Микропроцессорная защита двигателя: Устройства защиты асинхронных электродвигателей

Содержание

Защита электродвигателя. Виды, схемы, принцип действия защиты электродвигателя.


Для чего нужна защита двигателя?

Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.

Защита двигателя имеет три уровня:

Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.

Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.

Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.



Возможные условия отказа двигателя

Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:

• Низкое качество электроснабжения:

• Высокое напряжение

• Пониженное напряжение

• Несбалансированное напряжение/ ток (скачки)

• Изменение частоты

• Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя

• Постепенное повышение температуры и выход её за допустимый предел:

• недостаточное охлаждение

• высокая температура окружающей среды

• пониженное атмосферное давление (работа на большой высоте над уровнем моря)

• высокая температура рабочей жидкости

• слишком большая вязкость рабочей жидкости

• частые включения/отключения электродвигателя

• слишком большой момент инерции нагрузки (свой для каждого насоса)

• Резкое повышение температуры:

• блокировка ротора

• обрыв фазы

Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.



Плавкий предохранительный выключатель

Плавкий предохранительный выключатель — это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.

Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.

Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем — пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.

Плавкие предохранители быстрого срабатывания

Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.

Плавкие предохранители с задержкой срабатывания

Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.

Время срабатывания плавкого предохранителя

Время срабатывания плавкого предохранителя — это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока — это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.



В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.

Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.

Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.


Что такое автоматический токовый выключатель и как он работает?

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя — он просто устанавливается в исходное положение.



Различают два вида автоматических выключателей: тепловые и магнитные.

Тепловые автоматические выключатели

Тепловые автоматические выключатели — это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.

Магнитные автоматические выключатели

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.



Рабочий диапазон автоматического выключателя

Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.


Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.



Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.



Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.


Современные наружные реле защиты двигателя

Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.



Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:

• Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса

• Диагностирует возникшие неисправности

• Позволяет выполнять проверку работы реле во время техобслуживания

• Контролирует температуру и наличие вибрации в подшипниках

Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.

Например, электродвигатель может быть защищён от:

• Перегрузки

• Блокировки ротора

• Заклинивания

• Частых повторных пусков

• Разомкнутой фазы

• Замыкания на массу

• Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)

• Малого тока

• Предупреждающего сигнала о перегрузке


Настройка наружного реле перегрузки

Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.

Пример вычисления

Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.



Данные отображаются в фирменной табличке, какпоказано в иллюстрации.



Вычисления для 60 Гц



Коэффициент усиления напряжения определяется следующими уравнениями:



Расчет фактического тока полной нагрузки (I):



(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)



(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)

Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:

I для «треугольника»:



I для «звезды»:



Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.



Внимание: наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.

Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA — service factor amps), который, как правило, указывается в фирменной табличке.


Внутренняя защита, встраиваемая в обмотки или клеммную коробку



Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:

• Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.

• При высокой температуре окружающей среды.

• Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.

• Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.

Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.

Обозначение TP

TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

• Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)

• Число уровней и тип действия (2-я цифра)

• Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.



Обозначение

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

Категория 1 (3-я цифра)

ТР 111

Только медленно (постоянная перегрузка)

1 уровень при отключении

1

ТР 112

2

ТР 121

2 уровня при аварийном сигнале и отключении

1

ТР 122

2

ТР 211

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

1

ТР 212

2

ТР 221 ТР 222

2 уровня при аварийном сигнале и отключении

1

2

ТР 311 ТР 321

Только быстро (блокировка)

1 уровень при отключении

1

2

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

 

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.



Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.



Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.


Устройства тепловой защиты, встраиваемые в клеммную коробку

В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.

Через термостат может подаваться напряжение в цепи аварийной сигнализации — если он нормально разомкнут, или термостат может обесточивать электродвигатель — если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.



Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.



Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).



Внутренняя установка

В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.

Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.


Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.



Подключение

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.



Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.





В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.



Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.


Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.

На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.


