Окись алюминия – Производство глинозема, физико-химические свойства глинозема, основные модификации оксида алюминия

Алюминия окись — это… Что такое Алюминия окись?

        глинозём, Al2O3, соединение алюминия с кислородом; составная часть глин, исходный продукт для получения алюминия. Бесцветные кристаллы, tпл 2050°С, tкип выше 3000°С. Известна в двух модификациях, α и γ. Из них в природе встречается α-Al2O3 в виде бесцветного минерала Корунда; кристаллы α-Al2O3, окрашенные окислами др. металлов в красный цвет — Рубин, и в синий — Сапфир, являются драгоценными камнями. Корунд кристаллизуется в гексагональной системе, плотность 3960 кг/м3, искусственно α-Al2O3 можно получить нагреванием выше 900°С гидроокиси алюминия или его солей. При нагревании алюминиевых солей в пределах 600—900°С образуется γAl2O3, кубическая модификация, которая выше этой температуры необратимо переходит в α-Al2O3. Известны гидратированные (водные) формы Al
2
O3 различного состава. К гидроокисям алюминия относятся: гидраргиллит (См. Катализаторы) (гиббсит) Al(OH)3, входящий в состав многих бокситов, и искусственно получаемая неустойчивая форма Al(OH)3 — байерит. Известна и неполная гидроокись алюминия — AlOOH, существующая в двух модификациях — α (диаспор) и γ (бёмит).          А. о. и её гидратированные формы нерастворимы в воде, обладают амфотерными свойствами — взаимодействуют с кислотами и щелочами. Природный корунд на воздухе химически инертен и негигроскопичен. Со щелочами интенсивно реагирует около 1000°С, образуя растворимые в воде Алюминаты щелочных металлов. Медленнее реагирует с SiO2 и кислыми шлаками с образованием алюмосиликатов (См. Алюмосиликаты), разлагается сплавлением с KHSO4.          Сырьём для получения А. о. служат бокситы, нефелины, каолины и другое сырьё, содержащее Al. Бокситы всегда загрязнены окислами железа или кремневой кислотой. Для получения чистой А. о. бокситы перерабатывают нагреванием с CaO и Na
2
CO3 (сухой способ) или нагреванием с едким натром в Автоклавах (способ Байера). При обоих способах А. о. в виде алюминатов переходит в раствор, который затем разлагают пропусканием двуокиси углерода либо добавлением заранее приготовленной гидроокиси алюминия. В первом случае разложение происходит по уравнению 2[AI(OH)4] +CO2 → 2Al(OH)3 + CO32- + Н2O. Разложение по второму способу основано на том, что раствор алюмината, полученный при нагревании в автоклаве, метастабилен. Добавляемая гидроокись алюминия ускоряет распад алюмината: [Al(OH)4] → Al(OH)3 + OH. Полученную гидроокись алюминия прокаливают при 1200°С, в результате получается чистый глинозём.          Основное применение А. о. — производство алюминия (См. Алюминий). Корунд широко используют как абразивный материал (корундовые круги, наждак), а также для изготовления керамических резцов и чрезвычайно огнеупорных материалов, в частности «плавленого глинозёма», служащего для футеровки цементных печей. Из монокристаллов корунда, полученных плавкой порошка А. о. с добавками окислов Cr, Fe, Ti, V, изготовляют опорные камни в точных механизмах и ювелирные изделия.

         Дистилляцией чистого алюминия при 1650°С в атмосфере водорода, содержащей пары воды, получены «усы» (нитеобразные кристаллы) из А. о., обладающие огромной прочностью, близкой к теоретической. «Усы» из сапфира (α-Al2O3) диаметром 2—3 мкм обладают прочностью 16 Гн/м2, диаметром 10 мкм — 11 Гн/м2‘, «усы» больших диаметров — 6,5 —7 Гн/м2 (1 Гн/м2 =
100 кгс/м2). Введение этих «усов» в конструкционные материалы, даже при условии частичного сохранения их прочности, позволяет получить ценные материалы для ракетостроения. Металлы, армированные такими волокнами, имеют более высокую прочность не только при низких, но и при высоких температурах.

