Едкий натр: формула, свойства, применение
Одним из важных химических соединений, синтезируемых огромными партиями ежегодно, является щелочь гидроксид натрия. Такую популярность она заслужила благодаря своим свойствам. Едкий натр, формула которого — NaOH, имеет большое промышленное значение для человека. Рассмотрим данное вещество подробнее.
История открытия вещества
Впервые упоминания о соединении, по свойствам напоминающем именно едкий натр, появляются еще в глубокой древности. Даже Библия содержит некоторые сведения о веществе neter, добываемом из египетских озер. Предположительно это и была каустическая сода.
Аристотелем, Платоном и другими древнегреческими и римскими философами и учеными также упоминается вещество nitrum, которое добывали из природных водоемов и продавали в виде больших разноокрашенных кусков (черных, серых, белых). Ведь о методах очистки тогда еще не знали ничего, поэтому отделить соединение от угля, загрязняющего его, возможности не было.
В 385 году до нашей эры нашло применение мыловарение. В основе процесса использовался едкий натр. Формула его, конечно, еще известна не была, однако это не мешало добывать его из золы растений рода Солянка, из озер и использовать для чистки бытовых предметов, стирки белья, изготовления различного мыла.
Чуть позже арабы научились добавлять в продукт эфирные масла, ароматические вещества. Тогда мыло стало красивым и приятно пахнущим. Начиналось активное развитие процессов и технологий мыловарения.
До самого XVII века едкий натр, свойства которого вовсю использовались, как химическое соединение оставался неизученным. Его объединяли с такими веществами, как сода, гидроксид калия, карбонаты калия, натрия. Все они носили название едких щелочей.
Позже ученый Дюамель дю Монсо сумел доказать различие этих веществ и разделил их на щелочи и соли. С тех пор едкий натр и получил свое истинное и постоянное до сегодняшнего дня имя.
Синонимы названий
Следует отметить, что название этого вещества неодинаково и имеет несколько синонимов. Всего можно обозначить 6 разных вариантов:
- гидроксид натрия;
- натр едкий;
- сода каустическая;
- натриевая щелочь;
- каустик;
- едкая щелочь.
Каустической содой данное соединение называют в простонародье и промышленности. В химических синтезах более правильно говорить натриевая щелочь или едкий натр. Формула от этого не меняется. Самое обыденное название — каустик. Правильным с точки зрения систематической номенклатуры веществ является название гидроксид натрия.
Химическая формула и строение молекулы
Если рассматривать данное вещество с точки зрения химии, то оно будет состоять из двух ионов: катиона натрия (Na+) и гидроксид-аниона (ОН—). Связываясь между собой за счет электростатического притяжения разнозаряженных частиц, данные ионы формируют едкий натр. Формула эмпирического вида будет NaOH.
Гидроксогруппа образована ковалентной полярной связью между кислородом и водородом, при этом с натрием она удерживается ионной связью. В растворе щелочь полностью диссоциирует на ионы, являясь сильным электролитом.
Лабораторный способ получения
Промышленные и лабораторные способы получения едкого натра тесно перекликаются. Часто в малых количествах его получают химическими и электрохимическими методами в более маленьких установках, чем на промышленных объектах. А тонны вещества теми же способами производятся в огромных колоннах электролизерах.
Можно назвать несколько основных способов синтеза каустика в лаборатории.
- Ферритный способ. Состоит из двух основных этапов: на первом происходит спекание под действием высокой температуры карбоната натрия и оксида железа (III). В результате образуется феррит натрия (NaFeO2). На втором этапе он подвергается действию воды и разлагается с образованием гидроксида натрия и смеси железа с водой (Fe2O3*H2O). Полученный едкий натр из раствора выпаривают до кристаллов или хлопьев белого цвета. Его чистота составляет примерно 92%.
- Известковый способ. Заключается в реакции взаимодействия между карбонатом натрия и гидроксидом кальция (гашеной известью) с образованием карбоната кальция и каустика. Реакцию проводят при температуре 80оС. Так как образующаяся соль выпадает в осадок, то ее легко отделяют. Оставшийся раствор выпаривают и получают натриевую щелочь.
- Диафрагменный и мембранный способ получения. Основан на работе установки электролизера. В нее подается раствор соли поваренной (NaCL), который подвергается электролизу с образованием свободного газообразного хлора и нужного продукта каустика. Разница данных методов в том, что при диафрагменном способе главной структурной частью устройства является диафрагма из асбеста (катод). При мембранном способе катодное и анодное пространство разделено специальной мембраной.
Таким образом и получают в лаборатории гидроксид натрия, выбирая наиболее выгодный в материальном плане вариант. Он же, как правило, менее энергозатратный.
Синтез в промышленности
Как же получают в промышленности такое вещество, как натр едкий? Жидкий и твердый каустик добывается чаще всего электрохимическим способом. Он основан на электролизе раствора природного минерала галита, подавляющая часть которого сформирована поваренной солью.
Главная особенность такого синтеза в том, что побочными продуктами вместе с едким натром являются газообразные хлор и водород. Процесс осуществляется в любом из трех вариантов:
- электролиз диафрагменный на твердом катоде;
- с жидким катодом из ртути;
- мембранный с твердым катодом.
Подавляющее большинство производимого в мире каустика образуется все же по методу с мембраной. Полученная щелочь отличается достаточно высоким уровнем чистоты.
Области применения
Существует достаточно много отраслей, в которых актуален едкий натр. Применение основано на его химических и физических свойствах, делающих данное соединение незаменимым во многих синтезах и процессах.
Можно выделить несколько основных областей, в которых гидроксид натрия — обязательный элемент.
- Химическое производство (синтез сложных эфиров, мыла, жиров, получение волокон, травление алюминия, для получения продуктов нефтепереработки, как катализатор во многих процессах; является основным веществом для нейтрализации кислот и соответствующих им оксидов; в аналитической химии применяется для титрования; также используется для получения чистых металлов, многих солей, других оснований и органических соединений).
- При производстве бумаги для обработки целлюлозы древесины (избавления от древесного вещества лигнина).
- В хозяйственной деятельности человека также незаменим едкий натр. Применение многочисленных моющих и чистящих средств на его основе очень актуально. Мыловарение, получение шампуней — все это не обходится без каустической соды.
- Необходим для синтеза биотоплива.
- Применяется в государственных масштабах для дегазации и нейтрализации отравляющих веществ, воздействующих на организмы.
- Производство лекарств и наркотических средств.
- Пищевая отрасль — кондитерские изделия, шоколад, какао, мороженое, окрашивание конфет, маслин, выпечка хлебобулочных изделий.
- В косметологии для удаления инородных образований (родинки, папилломы, бородавки).
- Используется на ликеро-водочных и табачных комбинатах.
- В текстильной промышленности.
- Производство стекла: цветного, обычного, оптического и прочего.
Очевидно, что гидроксид натрия — очень важное и полезное в деятельности человека вещество. Совершенно не зря оно синтезируется в мире ежегодно в тоннах — 57 миллионов и более.
Физические свойства
Белое порошкообразное вещество, иногда бесцветное. Может быть в виде мелкокристаллического порошка либо в виде хлопьев. Чаще в форме крупных кристаллов. Температура плавления достаточно низкая — 65,1оС. Очень быстро поглощает влагу и переходит в гидратированную форму NaOH·3,5Н2О. В этом случае температура плавления еще меньше, всего 15,5оС. Практически неограниченно растворяется в спиртах, воде. На ощупь как твердое вещество, так и жидкое мылкое.
Очень опасное в концентрированном и разбавленном виде. Способно повреждать все оболочки глаза, вплоть до зрительных нервов. Попадание в глаза может закончиться слепотой. Поэтому работа с данным соединением крайне опасна и требует защитных приспособлений.
Химические свойства
Едкий натр свойства проявляет точно такие же, как и все щелочи: взаимодействует с кислотами, кислотными оксидами, амфотерными оксидами и гидроксидами, солями. Из неметаллов вступает в реакции с серой, фосфором и галогенами. Также способен реагировать с металлами.
В органической химии гидроксид натрия вступает во взаимодействие с амидами, эфирами, галогензамещенными алканами.
Условия хранения
Хранение натра едкого осуществляется по определенным условиям. Это объясняется тем, что он крайне реакционноспособен, особенно, когда помещение влажное. Основными условиями можно назвать следующие.
- Хранение вдали от отопительных приборов.
- Герметично закрытые и запаянные упаковки, не способные пропускать влагу.
- Сухой кристаллический каустик хранится в мешках специального состава (плотный полиэтилен), жидкий — в темной стеклянной таре с притертыми пробками. Если же количество его большое и требует транспортировки, то раствор натра едкого помещают в специальные стальные контейнеры и канистры.
Перевозить данное вещество можно любым известным способом с соблюдением правил техники безопасности, исключая транспортировку по воздуху.
Жидкая натриевая щелочь
Помимо кристаллического, существует еще водный раствор едкого натра. Формула его та же, что и для твердого. В химическом отношении растворы более применимы и удобны в использовании. Поэтому в такой форме каустик используется чаще.
Раствор едкого натра, формула которого — NaOH, находит применение во всех вышеперечисленных областях. Он неудобен только при транспортировании, так как перевозить лучше сухой каустик. По всем остальным свойствам нисколько не уступает кристаллам, а в некоторых и превосходит их.
fb.ru
Вода — растворитель для многих веществ
Химически чистой воды, состоящей только из молекул Н2О, в природе не существует, и объясняется это тем, что вода является хорошим растворителем для многих веществ, в результате чего природная вода всегда содержит в себе различные посторонние примеси.
Но прежде чем перейти к рассмотрению характера этих примесей и источников их попадания в воду, необходимо хотя бы кратко познакомиться с растворами и в первую очередь с водными растворами.
Таблица 2. Основания и соли, часто встречающиеся в воде
Химическое обозначение | Как читается | Химическое название | Употребительное техническое название |
Основания | |||
NaOH | Натрий о аш | Едкий натр | Каустическая сода |
Са (ОН)2 | Кальций о аш дважды | Гидрат окиси кальция | Гашеная известь |
Mg (ОН)2 | Магний о аш дважды | Гидрат окиси магния |
|
Аl(ОН)3 | Алюминий о аш трижды | Гидрат окиси алюминия |
|
Fe(OH)2 | Феррум о аш дважды | Гидрат закиси железа |
|
Fe (ОН)3 | Феррум о аш трижды | Гидрат окиси железа |
|
Соли угольной кислоты Бикарбонаты1 | |||
NaHCO3 | Натрий аш це о три | Бикарбонат натра, двууглекислый натр | Питьевая сода |
Ca(HC03)2 | Кальций аш це о три дважды | Бикарбонат кальция, двууглекислый кальций |
|
Mg(HCO3)2 | Магний аш це о три дважды | Бикарбонат магния, двууглекислый магний |
|
Fe(HCO3)2 | Феррум аш це о три дважды | Бикарбонат железа, двууглекислое железо |
|
Карбонаты2 | |||
Na2CO3 | Натрий два це о три | Карбонат натрия, углекислый натрий | Кальцинированная сода |
CaCО3 | Кальций це о три | Карбонат кальция, углекислый кальций | Известняк, мел, мрамор3 |
Mg СО3 | Магний це о три | Карбонат магния, углекислый магний |
|
Соли серной кислоты — сульфаты | |||
Na2SO4 | Натрий два эс о четыре | Сернокислый натрий, сульфат натрия | Глауберова соль |
CaSО4 | Кальций эс о четыре | Сернокислый кальций, сульфат кальция | Гипс CaSO4Х2H2О |
MgSO4 | Магний эс о четыре | Сернокислый магний, сульфат магния | Горькая (английская) соль MgSO4Х7H2O |
FeSO4 | Феррум эс о четыре | Сернокислая закись железа | Железный купорос FeSO4Х7H2O |
Al2(SO4)3 | Алюминий два эс о четыре трижды | Сернокислый алюминий, сульфат алюминия | Глинозем сернокислый A12(SO4)3Х18H2O |
Соли соляной кислоты — хлориды | |||
NaCl | Натрий хлор | Хлористый натрий | Поваренная соль |
СаС12 | Кальций хлор два | Хлористый кальций |
|
MgCl2 | Магний хлор два | Хлористый магний |
|
Соли кремниевой кислоты — силикаты | |||
Na2SiO3 | Натрий два си о три | Кремнекислый натрий, силикат натрия | Жидкое стекло (водный раствор) |
CaSiO3 | Кальций си о три | Кремнекислый кальций, силикат кальция |
|
Магний си о три | Кремнекислый магний, силикат магния |
|
Примечания:
1 Соли, образованные путем замещения металлом одного атома угольной кислоты.
2 Соли, образованные путем замещения металлом двух атомов угольной кислоты.
3 Горная порода, образовавшаяся из известняка в земной коре под воздействием высокой температуры и давления.
К растворам в широком смысле слова относят такие системы, когда молекулы одного или нескольких веществ (называемых растворенными) равномерно распределены между молекулами другого вещества (называемого растворителем).
При этом соотношение между количествами этих веществ могут меняться в широких пределах без нарушения однородности системы. Растворы могут быть жидкими, твердыми (сплавы металлов) и газообразными (нaпример, воздух).
Таким образом, растворы не имеют определенного постоянного состава, что является обязательным признаком химического соединения.
С другой стороны, молекулы растворенных веществ могут образовывать непрочные соединения с молекулами растворителя, и, следовательно, растворы не могут быть причислены к простым механическим смесям, а являются системами промежуточными между химическими соединениями и механическими смесями.
www.comodity.ru
Карбонат и гидрокарбонат натрия, сульфат натрия
2.2.2. Карбонат и гидрокарбонат натрия, сульфат натрия Карбонат натрия, или кальцинированная сода, (Na2СО3) — мелкокристаллический порошок белого цвета; молекулярная масса 106; плотность 2532 кг/м3; насыпная плотность 550 — 600 кг/м3; температура плавления 854 °С_. На воздухе карбонат натрия поглощает С02 и H2O (частично превращаясь в бикарбонат натрия), что усложняет его хранение и перевозку.
Карбонат натрия в водных растворах гидролизуется с образованием гидроксид-ионов: Водные растворы карбоната натрия имеют сильнощелочную реакцию; рН = 11,2 — 11,5 при изменении концентрации от 0,04 до 0,44 г-экв.
Гидрокарбонат натрия начинает разлагаться при нагревании до 50 °С, полностью разлагается, превращаясь в карбонат натрия, при 100 — 150 °С. Водный раствор гидрокарбоната имеет слабощелочную реакцию: В рецептуры CMC гидрокарбонат натрия вводят для повышения щелочности среды, в результате чего повышается суспендирующая и моющая способность CMC.
Сульфат натрия (Na2S04) — кристаллы белого цвета; молекулярная масса 142,05; плотность 2698 кг/м3 ; насыпная плотность 1370 кг/м3; температура плавления 884 °С.
Насыщенный раствор содержит 33,6 % (масс.) соли при 32,5 °С. В щелочных растворах растворимость сульфата натрия понижается.
|
velt-retail.narod.ru
Кристаллическая сода — это… Что такое Кристаллическая сода?
Карбона́т на́трия — химическое соединение Na2CO3, натриевая соль угольной кислоты.
Сода — общее название технических натриевых солей угольной кислоты.
Название «сода» происходит от растения Salsola Soda, из золы которого её добывали. Кальцинированной соду называли потому, что для получения её из кристаллогидрата приходилось его кальцинировать (то есть нагревать до высокой температуры).
Каустической содой называют гидроксид натрия (NaOH).
Оксиды и гидроксиды
Вид | Для Na | Для С |
---|---|---|
Гидроксид | NaOH | h3CO3 |
Оксид | Na2O | CO2 |
Нахождение в природе
В природе сода встречается в золе некоторых морских водорослей, а также в виде следующих минералов:
- нахколит NaHCO3
- трона Na2CO3·NaHCO3·2H2O
- натрон (сода) Na2CO3·10H2O
- термонатрит Na2CO3·Н2O.
Современные содовые озёра известны в Забайкалье и в Западной Сибири; большой известностью пользуется озеро Натрон в Танзании и озеро Сирлс в Калифорнии. Трона, имеющая промышленное значение, открыта в 1938 в составе эоценовой толщи Грин-Ривер (Вайоминг, США). Вместе с троной в этой осадочной толще обнаружено много, ранее считавшихся редкими, минералов, в том числе давсонит, который рассматривается как сырьё для получения соды и глинозёма. В США природная сода удовлетворяет более 40% потребности страны в этом полезном ископаемом. В России из-за отсутствия крупных месторождений сода из минералов не добывается.
Получение
До начала XIX века карбонат натрия получали преимущественно из золы некоторых морских водорослей и прибрежных растений.
Способ Леблана
В 1791 году французский химик Никола Леблана получил патент на «Способ превращения глауберовой соли в соду». По этому способу при температуре около 1000°C запекается смесь сульфата натрия («глауберовой соли»), мела или известняка (карбоната кальция) и древесного угля. Уголь восстанавливает сульфат натрия до сульфида:
Na2SO4 + 2C → Na2S + 2CO2↑Сульфид натрия реагирует с карбонатом кальция:
Na2S + СаСО3 → Na2CO3 + CaS
Полученный расплав обрабатывают водой, при этом карбонат натрия переходит в раствор, сульфид кальция отфильтровывают, затем раствор карбоната натрия упаривают. Сырую соду очищают перекристаллизацией. Процесс Леблана даёт соду в виде кристаллогидрата (см. выше), поэтому полученную соду обезвоживают кальцинированием.
Сульфат натрия получали обработкой каменной соли (хлорида натрия) серной кислотой:
2NaCl + H2SO4 → Na2SO4 + 2HCl↑
Выделявшийся в ходе реакции хлороводород улавливали водой с получением соляной кислоты.
Первый содовый завод такого типа в России был основан промышленником М. Прангом и появился в Барнауле в 1864 году.
После появления более экономичного (не остаётся в больших количествах побочный сульфид кальция) и технологичного способа Сольве, заводы, работающие по способу Леблана, стали закрываться. К 1900 90% предприятий производили соду по методу Сольве, а последние фабрики, работающие по методу Леблана закрылись в начале 1920-х.
Промышленный аммиачный способ (способ Сольве)
В 1861 году бельгийский инженер-химик Эрнест Сольве запатентовал метод производства соды, который используется и по сей день.
В насыщенный раствор хлорида натрия пропускают эквимолярные количества газообразных аммиака и диоксида углерода, то есть как бы вводят гидрокарбонат аммония NH4HCO3:
Выпавший остаток малорастворимого (9,6 г на 100 г воды при 20°C) гидрокарбоната натрия отфильтровывают и кальцинируют (обезвоживают) нагреванием до 140—160°C, при этом он переходит в карбонат натрия:
2NaHCO3 →(t) Na2CO3 + CO2↑ + H2OОбразовавшийся диоксид углерода и аммиак, выделенный из маточного раствора на первой стадии процесса по реакции:
возвращают в производственный цикл.
Первый содовый завод такого типа в мире был открыт в 1863 в Бельгии; первый завод такого типа в России был основан в районе уральского поселка Березники фирмой «Любимов, Сольве и Ко» в 1883 году. Его производительность составляла 20 тысяч тонн соды в год.
До сих пор этот способ остаётся основным способом получения соды во всех странах.
Способ Хоу
Разработан китайским химиком Хоу (Hou Debang) в 1930-х годах. Отличается от процесса Сольве тем, что не использует карбонат кальция.
По способу Хоу в раствор хлорида натрия при температуре 40 градусов подается диоксид углерода и аммиак. Менее растворимый гидрокарбонат натрия в ходе реакции выпадает в осадок (как и в методе Сольве). Затем раствор охлаждают до 10 градусов. При этом выпадает в осадок хлорид аммония, а раствор используют повторно для производства следующих порций соды.
В настоящее время в ряде стран практически весь искусственно производящийся карбонат натрия вырабатывается по методу Хоу.
Свойства
Кристаллогидраты карбоната натрия существуют в разных формах: бесцветный моноклинный Na2CO3·10H2O, при 32,017°С переходит в бесцветный ромбический Na2CO3·7H2O, последний при нагревании до 35,27°C бесцветный переходит в ромбический Na2CO3·H2O.
Безводный карбонат натрия представляет собой бесцветный кристаллический порошок.
Параметр | Безводный карбонат натрия | Декагидрат Na2CO3·10H2O |
---|---|---|
Молекулярная масса | 105,99 а.е.м. | 286,14 а.е.м. |
Температура плавления | 852°C (по другим источникам, 853°C) | 32°С |
Растворимость | Не растворим в ацетоне, и сероуглероде, мало растворим в этаноле хорошо растворим в глицерине, и воде (см. таблицу ниже) | растворим в воде, не растворим в этаноле |
Плотность ρ | 2,53 г/см3 (при 20°C) | 1,446 г/см3 (при 17°C) |
Стандартная энтальпия образования ΔH | −1131 кДж/моль (т) (при 297 К) | −4083,5 кДж/моль ((т) (при 297 К) |
Стандартная энергия Гиббса образования G | −1047,5 кДж/моль (т) (при 297 К) | −3242,3 кДж/моль ((т) (при 297 К) |
Стандартная энтропия образования S | 136,4 Дж/моль·K (т) (при 297 К) | |
Стандартная мольная теплоёмкость Cp | 109,2 Дж/моль·K (жг) (при 297 К) |
Температура, °C | 0 | 10 | 20 | 25 | 30 | 40 | 50 | 60 | 80 | 100 | 120 | 140 |
Растворимость, г Na2CO3 на 100 г H2O | 7 | 12,2 | 21,8 | 29,4 | 39,7 | 48,8 | 47,3 | 46,4 | 45,1 | 44,7 | 42,7 | 39,3 |
В водном растворе карбонат натрия гидролизуется, что обеспечивает щелочную реакцию среды. Уравнение гидролиза (в ионной форме):
CO32- + H2O ↔ HCO3— + OH—
Первая константа диссоциации угольной кислоты равна 4,5·10-7. Все кислоты, более сильные, чем угольная, вытесняют её в реакции с карбонатом натрия. Так как угольная кислота крайне нестойкая, она тут же разлагается на воду и углекислый газ:
Na2CO3 + H2SO4 → Na2SO4 + CO2↑ + H2O
Применение
Карбонат натрия используют в стекольном производстве, мыловарении и производстве синтетических моющих средств, эмалей, для получения ультрамарина. Также он применяется для умягчения воды паровых котлов и вообще устранения жёсткости воды, для обезжиривания металлов и десульфатизации доменного чугуна. Карбонат натрия — исходный продукт для получения NaOH, Na2B4O7, Na2HPO4.
В пищевой промышленности зарегистрирован в качестве пищевой добавки E500, регулятора кислотности, разрыхлителя, препятствующего комкованию и слёживанию.[1]
Ссылки
Wikimedia Foundation. 2010.
dic.academic.ru