По сравнению с PTO терморезисторы имеют следующие преимущества:

• Более быстрое срабатывание благодаря меньшему объёму и массе

• Лучше контакт с обмоткой электродвигателя

• Датчики устанавливаются на каждой фазе

• Обеспечивают защиту при блокировке ротора


Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111



Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211



Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Микропроцессорные реле защиты. Как они устроены? Часть 1 / Статьи и обзоры / Элек.ру

Часть 2

Микропроцессорные устройства релейной защиты (МУРЗ) появились на рынке в привычном сегодня виде около 20 лет тому назад и за прошедшее время серьезно потеснили все остальные виды реле защиты. Триумфальное шествие МУРЗ связано со многими причинами, главная из которых — сверхприбыль, получаемая производителями МУРЗ по сравнению с производством всех остальных видов защитных реле (электромеханических, полупроводниковых статических). Принцип действия и устройство современных МУРЗ очень сильно отличаются от защит других видов и имеют целый ряд специфических особенностей, знание которых является необходимым условием для правильного выбора и дальнейшей успешной эксплуатации МУРЗ. Доминирующее сегодня в среде специалистов-релейщиков отношение к МУРЗ, как к «черному ящику» с функциями релейной защиты отнюдь не способствует правильному выбору и успешной эксплуатации МУРЗ. Предлагаемый цикл статей автора призван помочь релейщикам, не являющимися специалистами в области электроники и микропроцессорной техники, восполнить существующий пробел и помочь правильно сориентироваться на обширном рынке устройств релейной защиты нового поколения.

В части 1 статьи рассматриваются общая структура и конструктивное исполнение МУРЗ, а также устройство аналоговых входов.

Часть 1 

Общая структура и конструктивное исполнение МУРЗ

Основными узлами МУРЗ являются: блок аналоговых входов (трансформаторы тока и напряжения), входные фильтры (антиалиазинговые фильтры; цепи выборки и запоминания), мультиплексор, аналогово-цифровой преобразователь, микропроцессор, различные виды памяти, блок логических (цифровых) входов, блок релейных выходов, рис. 1. 

Конструктивно МУРЗ представляют собой набор плоских модулей (печатных плат) представляющих собой различные функциональные узлы МУРЗ, размещенных в корпусах различных типов и размеров, рис. 2. 

Существует несколько конструктивных схем расположения печатных плат в корпусах МУРЗ. Одной из таких конструктивных схем является так называемый «этажерочный модуль», которая предусматривает расположение печатных плат одна над другой. Платы скрепляются между собой резьбовыми втулками, образуя единый конструктивный модуль, похожий на этажерку, рис. 3. 

Этот модуль затем устанавливается внутри корпуса МУРЗ. Соединение между платами осуществляется посредством разъемов и плоского гибкого кабеля. Очевидным недостатком такой конструкции является невозможность замены отдельного модуля без демонтажа и разборки всего МУРЗ.

Еще одной разновидностью конструктивного исполнения МУРЗ является корпус типа «открытый куб», рис. 4. В этой конструкции три печатные платы образуют боковые и заднюю стенки, скрепленные между собой специальными угловыми разъемами и присоединенные к металлической лицевой панели, являющейся четвертой стенкой.

После сборки вся эта конструкция вставляется во внешний корпус.

Наибольшее распространение получила конструкция с выдвижными платами, имеющая множество разновидностей, рис. 5.

Конструкция этого типа содержит алюминиевый корпус с направляющими, по которым в него вдвигаются отдельные (модули) печатные платы, из которых состоит МУРЗ.

Платы могут располагаться в корпусе вертикально или горизонтально. Еще одна дополнительная плата (так называемая «материнская плата») с набором разъемов расположена на дне этого корпуса. При выдвигании плат по направляющим в корпус МУРЗ выступающие на них разъемы входят в ответные части разъемов, расположенных на материнской плате и, таким образом, осуществляется соединение между платами.

В МУРЗ используется три типа плат, которые обеспечивают соединение между собой всех остальных плат. В первом случае это может быть материнская плата, на которой кроме набора разъемов расположены также микропроцессор, АЦП, различные виды памяти и все сопутствующие им элементы (Рис. 6б). Во втором случае это может быть отдельная жесткая плата с набором разъемов (Рис. 6а), или, в третьем случае — гибкий плоский многожильный кабель с разъемами, соединяющий между собой платы (рис. 6в). Соединительные платы двух последних типов еще иногда называют «кросс-платами».