         Особым образом приготовленную т. н. активную А. о. в виде мелкокристаллического порошка применяют как адсорбент (См. Адсорбенты) и катализатор (См. Катализаторы), причём её адсорбционные (и каталитические) свойства в большой степени зависят от качества и обработки исходных материалов и от способа приготовления. Как адсорбент активную А. о. широко применяют для хроматографического анализа всевозможных органических и (реже) неорганических веществ. Гидроокиси алюминия служат для производства всевозможных его солей. Осторожным высушиванием студнеобразной гидроокиси получают алюмогель, пористое вещество, напоминающее фарфор, иногда прозрачное; алюмогель применяют в катализе; она служит одним из наиболее важных технических адсорбентов.

         Лит.: Лайнер А. И., Производство глинозема, М., 1961; Карролл-Порчинский Ц., Материалы будущего, пер. с англ., М., 1966.

         Ю. И. Романьков.

dic.academic.ru

Окись алюминия


Окись алюминия является одним из наиболее распространенных на земле окислов. В природе она встречается в виде безводного минерала корунда (а-глинозем) и водных минералов (главным образом боксита). Драгоценные камни рубин и сапфир представляют собой разновидности корунда, окрашенного ничтожными примесями окислов хрома, железа и титана.

Чистый корунд сравнительно редко встречается в естественных условиях. Огромные потребности металлургии и других отраслей техники в достаточно чистой окиси алюминия удовлетворяются в настоящее время ее производством из бокситов, нефелина и других глиноземсодержащих пород по так называемым мокрому щелочному, сухому щелочному (спекание) и другим методам [481, 482].

Искусственный корунд получают в промышленных масштабах электроплавкой технического глинозема или боксита [702], а также плавлением химически чистой окиси алюминия в пламени гремучего газа [703].

Свойства окиси алюминия представляют большой практический интерес. В связи с этим изучению, в частности, ее превращений при нагревании посвящены многие исследования [184, 473, 704— 708].

Некоторые из результатов, касающиеся полиморфных модификаций Al2O3, противоречивы и недостаточно достоверны. Имеются сведения об образовании окисью алюминия пяти или даже шести модификаций: α, β, v, v’, σ, еps’ (характеристика основных из них приведена в табл. 41).

Однако действительно доказанным можно считать лишь существование двух самостоятельных модификаций глинозема: α- и γ-Al2O3. Им соответствует и модификация AIO(OH), γ-Al2O3, кристаллизующаяся в кубической системе (а = 7,90 А) и имеющая удельный вес 3,6 (по другим данным, 3,42 и 3,47). Ее получают прокаливанием до 700—900° С гидраргилита—Аl(ОН)3 или бемита — γ-AlO(OH).

При нагревании до температуры свыше 950—1200° С(по некоторым данным, свыше 750° С) у-Al2O3 монотропно переходит в α-глинозем с уменьшением объема на 14,3%. α-модификацию α-глинозема получают также непосредственно при нагревании диаспора— α-АlO(ОН).

α-Al2O3 (корунд) кристаллизуется в гексагональной системе и имеет удельный вес 3,09 (по последним данным Меррея и др. [438], удельный вес монокристалла α-Al2O3 составляет 3,96, однако приведенное выше значение удельного веса этой модификации следует считать более точным). Эта модификация Аl2O3 стабильна при всех температурах. На рис. 128 представлена структура ее решетки. Она состоит из двух последовательных слоев кислородных ионов, образующих гексагональную упаковку с размещенными между слоями ионами Аl3+. Расстояние между двумя слоями d = 2,16 А.

Ромбоэдрическая элементарная ячейка решетки характеризуется значениями а = 5,12 А, α = 55°17′ и содержит две молекулы Аl2O3. На рис. 131 для сравнения приведена также структура слоев шпинели.

β-глинозем, который, как указывает Белянкин [709], всегда образуется в электроплавленом и рекристаллизованном корунде,является по существу алюминатом (см. примечание к табл. 41) состава R0-6Al2O3 или R2O*11 — 12Аl2O3. Его образование обусловлено содержанием примесей окислов щелочных (Na2O до 0,5%) и щелочноземельных металлов в техническом глиноземе.

 

Другие части:

Окись алюминия. Часть 1

Окись алюминия. Часть 2

Окись алюминия. Часть 3

 

 

Содержание

 

 

 


www.himikatus.ru

Как получают и как используют оксид алюминия

Как правило, в качестве сырья для получения оксида алюминия служат бокситы, алуниты, а также нефелины. При содержании в них оксида алюминия более 6−7% производство ведется основным способом — методом Байера, а при меньшем содержании вещества используют метод спекания руды с известью или содой.

Метод Байера — это гидрохимический способ получения глинозема из бокситов. Он представляет собой обработку измельченной породы в шаровых мельницах, затем бокситы обрабатывают щелочными растворами при температуре 225−250°С. Полученный таким образом состав алюмината натрия разбавляют водным раствором и фильтруют.

В процессе фильтрации шлам, содержащий оксид алюминия, свойства которого соответствуют стандартным, подвергают разложению на центрифугах. Выделяется около ½ образовавшегося при этом Аl (ОН)3. Его отфильтровывают и прокаливают во вращающихся печах или в кипящем слое при температуре ~ 1200 °C. В результате получается глинозем, содержащий 15−60% α-Аl2О3. Применение данного метода позволяет сохранить маточный раствор для использования в последующих операциях по выщелачиванию бокситов.

Метод спекания руды с известью или содой работает следующим образом: высококремнистую измельченную руду (нефелин и др.) смешивают с содой и известняком и спекают во вращающихся печах при 1250−1300 °С. Полученную массу выщелачивают водным щелочным раствором. Раствор алюмината Na отделяют от шлама, затем освобождают от SiO2, осаждая его в автоклаве при давлении около 0,6 Мпа, а затем известью при атмосферном давлении и разлагают алюминат газообразным СО2. Полученный Аl (ОН)3 отделяют от раствора и прокаливают при температуре около 1200 °C. При переработке нефелина, помимо глинозема, получают Na2CO3, K2CO3 и цемент.

При производстве глинозема из алунитов одновременно получают H2SO4 и K2SO4. Алунитовую руду обжигают при 500−580°С в восстановительной атмосфере и обрабатывают раствором NaOH по способу Байера.

Для производства высокопрочной корундовой керамики применяют порошок оксида алюминия, полученный термическим разложением некоторых солей алюминия, например, азотнокислого, алюмоаммиачных квасцов различной степени чистоты. Оксид алюминия, полученный при разложении солей, является высокодисперсным порошком γ-Al2O3 (при прокаливании до 1200°С) и обладает большой химической активностью.

Для получения ультра- и нанодисперсных порошков Аl2O3, которые используются в технологии конструкционной и инструментальной керамики, широкое распространение получил способ совместного осаждения гидроксидов (СОГ) и плазмохимического синтеза (ПХС).

Сущность метода СОГ заключается в растворении солей алюминия, например, AlCl3 в растворе аммиака и последующем выпадении образующихся гидратов в осадок. Процесс ведут при низких температурах и больших сроках выдержки. Полученные гидроксиды сушат и прокаливают, в результате образуется порошок Аl2O3 с размером частиц 10−100 нм.

В технологии ПХС водный раствор Al (NO3)3 подается в сопло плазмотрона. В каплях раствора возникают чрезвычайно высокие температурные градиенты, происходит очень быстрый процесс синтеза и кристаллизации Аl2O3. Частицы порошка имеют сферическую форму и размер 0,1−1 мкм.

ect-center.com

Окись алюминия — это… Что такое Окись алюминия?


Окись алюминия

Оксид алюминия Al2O3 — в природе распространён как глинозём, нестехиометрическая смесь оксидов алюминия, калия, натрия, магния и т. д.

Свойства

бесцветные нерастворимые в воде кристаллы.

  • химические свойства — амфотерный оксид. Практически не растворим в кислотах. Растворяется в горячих растворах и расплавах щелочей.
  • tпл 2044 °C.
  • Является полупроводником n-типа.

Получение

Получают из бокситов, нефелинов, каолина, алунитов алюминатным или хлоридным методом. Сырьё в производстве алюминия, катализатор, адсорбент, огнеупорный и абразивный материал.

Чистый оксид алюминия может находиться в нескольких кристаллических формах: α-Al

2O3 (корунд), γ-Al2O3, δ-Al2O3, θ-Al2O3, χ-Al2O3 и др.

Применение

Средние цены на глинозем металлургического сорта в 2007 году — $370/тонна /по материалам infogeo.ru/metalls

Оксид алюминия (α-Al2O3), как минерал, называется корунд. Крупные прозрачные кристаллы корунда используются, как драгоценные камни. Из-за примесей корунд бывает окрашен в разные цвета: красный корунд называется рубином, синий, традиционно — сапфиром. Согласно принятым в ювелирном деле правилам, сапфиром называют кристаллический α-оксид алюминия любой окраски кроме красной. В настоящее время кристаллы ювелирного корунда выращивают искусственно, но природные камни всё равно ценятся дороже, хотя по виду и не отличаются. Также корунд применяется как огнеупорный материал.
Остальные кристаллические формы используются, как правило, в качестве катализаторов, адсорбентов, инертных наполнителей в физических исследованиях и химической промышленности.

Так называемый β-оксид алюминия в действительности представляет собой смешанный оксид алюминия и натрия. Он и соединения с его структурой вызывают большой научный интерес в качестве металлопроводящего твёрдого электролита.

Примечания

См. также

Ссылки

Арсенид алюминия (AlAs) • Диборид алюминия (AlB2) • Додекаборид алюминия (AlB12) • Бромид алюминия (AlBr3) • Монохлорид алюминия (AlCl) • Хлорид алюминия (AlCl3) • Монофторид алюминия (AlF) • Фторид алюминия (AlF3) • Гидрид алюминия (AlH3) • Иодид алюминия (AlI3) • Нитрид алюминия (AlN) • Нитрат алюминия (Al(NO3)3) • Монооксид алюминия (AlO) • Гидроксид алюминия (Al(OH)3) • Оксинитрид алюминия (AlON) • Фосфид алюминия (AlP) • Фосфат алюминия (AlPO4) • Антимонид алюминия (AlSb) • Молибдат алюминия (Al2(MoO4)3) • Оксид алюминия (Al2O3) • Сульфид алюминия (Al2S3) • Сульфат алюминия (Al2(SO4)3) • Селенид алюминия (Al2Se3) • Силикат алюминия (Алюмосиликаты) (Al2SiO5) • Карбид алюминия (Al4C3)

 

Wikimedia Foundation. 2010.

  • Окись
  • Окись бария

Смотреть что такое «Окись алюминия» в других словарях:

  • окись алюминия — глинозём …   Cловарь химических синонимов I

  • Алюмина — Alumina, Обожженый глинозем, водная окись алюминия — Al2O3 обожженый глинозем. Белый, очень рыхлый, гигроскопический порошок.Хорошо растворяется в воде. Распространен в природе. Находится в большом количестве в глинах, в почве. Очень богаты алюминием плауны, концентрируют алюминий также молочаи,… …   Справочник по гомеопатии

  • алюминия окись — aliuminio oksidas statusas T sritis chemija formulė Al₂O₃ atitikmenys: angl. alumina; aluminium oxide rus. алюминия окись; алюминия оксид ryšiai: sinonimas – dialiuminio trioksidas …   Chemijos terminų aiškinamasis žodynas

  • алюминия оксид — aliuminio oksidas statusas T sritis chemija formulė Al₂O₃ atitikmenys: angl. alumina; aluminium oxide rus. алюминия окись; алюминия оксид ryšiai: sinonimas – dialiuminio trioksidas …   Chemijos terminų aiškinamasis žodynas

  • Окись этилена — Окись этилена …   Википедия

  • Алюминия окись —         глинозём, Al2O3, соединение алюминия с кислородом; составная часть глин, исходный продукт для получения алюминия. Бесцветные кристаллы, tпл 2050°С, tкип выше 3000°С. Известна в двух модификациях, α и γ. Из них в природе встречается α… …   Большая советская энциклопедия

  • Окись — Оксид (окисел, окись)  соединение химического элемента с кислородом, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам… …   Википедия

  • Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии — 4.2. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии Спектральному методу предшествует перевод анализируемой пробы в пятиокись ниобия. Метод основан на измерении интенсивности линий… …   Словарь-справочник терминов нормативно-технической документации

  • Метагидроксид алюминия — Общие Систематическое наименование Метагидроксид алюминия Традиционные названия Оксигидроксид алюминия Химическая формула AlO(OH) Физические свойства Сос …   Википедия

  • глинозём — окись алюминия …   Cловарь химических синонимов I

dic.academic.ru

Оксид алюминия — это… Что такое Оксид алюминия?

Оксид алюминия Al2O3 — в природе распространён как глинозём, нестехиометрическая смесь оксидов алюминия, калия, натрия, магния и т. д.

Свойства

Бесцветные нерастворимые в воде кристаллы.

  • химические свойства — амфотерный оксид. Практически не растворим в кислотах. Растворяется в горячих растворах и расплавах щелочей.
  • tпл 2044 °C.
  • Является полупроводником n-типа, но несмотря на это используется в качестве диэлектриков в алюминиевых электролитических конденсаторах.
  • Диэлектрическая проницаемость 9,5 — 10.
  • Электрическая прочность 10 кВ/мм.
МодификацияПлотность, г/см3
α-Al2O33.99[2]
θ-Al2O33.61[3]
γ-Al2O33.68[4]
κ-Al2O33.77[5]

Получение

Получают из бокситов, нефелинов, каолина, алунитов алюминатным или хлоридным методом. Сырьё в производстве алюминия, катализатор, адсорбент, огнеупорный и абразивный материал.

Чистый оксид алюминия может находиться в нескольких кристаллических формах: α-Al2O3 (корунд), γ-Al2O3, δ-Al2O3, θ-Al2O3, χ-Al2O3 и др.

Применение

Средние цены на глинозем металлургического сорта в 2009 году — $178/тонна[2] Оксид алюминия (α-Al2O3), как минерал, называется корунд. Крупные прозрачные кристаллы корунда используются как драгоценные камни. Из-за примесей корунд бывает окрашен в разные цвета: красный корунд называется рубином, синий, традиционно — сапфиром. Согласно принятым в ювелирном деле правилам, сапфиром называют кристаллический α-оксид алюминия любой окраски, кроме красной. В настоящее время кристаллы ювелирного корунда выращивают искусственно, но природные камни всё равно ценятся выше, хотя по виду не отличаются. Также корунд применяется как огнеупорный материал. Остальные кристаллические формы используются, как правило, в качестве катализаторов, адсорбентов, инертных наполнителей в физических исследованиях и химической промышленности.

Так называемый β-оксид алюминия в действительности представляет собой смешанный оксид алюминия и натрия. Он и соединения с его структурой вызывают большой научный интерес в качестве металлопроводящего твёрдого электролита.

γ-модификации оксида алюминия применяются в качестве носителя катализаторов, сырья для производства смешанных катализаторов, осушителя в различных процессах химических, нефтехимических производств (ГОСТ 8136-85).

Литература

  1. Pillet, S.; Souhassou, M.; Lecomte, C.; Schwarz, K. и др. Acta Crystallograica A (39, 1983-) (2001), 57, 209—303
  2. Husson, E.; Repelin, Y. Europen Journal of Solid State Inogranic Chemistry
  3. Gutierrez, M.; Taga, A.; Johansson, B. Physical Review, Serie 3. B — Condensed Matter (18, 1978-) (2001), 65, 0121011-0121014
  4. Smrcok, L.; Langer, V.; Halvarsson, M. Ruppi, S. Zeitschrift fuer Kristallographie (149, 1979-) (2001), 216, 409—412

См. также

Ссылки

Примечания

dic.academic.ru

Оксид алюминия

Алюминия оксид встречается в природной среде в виде самого обычного глинозема, его химическая формула — AL2O3. На вид это кристаллы, не имеющие цвета, которые при температуре в 2044°С начинают плавиться, а при достижении отметки в 3530 °С закипают.

В природном окружении единственной устойчивой модификацией вещества является корунд, имеющий плотность 3,99 г/см3. Это очень твердый образец, принадлежащий к девятому уровню по таблице Мооса. Величина коэффициента преломления составляет: для обыкновенного луча — 1,765, и 1,759 для необыкновенного. В природном окружении оксид алюминия часто содержит в себе различные оксиды металлов, поэтому, минерал корунда может приобретать различные оттенки своей окраски. Например, таковыми являются сапфиры, рубины и другие драгоценные камни. В таком виде оксид алюминия может быть получен и лабораторно-химическим способом. Для этого используют метастабильные формы А12О3 и разлагают их термическим способом. Также в качестве источника получения алюминия оксида лабораторным методом используют алюминия гидроксид.

Стандартная модификация соединения представляет собой тетрагоническую кристаллическую решетку, содержащую в своем составе примерно 1-2% воды. Можно получить и аморфный по своей структуре оксид алюминия – алюмогель, для чего гелевидный раствор AL(OH) 3 обезвоживают и получают вещество в виде пористой прозрачной массы.

Алюминия оксид совершенно нерастворим в воде, но может хорошо растворяться в криолите, разогретом до высокой температуры. Вещество амфотерно. Характерно такое свойство синтезированного алюминия оксида, как обратная зависимость температуры его образования и химической активности. Как искусственный (то есть полученный при температуре более 1200°С), так и природный корунд в обычной среде проявляют практически стопроцентную химическую инертность и полное отсутствие гигроскопичности.

Оксид алюминия химические свойства начинает активно проявлять при температурах около 1000°С, когда он начинает интенсивно взаимодействовать с такими веществами, как различные щелочи, карбонаты щелочных металлов. При этом взаимодействии образуются алюминаты. Более медленно соединение вступает в реакции с SiO2 , а также различного рода шлаками кислыми. В результате этих взаимодействий получаются алюмосиликаты.

Алюмогели и оксид алюминия, которые получены путем обжига любого из гидроксидов алюминия при температуре не менее 550°С, обладают очень высокой гигроскопичностью, отлично вступают в химические реакции и активно взаимодействуют с кислотными и щелочными растворами.

Как правило, в качестве сырья для получения алюминия оксида служат бокситы, алуниты, а также нефелины. При содержании в них рассматриваемого вещества более 6-7% производство ведется основным способом – методом Байера, а при меньшем содержании вещества используют метод спекания руды с известью или содой. Метод Байера представляет собой обработку измельченной породы в шаровых мельницах, затем бокситы обрабатывают щелочными растворами при температуре 225-250°С. Полученный таким образом состав алюмината натрия разбавляют водным раствором и фильтруют. В процессе фильтрации шлам, содержащий оксид алюминия, свойства которого соответствуют стандартным, подвергают разложению на центрифугах. Такая технология дает возможность получать 50%-ный выход вещества. Кроме того, применение данного метода позволяет сохранить маточный раствор для использования в последующий операциях по выщелачиванию бокситов.

Как правило, полученный синтетическим методом алюминия оксид используют в качестве промежуточного материала для получения чистого алюминия. В промышленности он применяется в качестве сырья для изготовления огнеупорных материалов, абразивных и керамических режущих инструментов. Современные технологии активно применяют монокристаллы оксида алюминия в производстве часов, печатных плат, ювелирных изделий.

fb.ru

Алюминия окись

        глинозём, Al2O3, соединение алюминия с кислородом; составная часть глин, исходный продукт для получения алюминия. Бесцветные кристаллы, tпл 2050°С, tкип выше 3000°С. Известна в двух модификациях, α и γ. Из них в природе встречается α-Al2O3 в виде бесцветного минерала Корунда; кристаллы α-Al2O3, окрашенные окислами др. металлов в красный цвет — Рубин, и в синий — Сапфир, являются драгоценными камнями. Корунд кристаллизуется в гексагональной системе, плотность 3960 кг/м3, искусственно α-Al2O3 можно получить нагреванием выше 900°С гидроокиси алюминия или его солей. При нагревании алюминиевых солей в пределах 600—900°С образуется γAl2O3, кубическая модификация, которая выше этой температуры необратимо переходит в α-Al2O3. Известны гидратированные (водные) формы Al2O3 различного состава. К гидроокисям алюминия относятся: гидраргиллит (См. Катализаторы) (гиббсит) Al(OH)3, входящий в состав многих бокситов, и искусственно получаемая неустойчивая форма Al(OH)3 — байерит. Известна и неполная гидроокись алюминия — AlOOH, существующая в двух модификациях — α (диаспор) и γ (бёмит).

         А. о. и её гидратированные формы нерастворимы в воде, обладают амфотерными свойствами — взаимодействуют с кислотами и щелочами. Природный корунд на воздухе химически инертен и негигроскопичен. Со щелочами интенсивно реагирует около 1000°С, образуя растворимые в воде Алюминаты щелочных металлов. Медленнее реагирует с SiO2 и кислыми шлаками с образованием алюмосиликатов (См. Алюмосиликаты), разлагается сплавлением с KHSO4.

         Сырьём для получения А. о. служат бокситы, нефелины, каолины и другое сырьё, содержащее Al. Бокситы всегда загрязнены окислами железа или кремневой кислотой. Для получения чистой А. о. бокситы перерабатывают нагреванием с CaO и Na2CO3 (сухой способ) или нагреванием с едким натром в Автоклавах (способ Байера). При обоих способах А. о. в виде алюминатов переходит в раствор, который затем разлагают пропусканием двуокиси углерода либо добавлением заранее приготовленной гидроокиси алюминия. В первом случае разложение происходит по уравнению 2[AI(OH)4] +CO2 → 2Al(OH)3 + CO32- + Н2O. Разложение по второму способу основано на том, что раствор алюмината, полученный при нагревании в автоклаве, метастабилен. Добавляемая гидроокись алюминия ускоряет распад алюмината: [Al(OH)4] → Al(OH)3 + OH. Полученную гидроокись алюминия прокаливают при 1200°С, в результате получается чистый глинозём.

         Основное применение А. о. — производство алюминия (См. Алюминий). Корунд широко используют как абразивный материал (корундовые круги, наждак), а также для изготовления керамических резцов и чрезвычайно огнеупорных материалов, в частности «плавленого глинозёма», служащего для футеровки цементных печей. Из монокристаллов корунда, полученных плавкой порошка А. о. с добавками окислов Cr, Fe, Ti, V, изготовляют опорные камни в точных механизмах и ювелирные изделия.

         Дистилляцией чистого алюминия при 1650°С в атмосфере водорода, содержащей пары воды, получены «усы» (нитеобразные кристаллы) из А. о., обладающие огромной прочностью, близкой к теоретической. «Усы» из сапфира (α-Al2O3) диаметром 2—3 мкм обладают прочностью 16 Гн/м2, диаметром 10 мкм — 11 Гн/м2‘, «усы» больших диаметров — 6,5 —7 Гн/м2 (1 Гн/м2 = 100 кгс/м2). Введение этих «усов» в конструкционные материалы, даже при условии частичного сохранения их прочности, позволяет получить ценные материалы для ракетостроения. Металлы, армированные такими волокнами, имеют более высокую прочность не только при низких, но и при высоких температурах.

         Особым образом приготовленную т. н. активную А. о. в виде мелкокристаллического порошка применяют как адсорбент (См. Адсорбенты) и катализатор (См. Катализаторы), причём её адсорбционные (и каталитические) свойства в большой степени зависят от качества и обработки исходных материалов и от способа приготовления. Как адсорбент активную А. о. широко применяют для хроматографического анализа всевозможных органических и (реже) неорганических веществ. Гидроокиси алюминия служат для производства всевозможных его солей. Осторожным высушиванием студнеобразной гидроокиси получают алюмогель, пористое вещество, напоминающее фарфор, иногда прозрачное; алюмогель применяют в катализе; она служит одним из наиболее важных технических адсорбентов.

         Лит.: Лайнер А. И., Производство глинозема, М., 1961; Карролл-Порчинский Ц., Материалы будущего, пер. с англ., М., 1966.

         Ю. И. Романьков.

slovar.wikireading.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *