют познаний в схемотехнике. Поэтому, чтобы исключить возможность ошибки, используется схема, которая не позволяет ввести в работу одновременно два магнитных пускателя.

Желательно применять в схемах лампы, которые будут показывать направление вращения двигателя. Чтобы произвести их подключение, нужно правильно соединить группы вспомогательных контактов. Можно использовать лампы на 220 Вольт или, если имеется отдельный источник питания, на 12 Вольт. Целесообразность использования таких типов конструкций сомнительна, так как намного проще применить в качестве источника напряжения одну из рабочих фаз. Обычно так и поступают, в редких случаях применяются дополнительные источники питания.

Желательно цепи управления питать от низковольтной цепи, но при этом возникает необходимость в источнике постоянного напряжения – придется применять специальные устройства. Для этого достаточно установить трансформатор и простейший выпрямитель, либо же использовать готовый блок питания. Обязательно нужно применить схему защиты цепи питания низковольтной части.

подключение и запуск, настройка реверса

Содержание

  1. Чем отличается схема магнитного реверсивного пускателя: правила комплектации
  2. Изменение вращательного движения
  3. Технические характеристики
  4. Схемы подключения магнитного пускателя.
  5. Возможности пускателей
  6. Подробнее о взаимоблокировке
  7. Описание работы вышеуказанной схемы
  8. Общая схема реверса электродвигателей
  9. Принцип работы реверсивного магнитного пускателя
  10. Устройство магнитного пускателя для реверсного пуска
  11. Защита силовых цепей от короткого замыкания или «защита от дурака».
  12. Как подключить реверсивный магнитный пускатель: схема, описание
  13. Работа цепей управления при вращении двигателя влево.
  14. РАЗНОВИДНОСТИ УСТРОЙСТВ
  15. Особенности реверсивных пускателей
  16. Устройство магнитного пускателя для реверсного пуска

Чем отличается схема магнитного реверсивного пускателя: правила комплектации

Представим, что появилась необходимость разобраться в особенностях устройства, в котором электрический двигатель способен работать в двух направления – прямом и обратном, то есть реверсивном. И если такая особенность очевидна, значит, в схеме агрегата предусмотрено наличиемагнитного реверсивного пускателя. Его использование не такое и простое, необходимо продумать режим работы, чтобы не допустить опасное замыкание фаз.

В схеме обязательно можно найти обозначение дополнительной цепи управления и кнопки запуска реверса. В виду такой продуманности, созданная схема отличается надежностью, так как защищена от короткого замыкания.

А за счет чего проходит реверс? Это легко объяснимо. – За счет переворачивания местами двух имеющихся в системе фаз: когда одна прекращает работу, а другая, наоборот, запускается. Для более надежной защиты, обязательно в схеме продумана блокировка, отвечающая за точную и своевременную остановку одного из пускателей, первого или второго. Все зависит от поставленных задач. Напомним, что в случае срабатывания двух пускателей мгновенно произойдет короткое замыкание на силовых контактах агрегата.

Отметим, что реверсивное движение запускается не мгновенно, так как требуется срабатывание нескольких важных пунктов. Во-первых, обязательно рекомендуется остановить работу двигателя, нажать кнопку «Стоп»

Во-вторых, надо обратить внимание на состояние катушки, снять с нее напряжение, иначе процесс реверсивного запуска даст сбой. Если все сделано правильно, то пускатель вернется в исходное положение под действием пружины

Все, агрегат готов к реверсу. Нажимаем кнопку «Пуск», соответственно, подается нужное напряжение на катушку, значит, процесс запущен.

С панели управления устройства можно считать информацию замыкании электрической цепи. А это значит, что в систему поступил ток, и он постепенно подается в катушку. Одновременно выполняется блокирование всех не вступивших в работу контактов. Этого требует безопасность.

Отметим, что в случае срабатывания теплового реле, произойдет остановка агрегата во избежание аварийной ситуации.

Таким образом, магнитный пускатель играет важную роль в работе двигателей. Свое место назначения также достойно занимаем и реверсивный пускатель, обеспечивая бесперебойную работу станков, тэнов, лифтов и другого электрического оборудования. Пускатели относятся в надежным и безопасным образцам, особенно если они дополнительно оснащены блокировочными системными механизмами. Они находятся внутри кожуха и не допускают срабатывание одновременно двух катушек, не доводя до замыкания фаз.

{SOURCE}

Изменение вращательного движения

Теперь для придания обратного направления движения, вам необходимо изменить положение силовых фаз, что удобно сделать при помощи переключателя КМ2.

Все происходит благодаря размыканию первой фазы. При этом все контакты возвращаются в исходно положение, обесточив обмотку двигателя. Данная фаза является ждущим режимом.

Задействование кнопки SB3 приводит в действие магнитный пускатель с аббревиатурой КМ2, который, в свою очередь, меняет положение второй и третьей фазы. Это действие заставляет двигатель вращаться в обратном направлении. Теперь КМ2 является ведущим и пока не произойдет его размыкание КМ1 будет не задействован.

Технические характеристики

Не будем здесь рассматривать все параметры прибора, потому что выбор всегда делается по величине пускателя, которая характеризуется номинальным током нагрузки, действующей на контакты прибора. Существует семь величин пускателя, каждой из которых соответствует допустимая токовая нагрузка. На фотографии ниже обозначены эти самые величины, и в каких областях такие магнитные пускатели применяются.

Необходимо отметить, что небольшие погрешности в параметрах допустимы. Но в некоторых случаях надо учитывать, в каком диапазоне срабатывает тепловое реле. Если величины пускателей имеют завышенную нагрузку, а реле заниженный минимальный показатель теплового отключения, то может быть несоответствие заданной мощности электрической цепочки или потребителя.

{SOURCE}

Схемы подключения магнитного пускателя.

Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.

Для удобства понимания схема разделена на две части: силовая часть и цепи управления.

Силовая часть запитывается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В силовую часть входит: трехполюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный эл. двигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, включенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на контакт №3 кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах. Схема готова к работе.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на эл. двигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. На нижнем рисунке стрелкой показано движение фазы «А».

А если не будет самоподхвата, придется все время держать нажатой кнопку «Пуск» пока будет работать эл. двигатель или любая другая нагрузка, питающаяся от магнитного пускателя.

Чтобы отключить эл. двигатель достаточно нажать кнопку «Стоп»: цепь разорвется, управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель от трехфазного питающего напряжения.

А теперь рассмотрим монтажную схему цепи управления пускателем.
Здесь все практически так же, как и на принципиальной схеме, за небольшим исключением реализации самоподхвата.

Чтобы не тянуть лишний провод на кнопку «Пуск», ставится перемычка между выводом катушки и одним из ближних вспомогательных контактов: в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на контакт №3 кнопки «Пуск».

Ну вот, мы с Вами и разобрали простую классическую схему подключения магнитного пускателя. Также на одном пускателе можно собрать схему автоматического ввода резерва (АВР), которая предназначена для обеспечения бесперебойного электроснабжения потребителей электроэнергией.

Ну а если остались вопросы или сомнения по работе пускателя, то посмотрите видеоролик, из которого Вы дополнительно подчерпнете нужную информацию.

Следующая схема будет немного сложнее этой, так как в ней будут задействованы два магнитных пускателя и три кнопки и называется эта схема реверсивной. При помощи такой схемы можно будет, например, вращать двигатель влево – вправо, поднимать и опускать лебедку.

А пока досвидания.
Удачи!

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Подробнее о взаимоблокировке

Электрическая схема реверсивного пуска асинхронного двигателя требует наличия взаимоблокировки. Стоит понимать, что для смены направления вращения асинхронного двигателя нужно сменить любые 2 фазы местами. Для этого входы пускателей соединяются прямо, а выход соединяется накрест любые 2 фазы. В случае включения обоих пускателей одновременно произойдет короткое замыкание, которое, скорее всего, спалит силовые контактные группы на пускателях.

Вам будет интересно: Закон Бойля-Мариотта: формула и пример задачи

Для того чтобы избежать короткого замыкания при монтаже реверсивного пуска двигателя, нужно исключить одновременную работу обоих пускателей. Именно поэтому необходимо применять схему взаимоблокировки. При включенном первом пускателе разрывается питание на второй пускатель, чем и исключается его случайное включение, к примеру, одновременно нажаты обе кнопки «пуск».

Если так вышло, что при нажатии кнопки, которая должна включить «вращение вправо», а двигатель вращается влево, и, наоборот, при нажатии «вращение влево» двигатель вращается вправо, не стоит собирать заново всю схему. Просто поменяйте местами на вводе 2 провода – вот и все, проблема решена.

Может случиться так, что на вводе это сделать невозможно по каким-либо обстоятельствам. В таком случае смените местами 2 провода в клейменной коробке на двигателе. И снова проблема решена. Кнопка, отвечающая за вращение вправо, запустит вращение вправо, а кнопка, отвечающая за вращение влево, запустит вращение влево.

Описание работы вышеуказанной схемы

Вам будет интересно: Ликтор – это: суть профессии и исторические факты

Разберем работу принципиальной схемы реверсивного пуска двигателя. Ток поступает от фазы С на нормально замкнутую общую кнопку КнС, кнопка «стоп». После чего проходит через общее реле тока, которое защитит двигатель от перегрузок. Затем при нажатии КнП «право» ток проходит через нормально замкнутый контакт пускателя КМ2. Поступая на катушку пускателя КМ1, сердечник втягивается, замыкая силовые контакты, разрывая питание на пускатель КМ2.