В некоторых не очень удачных конструкциях, рис. 7 приходится вынимать сразу несколько модулей для того, чтобы добраться до модуля с источником питания. А чтобы выдвинуть этот модуль для замены источника питания необходимо отпаять выводы всех трансформаторов тока от клеммника на задней панели, а потом опять припаять.

Довольно странную конструкцию имеют реле типа Т60, рис. 8. Реле этого типа состоят из отдельных втычных модулей, расположенных в общем корпусе. В отличие от всех остальных МУРЗ, в Т60 каждый модуль помещен в стальной кожух, из-за чего реле получилось тяжелым (килограммов 15, не менее).

После вскрытия кожуха остается печатная плата с мощным разъемом на торце. Этот разъем имеет очень странную конструкцию и снабжен большим пластмассовым кожухом, разделенным на крупные ячейки, внутри которых расположены электронные компоненты, выходные реле, варисторы, рис. 9. 

Этот кожух крепится на разъеме с помощью 8 пластмассовых защелок, по 4 с каждой стороны, которые должны открываться одновременно. Попытка открыть этот кожух сразу же привела к поломке одной из защелок, после чего мои попытки были прекращены. Никакой функциональной нагрузки этот пластмассовый кожух не несет и, по моему мнению, его единственное назначение — сделать реле неремонтопригодным.

МУРЗ этого типа снабжено как обычными электромеханическими, так и полупроводниковыми выходными реле, причем, как указано в его описании (T60 Revision: 5.6x), полупроводниковые выходные реле снабжены специальными схемами «для мониторинга постоянного напряжения на открытых контактах и постоянного тока, протекающего через замкнутые контакты». Как будто все ясно и понятно… Но то, что было написано далее поставило меня в тупик: «Напряжение записывается в виде логической единицы, когда ток в цепи контактов превышает 1-2,5 мА и ток считается логической единицей, когда он превышает 80-100 мА». Более странное (мягко выражаясь) объяснение, трудно даже представить. Странность эта не только в тексте, но и в сущности технического решения. Во-первых, мониторинг возможен только на постоянном токе, что ограничивает его область применения. Во-вторых, ток нагрузки может быть очень маленьким (1-3 мА), например, ток логического входа другого МУРЗ, или чувствительных электромеханических промежуточных реле. Как будет в этом случае работать система мониторинга тока? Оказывается, разработчики этой системы учли такую возможность и предлагают потребителям включать параллельно контактам дополнительный внешний резистор. Для напряжения 48 В этот резистор рекомендуется выбирать сопротивлением 500 Ом и мощностью 10 Вт. Это довольно крупный резистор! Представляете, каким должен быть этот резистор для напряжения 220 В? И где его устанавливать? Об этом разработчики Т60 скромно умалчивают…

Еще одно «изобретение»: автоматическая очистка контактов (autho-burnishing) внешних реле, которые подают сигналы на логические входы Т60. Конструкторы озаботились тем, что при очень малых входных токах логических входов (менее 3 мА) и окисленных контактах внешних реле сигнал может «не пройти» через них. Для самоочистки этих контактов в Т60 установлены на входах специальные нелинейные элементы (очевидно, что-то вроде позисторов), имеющих низкое сопротивление в обесточенном (холодном) состоянии и быстро повышающих сопротивление при приложении к ним напряжения (и повышении температуры). В результате, в первый момент после замыкания контактов внешнего реле, через них проходит ток 50-70 мА, который быстро снижается (в течение 25-50 мс) до 3 мА. Как будто, красивая идея. Но это только для тех, кто не очень хорошо разбирается в процессах на контактах. «Непроходимость» контактов в результате их окисления имеет место в слаботочных цепях с напряжением коммутации ниже 20-30 В. При более высоких напряжениях происходит пробой очень тонких окисных пленок и контакты, на вид черные и неприглядные, прекрасно проводят даже малые токи (фрикинг-эффект). Поэтому, для реальных напряжений эксплуатации МУРЗ проблема эта полностью надумана, а ее техническое воплощение совершенно бессмысленно.

Модули аналоговых входов

Наиболее простыми в МУРЗ являются модули аналоговых входов, состоящие из набора трансформаторов тока и напряжения, рис. 10. 

Конструкция трансформаторов напряжения ничем не отличается от конструкции обычных маломощных трансформаторов. Трансформаторы тока содержат изолированную многовитковую вторичную обмотку, намотанную на каркасе и покрытую изоляционной пленкой. Первичная обмотка представляет собой несколько витков (обычно, 5 витков на номинальный первичный ток 1 А и 1 виток на номинальный ток 5А), намотанных поверх вторичной обмотки обычным многожильным изолированным монтажным проводом, рис. 10. Такой трансформатор представляет собой, фактически, преобразователь тока в напряжение. Если в процессе эксплуатации МУРЗ возникает необходимость в изменении входного номинального тока аналоговых входов с 1 А на 5 А (или наоборот), то сделать это очень просто путем намотки (или, наоборот, смотки) нескольких витков провода. Никаких проблем в эксплуатации этот узел МУРЗ обычно не создает и является самой надежной его частью.

В большинстве типов МУРЗ этот набор трансформаторов выполнен в виде отдельного модуля, хотя встречаются и конструкции, в которых в этом же модуле размещены входные фильтры, аналого-цифровые преобразователи, и другие элементы предварительной обработки аналоговых сигналов, рис. 11. 

В некоторых типах МУРЗ можно встретить миниатюрные тороидальные трансформаторы тока и напряжения капсулированные эпоксидным компаундом, рис. 12. Такая конструкция лучше защищена от воздействия влаги, но отвод тепла в ней затруднен. Кроме того, она является неремонтопригодной и в ней не возможно изменить коэффициент трансформации. Следует иметь ввиду, что при кажущейся более высокой надежности такой конструкции, ее реальная эксплуатационная надежность может быть даже ниже, чем у обычного не капсулированного трансформатора. Это связано не только с затрудненным отводом тепла, но и с внутренними механическими напряжениями в обмотках, возникающими в процессе отверждения и усадки эпоксидного компаунда. Такого рода проблемы проявляются, обычно, при наличии многовитковых обмоток, намотанных тонким проводом (как в трансформаторах напряжения).

В. ГУРЕВИЧ, канд. техн. наук

Защита и автоматика асинхронного двигателя 6(10) кВ

Защиты и автоматика асинхронного двигателя 6(10) кВ

В данной статье мы разберем РЗА стандартного асинхронника малой и средней мощности, т.е. такого, где по нормам не требуется продольной дифференциальной защиты (ДЗТ, ДТО).

Согласно ПУЭ дифф. защита требуется для двигателей мощностью 5 МВт и выше, либо для двигателей 2 МВт и выше, если обычная токовая отсечка оказывается нечувствительной. Такие двигатели мы рассмотрим в следующей статье.

Кроме того, мы не будем касаться каких-то специальных защит вроде защиты от колебаний нагрузки (помпажа) или минимальной токовой защиты. Они нужны далеко не везде и начинающему специалисту не стоит делать упор на их изучении. Это позже.

Токовая отсечка (МТЗ)

По сути это стандартная МТЗ, которая отстраивается от максимального тока двигателя и работает без выдержки времени. Но в ПЭУ и технической литературе ее почему-то упорно называют отсечкой. Почему именно — я сказать не могу, но давайте придерживаться общепринятого обозначения.

Отсечка — это основная защита двигателя потому, что защищает весь двигатель и срабатывает быстрее остальных защит. Отстраивается от тока самозапуска двигателя с учетом апериодики. Выполняется без выдержки времени.

Защита от перегрузки

Защищает двигатель от длительных симметричных перегрузок, которые могут возникнуть по технологическим причинам или при снижении напряжения сети. Работает на измерении фазных токов (одного и более). Выполняется с выдержкой времени, на сигнал или отключение двигателя (в зависимости от условий работы)

Это простая и надежная защита, но она не учитывает температуру окружающей среды и полученный двигателем тепловой импульс от токов нормального режима (когда защита не пускается). Для устранения данных недостатков в микропроцессорных защитах используют тепловую модель двигателя

Защита по тепловой модели

Это еще один вариант защиты от перегрузок, только более технологичный. Основная опасность при перегрузке двигателя — это перегрев обмоток статора. Если температуру обмоток нельзя измерить непосредственно, при помощи термозондов, то пытаются предсказать температуру двигателя по заранее заданной характеристике.

Эта характеристика учитывает постоянные времени нагрева и охлаждения конкретного типа двигателей и эквивалентный ток, который состоит из геометрической суммы фазного тока и тока обратной последовательности с различными коэффициентами.

В общем алгоритм сложный, расчет уставок сложный, найти исходники на двигатель еще сложнее. Но если все получается, то вы сможете защищать двигатель от перегрузки более эффективно, чем в случае использовать максимальной токовой защиты

Защита по тепловой модели имеет несколько ступеней — на сигнализацию и на отключение. После достижения определенной точки перегрева на характеристике защита блокирует дальнейшие пуски на время охлаждения двигателя, с учетом его постоянной времени охлаждения.

Защита от неполнофазного режима

Защита на принципе замера токов обратной последовательности. Эти токи появляются при обрыве фазы/двух фаз или ослаблении контактого соединения.

В принципе эта защита полезна для любого присоединения, но для двигателя она особо важна потому, что токи обратной последовательности, даже при малом значении, разогревают двигатель. Напишите в комментариях если знаете “почему?”

Защита от блокировки ротора и затянутого пуска

По сути это одна защита, которая может различать пусковое и рабочее состояния двигателя. Делает она это при помощи фиксации начального тока статора, перед его увеличением.

Если увеличивается от нуля, то затянутый пуск. Если от номинального тока, то механическая блокировка ротора.

В общем это еще один тип защиты от перегрузки двигателя

Токовая защита от ОЗЗ

Стандартная функция работающая по 3Io, однако, при больших токах замыкания на землю, действует на отключение двигателя (ПУЭ п.5.3.48.)!

Если мощность двигателя до 2 МВт, то отключение следует производить мгновенно, при уровне токов ОЗЗ 10А и более. Если двигатель более 2 МВт, то при 5 А.

Как мы уже говорили ранее, ОЗЗ для двигателя — это очень опасное явление. Особенно при неустойчивых и близких замыканиях. Виной всему дуговые перенапряжения, возникающие при подобных анормальных режимах.

Защита минимального напряжения

Обычно применяется на неответственных двигателях, когда нужно их отключить для обеспечения самозапуска ответственных. Аналогична групповой ЗМН в ТН 6(10) кВ, только выполняется индивидуальной.

Если говорить прямо, то даже в асинхронном двигателе 6(10) кВ может быть просто куча разных защит, в том числе и технологических (вентиляция, давление масла и т.д.) Все зависит от технологического процесса, который он обслуживает. Рассматривать их все мы не будем, ограничимся только самыми базовыми.

В следующей статье рассмотрим РЗА синхронных двигателей 6(10) кВ большой мощности

На рисунке

Терминал защиты и автоматики двигателя 6(10) кВ типа БМРЗ-152-ЭД.

Разработчик НТЦ «Механотроника», www.mtrele.ru

Терминал содержит все перечисленные в статье защиты и автоматику

Технические параметры устройств РЗА серии БЗП

Номинальная частота переменного тока, Гц505050
Рабочий диапазон частоты переменного тока, Гц45-5545-5545-55
Количество входов, шт.По току334
По напряжению335
Для датчиков ДЗ23
ВСЕГO3812
Номинальный переменный ток цепей защиты от междуфазных замыканий, А1;51;51;5
Диапазон измерения токов в фазах, А, во вторичных величинах 0,05-500 0,05-500 0,05-500
Диапазон измерения токов ЗIо, А, во вторичных величинах0,05-1000,05-1000,05-100
Основная относительная погрешность измерения токов в фазах, %От 1 до 200 А±2±2±2
От 200 до 500 А±5±5±5
Основная относительная погрешность измерения токов, в диапазоне от 0,05-300, А, %±2±2±2
Термическая стойкость всех цепей тока защиты, не более,длительно202020
в течение 10с150150150
в течение 1с500500500
Потребляемая мощность всех цепей переменного тока, ВА/на фазу, не более0,10,10,1
Диапазон измерения напряжений, В0,5-2200,5-2200,5-220
Основная относительная погрешность измерения напряжений в диапазоне от 1 до 100В, %±2±2±2
Термическая стойкость цепей напряжения, длительно250250250
Потребляемая мощность цепей напряжения, ВА/на вход, не более0,150,150,15
Основная абсолютная погрешность измерения углов °, не более±1±1
Основная абсолютная погрешность измерения частоты сети, Гц, не более±0,01±0,01±0,01

% PDF-1.5 % 1 0 obj >>> endobj 2 0 obj > поток 2017-02-15T07: 20: 47-06: 00 2017-02-15T07: 20: 49-06: 00 2017-02-15T07: 20: 49-06: 00 Adobe InDesign CC 2017 (Macintosh) uuid: 264a14eb-017e-6340-b666-eed65cb4bd52 xmp.did: FA7F1174072068119300F01106648680 xmp.id:db0583da-70df-422e-ae67-06cc146e031c доказательство: pdf xmp.iid: 2742ec1e-173d-4fec-bdb9-46018220cc59 xmp.сделал: 69667305-e806-4cf9-8ffb-3b436b8f1116 xmp.did: FA7F1174072068119300F01106648680 дефолт

  • преобразованный из приложения / x-indesign в приложение / pdf Adobe InDesign CC 2017 (Macintosh) / 2017-02-15T07: 20: 47-06: 00
  • application / pdf Библиотека Adobe PDF 15.0 Ложь конечный поток endobj 3 0 obj > endobj 5 0 obj > endobj 6 0 obj > endobj 12 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0,0 612,0 792,0] / Тип / Страница >> endobj 13 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 612.0 792.0] / Type / Page >> endobj 14 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 612.0 792.0] / Type / Page >> endobj 15 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 612.0 792.0] / Type / Page >> endobj 16 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / Shading> / XObject >>> / TrimBox [0.0 0,0 612,0 792,0] / Тип / Страница >> endobj 17 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 612.0 792.0] / Type / Page >> endobj 18 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0.0 612.0 792.0] / Type / Page >> endobj 113 0 объект > поток HVOI ~ _R ​​[ӝtWVC9U # = ݙ dS7 = rjBtr} L4 [vQ @% [9G_ (4bTU ~ ‘U DΣf + sj uӤ.lTkh5) tRhuC4ŨG (! ZϞU \ & Dp + RE = QqMGS3pn ~ o ׇ ‘i6GGG $ ωjjN ~] Bm hB] 3t {? tgxӤ * lD9 0 \ ЂRÔf * 10% qw «/: = ⱆ X% {H.% M \ ZDQm + Y D? Q4 & \ D% X% dfnw9 ۍ ki l] Ŷ6

    .Реле защиты двигателя на базе микропроцессора

    , प्रोटेक्शन रिले, मोटर संरक्षण रिले — Deltoncontrol & Switchgears LLP, Бангалор


    О компании

    Юридический статус фирмы Партнерство

    Характер бизнеса Дистрибьютор / торговый партнер

    Участник IndiaMART с декабря 2013 г.

    GST29AAMFD3312Q1ZZ

    Delton Control and Switchgears , ведущий представитель и признанное имя на рынке электротехники, предлагает широкий ассортимент продукции, удовлетворяющий все потребности электротехнической промышленности.Форма собственности компании — ИП . Имея базу, расположенную по адресу Bengaluru, Karnataka (India) , мы успешно справились с задачами отрасли, предоставив им высшее качество. Мы обручены в , распространяя и , поставляя широкий спектр электрических распределительных устройств , шинопроводов, фаз, реле неисправностей, сигнализаторов аварий, трансформаторов тока, регуляторов уровня жидкости, многофункциональных счетчиков, устройств плавного пуска, частотно-регулируемых приводов и многих других.Мы добились значительного роста продаж и деловой репутации, о чем свидетельствует огромный скачок выручки. Компания не оставила камня на камне от использования возможностей, наряду с возможностями в индустрии программного обеспечения, удовлетворяя электрические требования других отраслей. Мы помогаем нашим предлагаемым диапазонам от лучших продавцов рынка. Наши продавцы производят продукты согласно нашим требованиям и требованиям. Далее, они поставляются по ведущим на рынке ценам. Мы обеспечиваем своевременную доставку продукции в места наших постоянных клиентов по всей стране.

    Видео компании

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.