Так необходимо делать для того, чтобы разорвать питание второго пускателя и защитить цепи от короткого замыкания. Ведь реверс обеспечен тем, что 2 любые фазы меняются местами. Таким образом, если при включенном КМ1 нажать кнопку КнП «лево», пуск не произойдет. Самошунтирование обеспечено вспомогательным контактом, изображенным под КнП «право». Когда пускатель включен, замкнут и этот контакт, обеспечивая питание на катушку пускателя.

Для того чтобы остановить двигатель, необходимо нажать КнС («стоп»), вследствие чего катушка пускателя потеряет питание и придет в нормальное состояние. Теперь, когда КМ1 пришел в нормальное состояние, он замкнул нормально замкнутую группу вспомогательных контактов, благодаря чему катушка пускателя КМ2 снова может получать питание, и стало возможно запустить вращение в противоположную сторону. Для этого нажмем КнП «лево», тем самым включая пускатель КМ2. Получая питание, катушка втягивает сердечник и замыкает силовые контакты, включая питание на двигатель, сменив 2 фазы местами.

Разбирая работу данной схемы реверсивного пуска двигателя, можно заметить что шунтирование обеспечено нормально разомкнутым вспомогательным контактом, изображенным под кнопкой КнП «лево», и оно разрывает питание на пускатель КМ1, делая невозможным его включение.

Выше была рассмотрена схема для трехфазного привода. В самом начале схемы сразу после КнС можно увидеть нормально замкнутый контакт от реле тока. В случае потребления двигателем чрезмерного тока, реле срабатывает, разрывая питание на всю цепь управления. Все, что работает в цепи управления, потеряет питание, это и спасет двигатель от выхода из строя.

Общая схема реверса электродвигателей

В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.

Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.

Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.

Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.

На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.

Принцип работы реверсивного магнитного пускателя

Подключение реверсивного магнитного пускателя и его работа происходит следующим образом. После осуществления команды “пуск” на панели управления устройства электрическая цепь замыкается, вследствие чего ток подаётся на катушку. В это время механическая блокирующая система срабатывает, подобным образом блокируются незадействованные контакты. Так как контакты кнопки тоже оказываются заблокированными, подобное действие позволяет не удерживать кнопку, а спокойно отпустить её. Вторая кнопка реверсивного магнитного пускателя, параллельно с запуском устройства, размыкает цепь, таким образом, её активация не даст никакого результата.

Для осуществления реверса необходимо активировать кнопку “стоп”, нажатие которой обесточит обе катушки реверсивного магнитного пускателя, тем самым остановив функциональные операции оборудования. При таком действии все блокирующие устройства займут изначальное положение. Подобная последовательность позволяет активировать реверсивный магнитный пускатель вновь, без каких либо дополнительных действий. При выборе команды “пуск” произойдут вышеописанные действия, однако при этом будет использована вторая катушка, а первая окажется заблокированной.

Наиболее совершенный и безопасный реверсивный магнитный пускатель оснащен дополнительными блокировочными системными механизмами. Размещаются данные приспособления для блокирования рабочего момента, как правило, внутри кожуха (непосредственно под панелью управления) и предназначены для того чтобы не допустить срабатывания сразу обеих катушек. Согласно схеме реверсивного магнитного пускателя, если он снабжен электрической блокирующей системой, то использование механических блокировок вовсе необязательно.

Осуществление реверса происходит через полную остановку двигателя. Другими словами, при срабатывании реверсивного магнитного пускателя двигатель замедляется, после чего следует полная остановка, а затем осуществляется вращение в другую сторону. Однако при этом необходимо совпадение мощностей двигателя и реверсивного магнитного пускателя. Только при осуществлении данного процесса, реверс будет осуществлён правильно.

Если же остановка и реверс двигателя производится противовключением, то мощность оборудования должна быть значительно ниже максимально допустимой мощности реверсивного магнитного пускателя. Наиболее часто двигатель уступает по мощности пускателю в 1,5-2 раза. Во многом разница мощностей зависит от качества контактов магнитного пускателя, а точнее их износостойкости при работе в данных условиях.

Данный режим должен проходить без применения механических систем блокировки. Однако безопасность работы реверсивного магнитного пускателя в обязательном порядке должна обеспечиваться применением электрических систем блокировки.

В целом же реверсивные магнитные пускатели являются технологичным и безопасным методом удалённого управления асинхронными электродвигателями.

Устройство магнитного пускателя для реверсного пуска

Стандартный пускатель состоит из следующих компонентов:

  • сердечник с закрепленной на нем катушкой индукции;
  • якорь с механизмом перемещения контактных групп;
  • корпус, обеспечивающий целостность конструкции вместе с защитой от внешних воздействий.

При подаче (отключении) тока питания движением якоря замыкаются (отсоединяются) соответствующие контакты силовых цепей. Реверсивные модификации создают из двух обычных пускателей, установленных на одной монтажной панели. Дополнительными проводниками обеспечивается блокировка, препятствующая одновременному включению двух изделий.

Реверсивный пускатель

В этом варианте используют отдельные клавиши, которые инициируют вращение ротора в прямом и обратном направлении. Первый рабочий режим сопровождается шунтированием контактной группой «КМ1» соответствующей цепи.

Если нажать после этого клавишу «Назад», ничего не произойдет.

Для активизации обратного вращения следует сначала остановить двигатель, чтобы исключить поломку. Нажатием «Стоп» (С – на рисунке ниже) отключают питающее напряжение 380 V. После можно подать ток в нужные обмотки через силовые контактные группы «КМ2».

Схема подключения

Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок. И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

Как подключить реверсивный магнитный пускатель: схема, описание

В каждой установке, в которой требуется запуск электродвигателя в прямом и обратном направлении обязательно присутствует магнитный пускатель реверсивной схемы. Подключение такого компонента не является столь сложной задачей как, кажется, на первый взгляд. К тому же востребованность таких задач появляется довольно часто. К примеру, в сверлильных станках, отрезных установках или же лифтах, если это касается не бытового использования.

Принципиальным отличием такой схемы от одинарной является наличие дополнительной цепи управления и немного измененной силовой части. Также для осуществления переключения такая установка оснащена кнопкой (SB3 на рисунке). Такая система, как правило, защищена от короткого замыкания. Для этого перед катушками в силовой цепи предусмотрено наличие двух нормально — замкнутых контакта (КМ1.2 и КМ2.2) производные от контактных приставок, размещенных в позиции магнитных пускателей (КМ1 и КМ2).

Для того чтобы приведенная схема была читабельной, изображения цепи на ней и силовые контакты имеют различное цветовое оформление. Также для упрощения, здесь не были указаны пары силовых контактов, обычно имеющие цифробуквенные аббревиатуры. Впрочем, с данными вопросами можно ознакомиться в статьях, посвященных подключению стандартных магнитных пусковых систем.

Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1. 1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

РАЗНОВИДНОСТИ УСТРОЙСТВ

Модели магнитных пускателей классифицируются по следующим параметрам:

  • рабочий ток, коммутируемый основными контактами;
  • рабочее напряжение нагрузки;
  • напряжение и род тока катушки управления;
  • категория применения.

Номинальные токи аппаратов составляют стандартизованный ряд значений от 6,3 А до 250 А.

Этот ряд соответствует устаревшей классификации этих коммутационных приборов по величине, согласно которой все МП подразделялись на величины от нулевой (0) до седьмой (7).

Каждому значению величины МП соответствовал определённый номинальный ток. Например, нулевой величине соответствует значение 6,3 ампера, первой – 10 ампер и так далее.

С появлением большого числа зарубежных МП, распространённость классификации по величинам стала угасать. Действительно, логику введения дополнительного понятия величины МП понять трудно. Типичная «бритва Оккама». При выборе аппарата в первую очередь нас интересует его номинальный ток, о нём и следует говорить.

МП относятся к низковольтным устройствам, рассчитанным на подключение в сетях напряжением до 1000 вольт.

В этом сегменте имеется два стандартных напряжения – 380 В и 660 В. На какое напряжение рассчитана конкретная модель указывается в техническом паспорте устройства, а также написано на корпусе.

Гораздо более разнообразен ряд напряжений, на подключение к которым рассчитана катушка управления. Это объясняется тем, что МП работают в различных системах управления и автоматики.

В этом случае подключение напряжения к катушке управления производится не просто от одной или двух фаз питающей электросети. В системах автоматики сформированы специальные цепи оперативного тока, которые бывают различными по уровню напряжения и роду тока.

Катушки управления коммутационных аппаратов могут быть рассчитаны на подключение к переменному напряжению в диапазоне от 12 до 660 вольт или к постоянному от 12 до 440 вольт.

В соответствии с ГОСТ МП делятся на 12 категорий (от AC–1 до AC–8b), в зависимости от характера нагрузки переменного тока, подключение которой они производят. Наибольшее распространение имеют категории AC-3 и AC-4, предназначенные для подключения двигателей с короткозамкнутым ротором.

МП могут различаться также комплектацией, внешним оформлением. К распространённым вариантам относятся модели, размещённые в корпусе, снаружи которого расположены кнопки «Пуск» и «Стоп». В комплект поставки магнитного пускателя может входить тепловое реле защиты.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Особенности реверсивных пускателей

Используются такие схемы подключения в конструкциях лифтов, подъемных кранов, сверлильных станков. Если сильно не вдаваться в детали, то может показаться, что схема включения мотора с использованием реверса сложнее. Но на деле оказывается, что сложного нет ничего – в конструкцию добавилась еще одна силовая часть и управление.

Стоимость таких устройств немного выше за счет использования большего количества элементов. По сути, это два электромагнитных пускателя, объединенных в один корпус. Принцип работы у схемы специфический, потребуется внимательно рассмотреть все нюансы.

Устройство магнитного пускателя для реверсного пуска

Запуск мотора схемой звезда-треугольник При прямом запуске мощных трехфазных электродвигателей, применяя схему управления реверсом, происходят просадки напряжения в сети

Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение

Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Внутренняя схемотехника реверсивного устройства характерна тем, что невозможно запустить одновременно два режима — прямой и реверс. Теперь посмотрите на контакты КМ2.

Действие с определенной временной задержкой предотвращает механические повреждения, исключает сильные броски напряжения при подключении к источнику нагрузки с индуктивными характеристиками.

Как происходит защита двигателя при нереверсивном пуске Защита электрического двигателя реализуется при помощи биметаллических контактов ТР , они изгибаются при увеличении тока, и расцепитель воздействует на контакт в пусковой обмотке, прекращая подачу электрической энергии. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления.

Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. Это связано с большими пусковыми токами, протекающими в этот момент. В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя. Очень рекомендую ознакомиться, перед дальнейшим чтением.

На компонентах для подключения лучше не экономить, т. Это так называемый кнопочный пост. В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. Простейшая схема управления двигателем представлена на рис.

Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение В. Когда требуется изменение направления вращения его вала, для пуска применяют реверсивный пускатель, схема подключения которого является объектом изучения профессионалов и простых обывателей. При применении двигателей малой мощности, не требующих ограничения пусковых токов, пуск осуществляется включением их на полное напряжение сети.

Силовые и блокировочные контакты бывают нормально-разомкнутыми или норамально-замкнутыми. Изменение направления вращения двигателя, связанных с ним исполнительных механизмов — довольно востребованная процедура. Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме.
Электрическая схема тельфера

СХЕМА ПОДКЛЮЧЕНИЯ МАГНИТНОГО ПУСКАТЕЛЯ

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп»  питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика, который легко можно сделать самому.

Originally posted 2019-07-26 14:54:23. Republished by Blog Post Promoter

Подключение магнитного пускателя на 380 и 220в: схема, видео

  • Статья
  • Видео

Магнитный пускатель является ключевым элементом практически каждой электрической схемы. С помощью контактора производится подключение потребителей, управление нагрузкой дистанционно и прочие коммутационные переключения. В зависимости от напряжения управляющей сети, различаются и по напряжению управления 12, 24, 110, 220, 380 вольт. Обычно для подключения трехфазной и не только нагрузки имеются контакты L1, L2, L3 и вспомогательные NO или NC. Управление малогабаритным пускателем производится в ручном режиме или различными автоматическими устройствами, такими как реле времени, освещенности и прочими. Ниже мы рассмотрим некоторые схемы подключения магнитного пускателя на 220 и 380 вольт, которые могут пригодиться в домашних условиях.

  • Обзор вариантов
  • Инструкции по подсоединению

Обзор вариантов

В ручном режиме включение производят с кнопочного поста. Кнопка пуск открытый контакт на замыкание, а стоп работает на размыкание. Схема подключения магнитного пускателя с самоподхватом выглядит следующим образом:
Рассмотрим работу цепей включения и выключения магнитного контактора. Кнопочный пост из двух кнопок, при нажатии ПУСК, фаза поступает из сети через контакты СТОП, цепь собирается, пускатель втягивается и замыкает контакты, в том числе и дополнительный NO, который стоит параллельно кнопке ПУСК. Теперь если ее отпустить магнитный пускатель продолжает работать, пока не пропадет напряжение или сработает тепловое реле Р защиты двигателя. При нажатии СТОП цепь разрывается, контактор возвращается в исходное положение и размыкаются контакты. В зависимости от назначения, питание катушки может быть 220в (фаза и ноль) или 380в (две фазы), принцип работы цепей управления не меняется. Включение трехфазного электродвигателя с тепловым реле через кнопочный пост выглядит следующим образом:

В итоге это выглядит примерно так, на картинке:

Если вы хотите подключить трехфазный двигатель через магнитный пускатель с катушкой на 220 вольт, выполнять коммутацию нужно по следующей монтажной схеме:


С помощью трех кнопок на пульте управления можно организовать реверсивное вращение электродвигателя.

Если внимательно присмотреться, то можно увидеть что она состоит из двух элементов предыдущей схемы. При нажатии ПУСК контактор КМ1 включается, замыкая контакты NO KM1, становясь на самоподхват, и размыкая NC KM1 исключая возможность включения контактора КМ2. При нажатии кнопки СТОП происходит разборки цепи. Еще одним интересным элементом трехфазной реверсивной схемы подключения является силовая часть.

На контакторе КМ2 происходит замена фаз L1 на L3, а L3 на L1, таким образом меняется направление вращения электродвигателя. В принципе данная схемотехника управления трехфазной и однофазной нагрузкой с головой покрывает домашние нужды, и проста для понимания. Можно также подключить дополнительные элементы автоматики, защиты, ограничители. Рассматривать их все нужно отдельно для каждого конкретного устройства.

С помощью выше приведенной схемы подключения магнитного пускателя можно организовать открытие ворот гаража, введя в цепь дополнительно концевые выключатели, задействовав контакты NC последовательно с NC KM1 и NC KM2, ограничив ход механизма.

Инструкции по подсоединению

Самый простой вариант подключения — через кнопку. В этом случае действовать нужно так, как показывается на видео:

Подсоединяем пускатель через кнопочный пост (без реверса)

На примере с двигателем выглядит это так:

Управление электродвигателем на 380 Вольт

Подключить по реверсивной схеме двигатель можно следующим образом:

Включение двигателя через три кнопки

Вот по такому принципу можно самостоятельно подключить устройство к сети 220 и 380 вольт. Надеемся, наша инструкция по подключению магнитного пускателя со схемами и подробными видео примерами была для вас понятной и полезной!

Будет интересно прочитать:

  • Как работает магнитный пускатель
  • Как выбрать магнитный пускатель
  • Как меньше платить за свет — хитрости
  • Как сделать ветрогенератор своими руками

Подсоединяем пускатель через кнопочный пост (без реверса)

Управление электродвигателем на 380 Вольт

Включение двигателя через три кнопки

Магнитный Пускатель 380в Схема Подключения

Основа пускателя — магнитопровод и катушка индуктивности.

9 комментариев

Инструкции по подсоединению

Подсоединение к 3-фазной сети Возможно подключение 3-фазного питания через катушку МП, функционирующей от В.

Если надпись гласит В АС или рядом с стоит значок переменного тока , то для работы схемы управления потребуется фаза и ноль. Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги.

Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы. Графическое изображение по управлению, которое составляют катушка, кнопки и дополнительные контакторы, которые принимают участие в работе катушки или не допускают ошибочных включений. Теперь, перепроверив правильность монтажа можно подать напряжение и проверить работоспособность схемы.

Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. Кнопки управления пускателей В общем случае потребуется две кнопки: одна для включения и одна для отключения.

Необходимость в специфическом кнопочном контакте Известно, что контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Различаются схемы подключения МП главным образом в зависимости от того, какая катушка в нем находится. Такие кнопки обычно имеют две пары групп контактов — одну нормально разомкнутую, другую замкнутую.

Поиск на сайте


Реверсивная схема подключения электродвигателя через пускатели В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Удержание контактора во включенном состоянии происходит по принципу самоподхвата — когда дополнительный вспомогательный контакт шунтирует подключается параллельно пусковую кнопку, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии. При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Катушка приведёт в действие контакты КМ1 и они замкнут цепи с обмотками двигателя. Напряжение с обозначением — значит разные фазы.

При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода. Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы В. Теперь если ее отпустить магнитный пускатель продолжает работать, пока не пропадет напряжение или сработает тепловое реле Р защиты двигателя. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку.

Устройство и принцип работы

Питание для двигателя или любой другой нагрузки фаза от В подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T. Ниже мы рассмотрим некоторые схемы подключения магнитного пускателя на и вольт, которые могут пригодиться в домашних условиях.

Такое подключение позволяет производить коммутацию кнопками с любого поста.

Схема подключения магнитного пускателя с самоподхватом выглядит следующим образом: Рассмотрим работу цепей включения и выключения магнитного контактора.

Немного изменена и силовая часть От к. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты.

Рекомендуем: Выключатель luxar deco как подключить

Навигация по записям

Подсоединение к 3-фазной сети Возможно подключение 3-фазного питания через катушку МП, функционирующей от В. На контакторе КМ2 происходит замена фаз L1 на L3, а L3 на L1, таким образом меняется направление вращения электродвигателя. Напряжение с обозначением — значит разные фазы. Схема подключения магнитного пускателя на В Подключение к В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки.

Вся схема будет работать от двух фаз. Реле подсоединяют к выводу с МП на электрический двигатель, электричество проходит в нем в последовательном образе сквозь нагрев реле до электромотора. Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на В. Подключение магнитного пускателя с тепловым реле Магнитный пускатель это, по сути, мощное реле специального назначения. Для подачи питания используется второй тип, он и есть наиболее распространенным.

В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится. В прорези нижней части магнитопровода устанавливается катушка. Как выглядит монтажная практическая схема подключения магнитного пускателя?

Основы магнитного пускателя двигателя | EC&M

NEC определяет контроллер несколькими способами. В ст. 100, контроллер описывается как «устройство или группа устройств, которые служат для управления определенным заранее образом электроэнергией, подаваемой на устройство, к которому оно подключено». Немного конкретизируя определение в ст. 430.2 гласит: «Контроллер — это любой переключатель или устройство, которое обычно используется для запуска и остановки двигателя путем подачи и отключения тока в цепи двигателя». В этой статье мы сосредоточимся на контроллерах, в частности, на различных контроллерах магнитного пускателя двигателя.

Магнитный пускатель двигателя представляет собой набор контактов с электромагнитным приводом, который запускает и останавливает подключенную двигательную нагрузку. Цепь управления с устройствами мгновенного действия, подключенными к катушке магнитного пускателя двигателя, выполняет эту функцию пуска и остановки. Трехполюсный магнитный пускатель двигателя полного напряжения состоит из следующих компонентов: набора неподвижных контактов, набора подвижных контактов, нажимных пружин, электромагнитной катушки, стационарного электромагнита, набора магнитных экранирующих катушек и подвижная арматура.

Также важно помнить, что магнитный пускатель двигателя представляет собой контактор с дополнительным узлом реле перегрузки, который обеспечивает защиту двигателя от перегрузки при работе. Выбор теплового реле перегрузки осуществляется по таблице производителя, прилагаемой к магнитному пускателю двигателя. Кроме того, убедитесь, что вы знаете полный ток нагрузки (FLC) двигателя, эксплуатационный коэффициент (SF) двигателя и температуру окружающей среды, в которой работает оборудование. Тепловые единицы основаны на температуре окружающей среды 40°C (104°F).

Типичные магнитные пускатели электродвигателей, которые обычно доступны, включают: полное напряжение (прямое), пониженное напряжение и реверс. Как следует из названия, магнитный пускатель двигателя полного напряжения или линейный магнитный пускатель ( рис. 1 ) подает на двигатель полное напряжение. Это означает, что магнитный пускатель двигателя спроектирован так, чтобы правильно справляться с уровнями пускового тока, возникающими при запуске двигателя. Разработанные для ограничения воздействия пускового тока при запуске двигателя, пускатели пониженного напряжения доступны в электромеханическом и электронном исполнении. См. «Стандартная схема управления двигателем» в июньском номере EC&M на стр. 18 для более подробного обсуждения типов пускателей пониженного напряжения.

Пускатели реверсивные предназначены для реверсирования вращения вала трехфазного двигателя. Это достигается заменой любых двухлинейных проводников, питающих нагрузку двигателя. Реверсивный магнитный пускатель двигателя ( рис. 2 ) включает в себя пускатель прямого и обратного хода как часть узла. Предусмотрены электрические и механические блокировки, гарантирующие, что только передний или задний стартер может быть включен в любой момент времени, но не одновременно.

Магнитные пускатели двигателей NEMA доступны с различными номиналами напряжения и мощности с обозначениями от размера 00 до размера 9. Эти размеры NEMA классифицируют магнитные пускатели двигателей по напряжению и максимальной мощности. Напряжение катушки обычно доступно в вариантах 24 В, 120 В, 208 В, 240 В, 277 В, 480 В и 600 В. Магнитный пускатель двигателя также предлагается в различных типах корпусов, в зависимости от среды, в которой будет работать оборудование. Типичные защитные кожухи: NEMA 1 (общего назначения), NEMA 4 (водонепроницаемые), NEMA 12 (пылезащитные) и NEMA 7 (опасные зоны).

Магнитные пускатели двигателей стандарта IEC обычно доступны в модульном формате с силовой базой и блоком управления. Доступны трехфазные блоки питания на 208 В, 230 В, 460 В и 575 В с соответствующей максимальной мощностью. Блок управления функционирует как блок регулируемого реле перегрузки, который отличается от стационарного блока защиты от тепловой перегрузки, используемого в магнитном пускателе электродвигателя типа NEMA. Устройства IEC обычно меньше по размеру и дешевле, чем сопоставимые устройства типа NEMA. Магнитные пускатели двигателей IEC часто поставляются как часть оборудования OEM (производителя оригинального оборудования).

Если сравнить магнитный пускатель двигателя NEMA с магнитным пускателем двигателя IEC, можно заметить следующие различия:

  1. Устройство IEC физически меньше аналогичного устройства NEMA.

  2. Устройство IEC обычно дешевле аналогичного устройства NEMA.

  3. Жизненный цикл устройства IEC составляет примерно один миллион операций, в то время как срок службы сопоставимого устройства NEMA почти в четыре раза больше.

  4. Устройство IEC имеет регулируемый блок реле перегрузки, в то время как сопоставимое устройство NEMA имеет фиксированный и съемный блок реле перегрузки.

  5. Устройство IEC обычно должно быть защищено быстродействующими токоограничивающими предохранителями, в то время как устройство NEMA может быть защищено обычными предохранителями с выдержкой времени.

Конечный пользователь должен внимательно изучить все эти требования, прежде чем принимать решение об установке магнитного пускателя двигателя NEMA или IEC для конкретного применения. Национальная ассоциация производителей электрооборудования (NEMA) и Международная электротехническая комиссия (IEC), два органа по стандартизации, которые классифицируют электрооборудование, также являются хорошими источниками дополнительной информации.

Видал является президентом компании Joseph J. Vidal & Sons, Inc., Throop, Pa.

Примечание автора: Я хотел бы посвятить эту статью моему отцу Джо, который неожиданно скончался 10 июня. , 2007. Мой папа проработал в электростроительной отрасли более 50 лет и проработал за два дня до своей кончины. Он познакомил меня с этим бизнесом в очень юном возрасте, побудив меня продолжить свое образование в качестве инженера. Я действительно буду скучать по его руководству и вдохновению.

Цепи управления прямым/обратным ходом – базовое управление двигателем

Цепи

Если трехфазный двигатель должен вращаться только в одном направлении, и при первоначальной подаче питания обнаруживается, что он вращается в направлении, противоположном желаемому, все, что необходимо, — это поменять местами любые два из трех проводов, питающих двигатель. . Это можно сделать на двигателе или на самом двигателе.

 

Вращение трехфазного двигателя

После переключения двух линий направление магнитных полей, создаваемых в двигателе, теперь заставит вал вращаться в противоположном направлении. Это известно как реверсирование файла .

Если двигатель должен вращаться в двух направлениях, то ему потребуется пускатель двигателя прямого/обратного хода, который имеет два трехполюсных контактора с номинальной мощностью, а не один, как в обычном пускателе. Каждый из двух разных пускателей электродвигателя питает двигатель с разным чередованием фаз.

Когда на контактор прямого хода подается питание, силовые контакты соединяют линию L1 с T1, линию L2 с T2 и линию L3 с T3 на двигателе. Когда на контактор реверса подается питание, силовые контакты соединяют линию L1 с T3, линию L2 с T2 и линию L3 с T1 на двигателе.

Силовая цепь прямого/обратного хода

Поскольку два пускателя двигателя управляют только одним двигателем, необходимо использовать только один набор нагревателей реле перегрузки. Обратные пути для обеих катушек пускателя соединяются с цепью пускателя, так что при перегрузке в любом направлении катушки пускателя обесточиваются и двигатель останавливается.

Обратите внимание, что два контактора должны быть и таким образом, чтобы они не могли быть запитаны одновременно. Если на обе катушки стартера одновременно подается напряжение, произойдет короткое замыкание с потенциально опасными последствиями.

Пускатели прямого/обратного хода поставляются с двумя наборами нормально разомкнутых контактов, которые действуют как удерживающие контакты в каждом направлении. Они также поставляются с двумя наборами нормально замкнутых вспомогательных контактов, которые действуют как электрические блокировки.

Пускатели прямого/обратного хода никогда не должны замыкать свои силовые контакты одновременно. Лучший способ обеспечить это — электрические блокировки, которые предотвращают подачу питания на одну катушку, если другая катушка задействована. Сбой в электрической блокировке может привести к одновременному включению обеих катушек.

. Если оба находятся под напряжением, требуется какая-то форма механической блокировки, чтобы предотвратить втягивание обоих. движение соседней катушки. Это означает, что даже если обе катушки находятся под напряжением, только один якорь сможет полностью втянуться. Катушка, которая не может втянуться, будет издавать ужасный дребезжащий звук, пытаясь замкнуть магнитную цепь.

На механические блокировки следует полагаться как на крайнюю меру защиты.

Электрическая блокировка достигается путем установки нормально замкнутого контакта катушки одного направления последовательно с катушкой противоположного направления и наоборот. Это гарантирует, что когда передняя катушка находится под напряжением, нажатие на реверс не приведет к возбуждению обратной катушки. Такая же ситуация возникает при включении обратной катушки. В обоих случаях необходимо нажать кнопку останова, чтобы обесточить рабочую катушку и вернуть все ее вспомогательные контакты в исходное состояние. Затем можно включить катушку противоположного направления.

Цепь управления прямым/обратным ходом

При разработке схемы управления для цепей прямого/обратного хода мы начинаем со стандартной, добавляем вторую нормально разомкнутую кнопку и ветвь удерживающего контакта для второй катушки. Одной кнопки остановки достаточно, чтобы отключить двигатель в обоих направлениях.

Две катушки механически заблокированы, а нормально замкнутые контакты мгновенного действия обеспечивают электрическую блокировку.

Если нажата кнопка прямого хода, пока катушка реверса не задействована, ток найдет путь через нормально замкнутый контакт реверса и подаст питание на катушку прямого хода, в результате чего все, что связано с этой катушкой, изменит свое состояние. Закроется, и нормально замкнутая электрическая блокировка разомкнется. Если нажать кнопку реверса при включенной катушке прямого хода, ток не сможет пройти через нормально замкнутый контакт прямого хода, и ничего не произойдет.

Чтобы запустить двигатель в обратном направлении, передняя катушка должна быть обесточена. Для этого необходимо нажать кнопку остановки, после чего кнопка реверса сможет подать питание на катушку реверса.

Независимо от направления вращения двигателя, эта схема будет работать как стандартная трехпроводная схема, обеспечивающая до тех пор, пока не будет нажата кнопка останова или не произойдет .

Блокировка кнопок прямого/обратного хода

Блокировка кнопок требует использования четырехконтактных кнопок мгновенного действия, каждая из которых имеет набор нормально разомкнутых и нормально замкнутых контактов.

Для блокировки кнопок просто соедините нормально замкнутые контакты одной кнопки последовательно с нормально разомкнутыми контактами другой кнопки, и удерживающие контакты будут соединены с нормально разомкнутыми контактами соответствующей кнопки.

Эта цепь по-прежнему требует установки электрических блокировок.

Кнопочная блокировка не требует отключения катушек двигателя перед изменением направления, поскольку нормально замкнутые передние контакты последовательно соединены с нормально разомкнутыми реверсивными контактами, и наоборот. Нажатие одной кнопки одновременно отключает одну катушку и запускает другую. Этот внезапный реверс () может быть тяжелым для двигателя, но если требуется быстрое реверсирование двигателя, эта схема может быть решением.

Магнитные пускатели с защитой от тепловой перегрузки

157 продуктов

Магнитные пускатели двигателей помогают защитить дорогие двигатели от дорогостоящих повреждений из-за перегрузки. Мощные пускатели двигателей включают в себя контактор, который замыкает цепь двигателя, и электромагнитное реле перегрузки, которое контролирует потребляемый двигателем ток. Они чаще всего используются для защиты более крупных трехфазных двигателей в промышленных приложениях. Электромагнитное реле магнитного пускателя значительно более чувствительно, чем обычное тепловое реле перегрузки, поэтому оно может более эффективно защищать двигатели. Эти пускатели электродвигателей доступны в широком диапазоне уровней силы тока и напряжения.

Магнитные пускатели двигателей помогают защитить дорогие двигатели от дорогостоящих повреждений из-за перегрузки. Мощные пускатели двигателей включают в себя контактор, который замыкает цепь двигателя, и электромагнитное реле перегрузки, которое контролирует потребляемый двигателем ток. Они чаще всего используются для защиты более крупных трехфазных двигателей в промышленных приложениях. Электромагнитное реле магнитного пускателя значительно более чувствительно, чем обычное тепловое реле перегрузки, поэтому оно может более эффективно защищать двигатели. Эти пускатели электродвигателей доступны в широком диапазоне уровней силы тока и напряжения.

Магнитный пускатель двигателя ; Нереверсивный ; Количество полюсов: 2

0 Магнитный двигатель; Нереверсивный ; Число полюсов: 3

Loading…
Loading. ..
Loading…
Loading …
Загрузка…
Загрузка …
Загрузка …
Нагрузка …
Нагрузка
.
Загрузка …
Загрузка …
Загрузка …
Загрузка …
Нагрузка …
Нагрузка …
. Загрузка…
Загрузка…
Загрузка…
Загрузка…
Загрузка…
Загрузка . ..
Загрузка …
Загрузка …
Нагрузка …
Нагрузка …
. …
Загрузка …
Загрузка …
Нагрузка …
Нагрузка …
.
Загрузка…
Загрузка …
Загрузка …
Нагрузка …
Нагрузка
.
Загрузка …
Загрузка …
Загрузка …
Загрузка …
Нагрузка …
Нагрузка . ..
. Загрузка…
Загрузка …
Загрузка …
Загрузка …
Загрузка …
нагрузка …
. Загрузка …
Загрузка …
Загрузка …
Нагрузка …
Нагрузка …
. …
Загрузка …
Загрузка …
Загрузка …
Нагрузка …
Загрузка …
. ..
… Загрузка …
Загрузка …
Загрузка …
Загрузка …
Нагрузка …
. Загрузка…
Загрузка …
Загрузка …
Загрузка …
Загрузка …
нагрузка …
. Загрузка …
Загрузка …
Загрузка …
Нагрузка …
Нагрузка …
. …
Загрузка …
Загрузка . ..
Загрузка …
Нагрузка …
Загрузка …
… Загрузка…
Загрузка…
Загрузка…

Магнитный пускатель двигателя ; Реверс ; Число полюсов: 3

.
Loading. ..
Loading…
Loading…
Loading…
Loading…
Загрузка …
Загрузка …
Загрузка …
Загрузка …
Загрузка…
Загрузка…
Загрузка…

Магнитный пускатель двигателя ; 2 скорости; Число полюсов: 3

Загрузка. ..
133 Загрузка…0131 Загрузка…

Магнитный пускатель двигателя ; Нереверсивный ; Количество полюсов: 3

Loading…
Loading…
Loading…
Loading …
Загрузка …
Загрузка . ..
Нагрузка …
Нагрузка
.
Загрузка …
Загрузка …
Загрузка …
Загрузка …
Нагрузка …
Нагрузка …
. Загрузка…
Загрузка …
Загрузка …
Загрузка …
Загрузка …
нагрузка …
. Загрузка …
Загрузка …
Загрузка …
Нагрузка …
Нагрузка …
. …
Загрузка . ..
Загрузка …
Загрузка …
Нагрузка …
Нагрузка …
… Загрузка…
Загрузка…
Загрузка…

Магнитный пускатель двигателя ; Реверс ; Количество полюсов: 3

Loading. ..
Loading…
Loading…
Loading…
Loading…
Идет загрузка…
Примечание. Информация о наличии товара предоставляется в режиме реального времени и постоянно корректируется. Товар будет зарезервирован для вас при оформлении заказа.

Объяснение пускателя двигателя | Типы пускателей двигателей

Как инженеры по автоматизации, мы пишем логические программы для систем ПЛК и РСУ, которые отслеживают переменные процесса, открывают и закрывают клапаны, устанавливают режимы контура управления, а также запускают и останавливают двигатели для насосов, компрессоров и конвейерных систем. Большинство цифровых выходов систем управления работают от 24 В постоянного тока или 120 В переменного тока. Итак, как мы запускаем и останавливаем трехфазные промышленные двигатели на 480 вольт переменного тока ? Простой ответ заключается в использовании пускателя двигателя .

Типы пускателей двигателей

Доступно множество типов контроллеров двигателей, и все они различных типов и стилей имеют специфическое применение в промышленном управлении.

Все контроллеры двигателей сконструированы таким образом, чтобы двигатель не включался до тех пор, пока не будет получена команда на активацию контроллера. После активации ток может проходить к двигателю, который возбуждает обмотки двигателя и запускает вращение двигателя.

Активация контроллера двигателя обычно осуществляется с помощью электромеханического устройства, встроенного в контроллер, также известного как контактор . Можно использовать и другие методы.

Контроллеры двигателей также называются пускателями двигателей. Эти устройства чаще всего предлагаются в виде единого блока со средствами отключения цепи, контактором или приводом двигателя другого типа, защитой цепи от перегрузки и защитой от перегрузки двигателя .

Контроллеры двигателей можно сгруппировать по способу пуска и по типу пускателя.

Способы запуска контроллера двигателя

Контроллеры двигателей можно классифицировать по способу пуска.

1) Полное напряжение, нереверсивный (FVNR)

Первый тип пуска — это контроллер полного напряжения, нереверсивный двигатель. Как следует из названия, при срабатывании одного контактора контроллера этот тип контроллера двигателя, также известный как FVNR , позволяет подавать на двигатель полное линейное напряжение.

В контроллере двигателя FVNR положение фаз сети фиксировано, и двигатель может работать только в одном направлении вращения. FVNR можно рассматривать как через линию контроллера .

2) Реверсирование при полном напряжении

В контроллере двигателя с реверсированием при полном напряжении контроллер имеет два отдельных состояния срабатывания:

— одно для управления двигателем в прямом направлении, и

— одно состояние для разрешения двигатель для работы в обратном направлении.

Это достигается добавлением второго контактора .

– Прямой контактор действует так же, как и в FVNR, и

– Реверсивный контактор меняет местами две фазы.

Это перепутывание двух фаз вызывает изменение направления магнитного поля в обмотках двигателя, в результате чего двигатель вращается в противоположном направлении.

Специальные физические защитные устройства предназначены для предотвращения повреждающего действия обоих контакторов, срабатывающих одновременно.

3) Пониженное напряжение

Третий тип метода пуска двигателя называется пуском с пониженным напряжением. Большие двигатели могут иметь очень высокий пусковой ток, который может нанести вред двигателю или самому контроллеру двигателя.

Контроллер двигателя этого типа ограничивает величину пускового тока, подавая на двигатель пониженное напряжение при первом запуске.

Для этого есть несколько способов, например автотрансформатор, схема звезда-треугольник и устройство плавного пуска. Они будут описаны позже.

4) Многоскоростной

Последний тип метода пуска двигателя — многоскоростной. Многоскоростные контроллеры двигателей используют твердотельные или средства преобразования, позволяющие управлять двигателями на разных скоростях. Два из этих методов, привод с регулируемой скоростью и двухскоростное управление, будут описаны позже.

Типы пускателей контроллера двигателя

Теперь, когда мы описали четыре основные категории контроллера двигателя по методу пуска, мы теперь опишем шесть основных типов пускателя двигателя.

1) Ручной

Первый — это ручное включение двигателя, при котором оператор должен включать и выключать двигатель.

Из соображений безопасности ручной запуск двигателя ограничен двигателем мощностью 10 л.с. или менее. Их можно использовать в одно- или трехфазных приложениях.

2) Магнитный пускатель двигателя

Магнитные пускатели двигателя или пускатели прямого подключения являются наиболее распространенным типом односкоростного пускателя.

Для магнитных пускателей кнопка или переключатель, подключенный к цифровому входу ПЛК, используется для активации цифрового выхода ПЛК. Выход ПЛК будет втягивать катушку, которая магнитно удерживает контакты пускателя в замкнутом состоянии, позволяя току проходить к двигателю.

Магнитные пускатели двигателей используются с FVNR и полновольтными реверсивными контроллерами двигателей.

3) Пускатель двигателя с автотрансформатором

Пускатель двигателя с автотрансформатором обычно используется в пусковых устройствах с пониженным напряжением, особенно с большими двигателями.

1) При запуске двигателя включаются два контактора. Один из этих контакторов включает цепь трансформатора, а другой переводит трансформатор в звезду.
Ответвленный выход трансформатора при пуске подключается к проводам двигателя.

2) Как только двигатель достигает от 85 до 90 процентов от полного напряжения, контактор звезды размыкается, а трансформатор действует как дроссель, ограничивая напряжение и ток двигателя.

3) Затем главный контактор замыкается, и контроллер двигателя действует как FVNR с полным напряжением на двигателе.

4) Звезда-треугольник

Пуск двигателя пониженным напряжением по схеме звезда-треугольник связан с автотрансформаторным пуском, поскольку в схеме управления двигателем используются три отдельных контактора.
1) В схеме звезда-треугольник двигатель запускается в звезда , которая запускает двигатель примерно при одной трети номинального полного тока двигателя.

2) После того, как двигатель раскрутится почти до полной скорости, двигатель переключается на конфигурацию дельта для непрерывной работы.

5) Устройства плавного пуска

Устройства плавного пуска — это еще один метод, используемый для ограничения пускового тока. В устройствах плавного пуска используется твердотельная электроника, такая как симистор, для ограничения пускового напряжения и тока.

Устройство плавного пуска позволяет постепенно увеличивать напряжение во время запуска двигателя. Это позволяет двигателю медленно ускоряться и набирать скорость контролируемым образом.

6) Преобразователь частоты (VFD)

Преобразователь частоты или VFD аналогичен устройству плавного пуска, но позволяет изменять скорость двигателя путем изменения выходной частоты в мотор.

Поскольку в процессе также регулируется напряжение, пусковой ток также снижается при использовании частотно-регулируемого привода.

Резюме

В этой статье представлен краткий обзор четырех типов методов пуска контроллера двигателя и шести типов пусковых устройств двигателя.

Методы пуска контроллера двигателя

1) Полное напряжение, нереверсивный (FVNR)
2) Полное реверсирование напряжения
3) Пониженное напряжение
4) Многоскоростной

Типы пускателей контроллера двигателя

3 Руководство


2) Магнитный
3) Автотрансформатор
4) Звезда-треугольник
5) Устройство плавного пуска
6) Преобразователь частоты (ЧРП)

контроллер двигателя для обеспечения пониженного напряжения при пуске, имеется контроллер двигателя, обеспечивающий безопасный, эффективный и контролируемый пуск для любого типа применения.

Если у вас есть какие-либо вопросы о пускателе двигателя , задайте их в комментариях ниже. Как вы знаете, мы читаем каждый комментарий и отвечаем на него менее чем за 24 часа!

У вас есть друг, клиент или коллега, которым может пригодиться эта информация? Пожалуйста, поделитесь этой статьей.

Команда RealPars

Управление вперед-назад



ЦЕЛИ :

  • Обсудите меры предосторожности, которые необходимо соблюдать при реверсивных цепях.
  • Объясните, как реверсировать трехфазный двигатель.
  • Обсудите методы блокировки.
  • Подключить цепь управления двигателем прямого/обратного хода.

Направление вращения любого трехфазного двигателя можно изменить с помощью заменой любых двух Т выводов двигателя (рис. 1). Так как двигатель подключен к линия электропередач, независимо от того, в каком направлении она работает, отдельный контактор нужно для каждого направления. Если реверсивные пускатели соответствуют требованиям NEMA стандартов Т отведения 1 и 3 будут заменены (рис. 2). Так как только один двигатель работает, однако для защиты требуется только одно реле перегрузки. мотор. Настоящие реверсивные контроллеры содержат два отдельных контактора и одно реле перегрузки. В некоторых реверсивных пускателях используется один отдельный контактор и пускатель со встроенным реле перегрузки.

Другие используют два отдельных контактора и отдельное реле перегрузки. Вертикаль реверсивный пускатель с реле перегрузки показан на рис. 3, а горизонтальный реверсивный пускатель без реле перегрузки показан на рис. 4.


Рис. 1 Направление вращения любого трехфазного двигателя можно изменить поменяв местами подключение к любым двум тройникам двигателя.

Блокировка

Блокировка предотвращает выполнение некоторых действий до тех пор, пока не будет выполнено какое-либо другое действие. было выполнено. В случае реверсивных пускателей блокировка используется для предотвращения одновременного включения обоих контакторов.

Это приведет к короткому замыканию двух из трех фазных линий. Блокировка заставляет один контактор обесточиваться раньше, чем другой. можно зарядить энергией.

Для обеспечения блокировки можно использовать три метода. Много реверсивные элементы управления используют все три.

Механическая блокировка

Большинство реверсивных контроллеров содержат механические блокировки, а также электрические блокировки. Механическая блокировка осуществляется с помощью контакторов. для управления механическим рычагом, который предотвращает замыкание другого контактора пока человек находится под напряжением. Механические блокировки поставляются производителем и встроены в реверсивные пускатели. На принципиальной схеме механический блокировки показаны пунктирными линиями от каждой катушки, соединяющейся в сплошную линия (ил. 5).

Электрическая блокировка

Доступны два метода электрической блокировки. Один метод выполнен с помощью кнопок двойного действия (рис. 6). Пунктирные линии нарисованы между кнопками указывают на то, что они механически связаны. Обе кнопки будут нажаты одновременно. нормально закрытая часть кнопки ВПЕРЕД соединен последовательно с катушкой R, а нормально замкнутая часть кнопки REVERSE соединена последовательно с катушкой F. Если двигатель должен вращаться в прямом направлении и нажата кнопка REVERSE, нормально закрытая часть толкателя Кнопка разомкнется и отключит катушку F от линии до нормального открытая часть закрывается, чтобы подать питание на катушку R. Нормально закрытый участок любого кнопка оказывает такое же воздействие на цепь, как и нажатие кнопки STOP.

Второй метод электрической блокировки достигается путем подключения нормально замкнутые вспомогательные контакты на одном контакторе последовательно с катушку другого контактора (рис. 7). Предположим, что кнопка ВПЕРЕД кнопка нажата, и катушка F активируется. Это приводит к изменению всех F-контактов. должность.

Три F-контакта нагрузки замыкаются и подключают двигатель к сети. нормально разомкнутый вспомогательный контакт F замыкается для поддержания цепи, когда Кнопка ВПЕРЕД отпускается, и нормально замкнутый вспомогательный контакт F включенный последовательно с катушкой R размыкается (рис. 8).

Если требуется противоположное направление вращения, кнопка СТОП должна быть нажата в первую очередь. Если сначала нажать кнопку REVERSE, теперь разомкнутый вспомогательный контакт F, соединенный последовательно с катушкой R, будет предотвратить создание полной цепи.

Однако после нажатия кнопки STOP F-катушка обесточивается, и все F-контакты возвращаются в нормальное положение. Кнопка РЕВЕРС теперь можно нажать, чтобы подать питание на катушку R (рис. 9).). Когда катушка R возбуждается, все контакты R меняют положение. Три контакта нагрузки R замыкаются и соединяются двигатель к линии. Обратите внимание, однако, что два Т-провода двигателя подключены к разным линиям. Нормально замкнутый вспомогательный контакт R размыкается. чтобы предотвратить возможность подачи питания на катушку F до тех пор, пока катушка R не будет обесточена.


Рис. 2 Магнитные реверсивные пускатели обычно заменяют тройники 1 и 3 на реверс мотора.

Разработка схемы подключения

Та же базовая процедура используется для разработки электрической схемы из схематично, как описано в предыдущих разделах. Компоненты, необходимые для построения этой схемы показаны на рис. 10. В этом примере примем два контактора и отдельное трехфазное реле перегрузки. использовал.

Первым шагом является размещение номеров проводов на принципиальной схеме. Предлагаемый последовательность нумерации показана на рис. 11. Следующим шагом является размещение провода номера рядом с соответствующими компонентами электрической схемы (рис. 12).

Реверсивные однофазные двухфазные двигатели

Чтобы изменить направление вращения однофазного двигателя с расщепленной фазой, либо выводы пусковой обмотки, либо выводы рабочей обмотки, но не оба, взаимно изменены. Принципиальная схема управления вперед-назад для однофазный двигатель с расщепленной фазой показан на рис. 13. Обратите внимание, что сечение такое же, как и для реверсирования трехфазных двигателей. В этом Например, вывод рабочей обмотки Т1 всегда будет подключен к L1, а Т4 будет всегда быть подключенным к L2.

Однако выводы пусковой обмотки будут заменены.

Когда на контактор прямого хода подается питание, вывод пусковой обмотки Т5 будет подключен к L1, а T8 будет подключен к L2. Когда обратный контактор находится под напряжением, вывод пусковой обмотки Т5 будет подключен к L2, а Т8 быть подключен к L1.


Рис. 3 Вертикальный реверсивный пускатель с реле перегрузки.


Рис. 4 Горизонтальный реверсивный пускатель.


Рис. 5 Механические блокировки обозначены пунктирными линиями, продолжающимися с каждой катушки.


Рис. 6 Блокировка с помощью кнопок двойного действия.


Рис. 7 Электрическая блокировка также осуществляется при нормально закрытом вспомогательные контакты.


Рис. 8 Двигатель работает в прямом направлении.


Рис. 9 Двигатель работает в обратном направлении.


, рис. 10 Компоненты, необходимые для создания реверсивного управления.


Рис. 11 Размещение номеров на схеме.


Рис. 12 Компоненты, необходимые для создания схемы реверсивного управления.


Рис. 13 Реверсирование однофазного двигателя с расщепленной фазой.

ВИКТОРИНА :

1. Как изменить направление вращения трехфазного двигателя?

2. Что такое блокировка?

3. Ссылаясь на схему, показанную на рис. 7, как будет работать схема если бы нормально замкнутый контакт R, соединенный последовательно с катушкой F, был подключен нормально открытый?

4. Какая опасность была бы, если бы она была, если бы цепь была подключена, как указано в вопросе 3?

5. Как будет работать схема, если нормально замкнутые вспомогательные контакты были соединены так, что контакт F был соединен последовательно с катушкой F, а контакт R последовательно с катушкой R, рис. 7?

6. Предположим, что схема, показанная на рис. 7, должна быть подключена, как показано на рис. на рис. 14. Чем будет отличаться работа схемы, если вообще?


Илл. 14 Положение удерживающих контактов изменено с на рис. 7.

ELECT 130 CH 12-16 Flashcards

Изначально большинство рубильников изготавливались из ____, которые требовали замены после многократного искрения, выделения тепла и механической усталости

Медь

A(n) ____ был усовершенствование оригинальной конструкции рубильника.

Приводная пружина

____ — это устройство, используемое только периодически для отключения электрических цепей от источника их питания.

Разъединитель

Обычно используются ручные контакторы _____

с цепями освещения

Т-образная рама, используемая с трехфазным ручным контактором, активируется _____ механизмом

кнопка

), который образуется на металле, является отличным проводником электричества

серебряный сплав

A(n)____ представляет собой расположение контактов таким образом, что оба набора контактов не могут замыкаться одновременно.

механическая блокировка

Ротор ____ — это состояние, когда двигатель нагружен настолько сильно, что вал двигателя не может вращаться.

Блокировка

Запускаемый двигатель потребляет огромный ____ ток (обычно в шесть-восемь раз больше рабочего тока), когда цепь замкнута изоляция может сократить срок службы двигателя почти на год

Сплав A____ представляет собой металл, имеющий фиксированную температуру, при которой он непосредственно переходит из твердого состояния в жидкое.

эвтектика

Катушка (n)____ преобразует избыточный ток, потребляемый двигателем, в тепло, которое используется для определения того, находится ли двигатель в опасности.

Нагреватель

Ручные пускатели переменного тока выбираются на основе фазировки, напряжения, размера пускателя, типа корпуса и ____

количества полюсов

A ____ В, 1-фазный источник питания имеет два провода под напряжением, L1 и L2 (подземные проводники) , и нет нейтрали.

____ действие является основным рабочим механизмом для магнитных контакторов.

Соленоид

Двухпроводное управление обычно используется для ____ установок, где требуется немедленное возобновление работы после сбоя питания.

удаленный или недоступный

___ управление обеспечивает расцепление по низкому напряжению и защиту от низкого напряжения.

Трехпроводные

Узлы контакторов переменного тока изготовлены из ламинированного ___, а узлы постоянного тока цельные.

____ используются для уменьшения необходимого расстояния и быстрого гашения дуги.

Магнитные предохранительные катушки

____ Реле перегрузки очень быстро сбрасываются, так как им не требуется период охлаждения перед сбросом.

магнитный

A(n) ___- реле перегрузки — это реле перегрузки, которое сбрасывается автоматически.

биметаллический

Индикатор ____ на индикаторе срабатывания информирует оператора или электрика о том, почему блок не работает и что он потенциально может перезапуститься с автоматическим сбросом.

____ используется для изменения величины тока, подаваемого на двигатель, но снижает ток до более низкого значения для реле перегрузки.

Трансформатор тока

Если двигатель имеет номинал FLC 10 A с коэффициентом полезного действия 1,15, чрезмерный кратковременный ток равен ___ A

Реле перегрузки обычно рассчитаны на срабатывание при определенном токе в условиях окружающей температуры из ___ *C

Для полностью надежной защиты двигателя следует выбирать нагревательные змеевики, исходя из номинала двигателя ____, указанного на паспортной табличке двигателя.

ток полной нагрузки

Устройство защиты двигателя A(n)____ представляет собой устройство защиты от перегрузки, расположенное непосредственно на двигателе или внутри него и обеспечивающее защиту от перегрузки

встроенный

A _____ представляет собой устройство защиты от перегрузки по току с механизмом, который автоматически размыкает цепь при перегрузке или коротком замыкании таймеры, модули подавления переходных процессов и ___

держатели предохранителей цепей управления

Дополнительные размыкающие контакты используются для включения дополнительных нагрузок в любое время, когда контактор или пускатель выключен, а также для обеспечения электрического ____

блокировка

Обычно на контактор или пускатель двигателя добавляется только один ____ блок с одним или двумя контактами.

Power Pole

Модули подавления переходных процессов обычно состоят из резистивно-емкостных (RC) цепей и предназначены для подавления переходных процессов напряжения примерно до ____ % пикового напряжения питания катушки.

Ослабленные соединения в силовой цепи контакторов и пускателей двигателей вызывают ___.

перегрев

При поиске и устранении неисправностей контактора или устройства контроля состояния двигателя напряжение допустимо, если показание напряжения находится в пределах ____% от номинального напряжения двигателя.

____ Состояние проблемы, ее возможная(ые) причина(ы) и корректирующие действия, которые могут быть предприняты.

Руководство по поиску и устранению неисправностей

Принцип работы двигателей основан на том, что когда ____-проводник помещается в магнитное поле, на проводник действует сила, стремящаяся вывести проводник из поля.

current

Th Правило двигателя электронного потока гласит, что ____ указывает направление потока электронов в проводнике.

средний палец

Интенсивность магнитного поля и сила тока в проводнике обычно изменяются для увеличения ___- на проводнике.

Двигатель постоянного тока состоит из ___ обмоток, якоря, коллектора и щеток.

Коллектор соединяет каждую обмотку якоря со щетками с помощью ____ стержней (сегментов), изолированных друг от друга кусочками слюды

Медь

Пружина, расположенная за щеткой, заставляет щетку контактировать с ____

коллектор

Коллектор вращается с шагом ___ *

180 градусов

Двигатель постоянного тока требует большего обслуживания, чем двигатель переменного тока, потому что у них есть ___ которые изнашиваются плоскость контура якоря параллельна полю, а стороны контура якоря перпендикулярны магнитному полю.

Крутящий момент

Последовательный двигатель постоянного тока представляет собой двигатель постоянного тока, в котором последовательное поле соединено последовательно с ____

якорь

____, создаваемое двигателем, зависит от силы магнитного поля в двигателе.

Крутящий момент

Двигатель постоянного тока ____ всегда должен быть подключен непосредственно к нагрузке, а не через ремни, цепи и т. д. уменьшенный.

Напряжение

A(n) ____ используется для увеличения или уменьшения напряженности поля или якоря в параллельном двигателе постоянного тока.

реостат

Провода, идущие от шунтирующего поля шунтирующего двигателя постоянного тока, имеют маркировку _____

Шаговые двигатели используются в приложениях, требующих точного контроля положения _____

вала двигателя

В шаговом двигателе постоянный магнит называется ____ или якорем

____ создается, когда сила преодолевает сопротивление

____ это сила, вызывающая вращение.

крутящий момент

Лошадиная сила (л.с.) — это единица мощности, равная ____ фунт-фут в минуту.

33 000

___ — основная единица электрической мощности.

___ двигателя определяет размер нагрузки, с которой может работать двигатель, и скорость, с которой вращается нагрузка

Мощность в л. с.

Большинство двигателей постоянного тока сконструированы таким образом, что щетки и ___ можно осматривать без разборки двигателя

коммутатор

A(n) ____ цепь – это цепь, в которой ток сокращается по нормальному пути протекания тока.

A(n) ____ следует использовать для более точного испытания изоляции

мегомметр

Маркировка клемм S1 и S2 всегда указывает на ___ проводов возбуждения

Серия

Мощность двухполупериодного выпрямления получается путем помещения (n) в линию питания переменного тока другой компонент двигателя постоянного тока

Щетки

___ — неподвижная часть двигателя переменного тока

статор

____ полюс статора — простейший способ запуска однофазного двигателя

Штриховка

При пуске двигателя с расщепленной фазой рабочие и пусковые обмотки ____

соединены параллельно

Когда двигатель впервые подключается к сети, ____ пусковой обмотки меньше, а сопротивление равно выше рабочей обмотки.

реактивное сопротивление

Двигатель A(n)____ имеет пусковую обмотку и конденсатор, постоянно соединенные последовательно.

конденсатор-работа

Конденсатор, используемый в пусковой обмотке, обеспечивает ___ двигателю высокий пусковой момент.

Пуск конденсатора

Для создания вращающегося магнитного поля в трехфазном двигателе ____ должен быть подключен к соответствующему уровню напряжения.

обмотки статора

В трехфазном двигателе выводы, выведенные наружу, помечены (n)_____

_____ двигателя должен быть заземлен, особенно если двигатель используется во влажном месте.

Максимальное рекомендуемое время разгона зависит от размера двигателя ____

Электрик может наблюдать равномерное почернение всех обмоток двигателя, возникающее при отказе двигателя из-за ___

перегрузка

Мощность двигателя с эксплуатационным коэффициентом 1,0 снижается, когда он работает на высоте выше

Некоторые двигатели ___ оснащены термовыключателем, который автоматически отключает двигатель при перегреве

расщепленная фаза

Все конденсаторы изготовлены с двумя проводящими поверхностями, разделенными ____

диэлектрическим материалом

Двигатель с двойным напряжением, соединенным звездой, имеет ___ отдельных цепей.

A(n) ____ можно использовать для определения цепей обмотки двигателя без маркировки путем подключения одного щупа к любому кабелю двигателя и временного подключения другого щупа к каждому оставшемуся кабелю двигателя.

тестер непрерывности

____ вышедшие из строя двигатели обычно заменяют

экранированные полюса

___ пускатель представляет собой контактор с дополнительным устройством защиты от перегрузки.

ручной

Механический ____ представляет собой расположение контактов таким образом, что оба набора контактов не могут быть замкнуты одновременно,

блокировка

Хотя любые две линии можно поменять местами для реверсирования трехфазного двигателя, промышленность стандарты — поменять местами L1 и _____

Реверсирование вращения однофазных двигателей осуществляется путем замены проводов пусковой или ____ обмоток

рабочая

Реверсирование составного двигателя постоянного тока осуществляется путем изменения направления только ____ соединений

якорь

_____ обмотки изготовлены провода большего сечения, чем пусковые обмотки, поэтому они имеют гораздо меньшее сопротивление, чем пусковые обмотки

рабочие

____ линии используются между ручными пускателями на электрической схеме для обозначения механической блокировки

пересечение пунктир

В параллельном двигателе постоянного тока, независимо от того, замкнуты контакты вперед или назад, _____ всегда положительный.

Барабанные переключатели полностью закрыты, а ____ обеспечивает средства для перемещения контактов из точки в точку.

изолированная рукоятка

Чтобы реверсировать работающий двигатель с помощью барабанного переключателя, рукоятку необходимо сначала переместить в центральное положение до тех пор, пока двигатель не ____, а затем переместить в положение реверсаe

Барабанный переключатель используется только как средство управления направление двигателя путем переключения ____ двигателя

Всегда консультируйтесь с производителем ____, чтобы убедиться в правильности подключения

Схема подключения

Направление вращения в двигателе постоянного тока можно изменить на противоположное, изменив направление тока через якорь без изменения направления тока через ____

полей

Барабанные выключатели не являются пускателями двигателей, поскольку они не содержат _____

защиты от перегрузок

Блокировка A(n) ____ обычно устанавливается на заводе-изготовителе

механический

Хотя большинство магнитных реверсивных пускателей обеспечивают механическую защиту от блокировки, некоторые цепи снабжены резервной или резервной системой безопасности, которая использует вспомогательные контакты для обеспечения ____ блокировки

____ цепь включает необходимые входы цепи (кнопки, концевые выключатели и т. д.), катушки пускателя двигателя, вспомогательные контакты пускателя двигателя, контакты перегрузки, таймеры и счетчики.

управление

Хотя силовая цепь и цепь управления работают вместе для управления двигателем, они электрически изолированы друг от друга через _____

трансформатор

_____ переключатели могут использоваться для обеспечения автоматического управления реверсивными цепями

___ схема позволяет оператору запускать двигатель на короткие промежутки времени без запоминания.

толчковый режим

При прямом подключении силовая цепь и цепь управления подключаются ____

двухточечное

Недостаток ____ схемы заключается в том, что устранение неполадок и модификация схемы занимают много времени

прямое жесткое подключение

Если требуется несколько подключений с заданным номером, ____ можно добавить к клеммной колодке, чтобы обеспечить несколько точек подключения к одному терминалу с заданным номером.

перемычки

_____ электропроводка — это электропроводка, в которой каждый компонент цепи соединяется (соединяется) непосредственно со следующим компонентом, как указано на схемах электропроводки и линейных схемах.

двухточечный

Устранение неполадок реверсивных ____ цепей обычно включает определение точки в системе, где происходит потеря питания

A ____ используется для иллюстрации логики схемы

линейная схема

____ схема используется для определения фактических контрольных точек, к которым подключен цифровой мультиметр

проводка

____ цепь не работает при отключении по перегрузке

управление

Dashpot, синхронные часы и полупроводниковые таймеры являются ___ таймерами

автономными

_____ таймерами является таймер, который обеспечивает временную задержку, контролируя, насколько быстро воздух или жидкость могут проходить в или из контейнера через отверстие (отверстие) постоянного или переменного диаметра.

dashpot

Твердотельные таймеры менее чувствительны к внешним условиям окружающей среды, поскольку они, как и катушки реле, для защиты часто заключены в ____.

эпоксидная смола

В ____ секции PLR подключаются цифровые переключатели (ВКЛ/ВЫКЛ, ОТКРЫТ/ЗАКРЫТ и т. д.)

_____ таймеры являются старейшим типом промышленных таймеров обычно отбрасываются, когда они выходят из строя, поскольку они стоят меньше, чем другие таймеры.

Полупроводниковый

Таймер ____ может быть разработан для размыкания или замыкания цепи после заданной временной задержки.

задержка включения

Таймер ___ может также использоваться для остановки двигателя во время аварийной остановки.

задержка выключения

Таймер ____ представляет собой устройство, в котором контакты меняют положение немедленно и остаются измененными в течение заданного периода времени после подачи питания на таймер.

однократный

____ таймер перезапуска — это таймер с независимыми настройками периодов включения и выключения

асимметричный

_____ таймеры являются наиболее распространенным типом используемых таймеров. Operational

Таймер ____ представляет собой устройство, в котором контакты циклически размыкаются и замыкаются после подачи питания на таймер.

повторное использование

_____ диаграммы необходимы для таймеров с несколькими_контактами, поскольку для правильной работы таймера необходимо найти и подключить к нему несколько различных точек соединения.

Электропроводка

A «____» указывает, когда нагрузка обесточена

A ____ — управляемый таймер — это таймер, который требует подключения управляющего переключателя, чтобы он контролировал питание катушки таймера

напряжение питания

Преимущество метода управления ____ заключается в том, что переключатель управления может быть подключен низковольтным проводом (AWG 16, 18 или 20)

контакт

таймер подает питание, необходимое для работы датчика

____ можно добавить в схему, если для запуска схемы требуется мгновенный вход, например кнопка, для запуска отсчета времени

Память

Наиболее распространенной проблемой контактных схем синхронизации является _____ отказ

контакта

A _____ Таймер представляет собой интегральную схему (ИС), которая может функционировать как таймер или генератор

Переменный резистор и _____ используются для определения величины временной задержки в таймере 555

конденсатор

Предустановленное значение 1234 с базой времени 0,01 с равно ____ с

12,34 с

таймер удален

несохраняемый

Современные промышленные схемы управления часто подключаются к электронным схемам постоянного тока, которые включают _____ в качестве выхода

транзистор

____ является электронным эквивалентом тумблера

Триггер

Часы ____ позволяют включать и выключать выходы в заданное время дня и дни недели

В режиме реального времени

____ — это счетное устройство, которое отслеживает общее количество единиц или событий и отображает общее подсчитанное значение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *