Основные свойства металлов
Металлы обладают механическими, технологическими, физическими и химическими свойствами.
К физическим свойствам относятся: цвет, плотность, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании и фазовых превращениях;
к химическим — окисляемость, растворимость, коррозионная стойкость, жароупорность;
к механическим — прочность, твердость, упругость, вязкость, пластичность, хрупкость;
к технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.
Прочность — способность металла сопротивляться действию внешних сил, не разрушаясь.
Удельная прочность— отношение предела прочности к плотности.
Твердостью— называется способность тела противостоять проникновению в него другого тела.
Упругость— свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызывающих изменение формы (деформацию).
Вязкость— способность металла оказывать сопротивление ударным внешним силам. Вязкость — свойство обратное хрупкости.
Пластичность— свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил.
Современными методами испытания металлов являются механические испытания, химический, спектральный, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах.
Механические свойства. Первое требование, предъявляемое ко всякому изделию, — это достаточная прочность. Многие изделия, кроме общей прочности, должны обладать еще особыми свойствами, характерными для данного изделия. Например, режущие инструменты должны обладать высокой твердостью. Для изготовления режущих и других инструментов применяют инструментальные стали и сплавы, а для рессор и пружин — специальные стали, обладающие высокой упругостью.
Вязкие металлы применяют в тех случаях, когда детали при работе подвергаются ударной нагрузке.
Пластичность металлов дает возможность обрабатывать их давлением (ковать, прокатывать, штамповать).
Физические свойства. В авиа-, авто-, приборо-, и вагоностроении вес деталей часто является важнейшей характеристикой, поэтому сплавы алюминия и магния являются здесь особенно полезными.
Плавкостьиспользуется для получения отливок путем заливки расплавленного металла в формы. Легкоплавкие металлы (свинец) применяют в качестве закалочной среды для стали. Некоторые сложные сплавы имеют столь низкую температуру плавления, что расплавляются в горячей воде. Такие сплавы применяются для отливки топографических матриц, предохранителей в приборах пожарной безопасности.
Металлы с высокой электропроводностью(медь, алюминий) используют в электромашиностроении, в линиях электропередач, а сплавы с высоким электросопротивлением — для ламп накаливания, электронагревательных приборов.
Магнитные свойстваметаллов используются в электромашиностроении при производстве электродвигателей, трансформаторов в приборостроении (телефонные и телеграфные аппараты).
Теплопроводностьметаллов дает возможность равномерно нагревать их для обработки давлением, термической обработки, кроме того, она обеспечивает возможность пайки и сварки металлов.
Некоторые металлы имеют коэффициент линейного расширения, близкий к нулю; такие металлы применяют для изготовления точных приборов при сооружении мостов, путепроводов и др.
Химические свойства. Коррозионная стойкость особенно важна для изделий, работающих в химически активных средах (детали машин в химической промышленности). Для таких изделий используют сплавы с высокой коррозионной стойкостью — нержавеющие, кислотостойкие и жароупорные стали.
studfiles.net
Основные механические свойства металлов и сплавов, особенности их определения
Область применения металлов определяется их основными механическими свойствами. Выделяют много параметров, которые могут использоваться для определения качества стали. Механические свойства металлов и сплавов могут существенно отличаться, что связано с химическим составом, особенностями структуры и тем, была ли проведена термическая обработка. Рассмотрим все особенности механических свойств металлов подробнее.
Основные механические показатели
Металлы получили широкое применение благодаря тому, что могут обладать различными эксплуатационными характеристиками. Наибольшее распространение получили следующие:
- Твердость определяется несколькими методами при использовании соответствующей оснастки.
- Предел прочности учитывается при производстве различных деталей, которые на момент эксплуатации подвержены воздействию различных нагрузок.
- Упругость — способность металла или сплава возвращать свою форму после того, как на поверхность перестает воздействовать нагрузка. Металлы обладают относительно невысоким показателем упругости.
- Под ударной вязкостью понимают сопротивление материала воздействию ударных нагрузок. Учитывается при производстве деталей, на которые в дальнейшем будет оказываться переменная нагрузка.
- Ползучестью называют свойство металла или сплава к медленной пластичной деформации при воздействии нагрузок. Как правило, параметр проявляется при воздействии высокой температуры, когда начинает перестраиваться кристаллическая решетка.
- Выделяют и усталость металла. Эта характеристика указывает на то, как материал будет разрушаться при воздействии большого числа повторно-переменных нагрузок. Кроме этого, выделяют выносливость — способность материала выдерживать подобные нагрузки.
- Точка плавления. Металлы и сплавы могут переходить из твердого состояния в жидкое при воздействии высокой температуры. Плавка может проходить при различных показателях температуры, которые и называют точной плавления.
Рассмотрим некоторые наиболее важные механические показатели, которые указываются в технической литературе.
Твердость материала
Выделяют несколько методов определения этого показателя:
- По Бринеллю проводится определение твердости поверхности путем плавного увеличения оказываемой нагрузки. Для этого используется стальной шарик, который вдавливается под воздействием определенного давления. После проведения испытания проверяется диаметр отпечатка и высчитывается то, какая твердость у тестируемой поверхности. Измеряется твердость в HB .
- По Роквуллу тестирование проводится при использовании алмазного конуса стандартного типа. Кроме этого, подходит и шарик диаметром 1,588 мм из закаленной стали. По данному методу показатель твердости получается в определенных единицах измерения.
- По Виккурсу определяют твердость поверхности также при использовании специального алмазного наконечника. Выполнен он в виде пирамиды с четырьмя гранями. Как и при измерении по Бринеллю, на наконечник оказывается давление, после чего измеряется отпечаток и проводятся вычисления показателя твердости.
Высокая твердость часто определяет хрупкость структуры. Существует много различных методов повышения твердости поверхности, большая часть предусматривает выполнение термической и химической обработки.
Предел прочности
Под пределом прочности понимают величину, которая численно равна наибольшей нагрузке, приложенной к образу при растяжении, разделенной на площадь поперечного сечения. Указывается в кг/мм2.
К особенностям определения этого показателя можно отнести нижеприведенные моменты:
- Для проведения теста используется специальная разрывная машина.
- На момент прикладывания нагрузки может наблюдаться удлинение образца.
- В некоторый момент происходит скачок показателя на растяжение.
После достижения определенного показателя образец начинает удлиняться с большей скоростью. Для более точного определения предела прочности проводится создание графика, на котором и отмечается точка скачка скорости растяжения.
Предел текучести
Практически все металлы и сплавы могут находиться в двух основных агрегатных состояниях: жидком и твердом. Предел текучести — показатель, определяющий напряжение, при котором на момент деформации образца указатель нагрузки на применяемой разрывной машине остается неизменным. Этот показатель учитывается при изготовлении различных заготовок, которые в дальнейшем будут использоваться под нагрузкой.
tokar.guru
Химические свойства
Максим
Категория: Материаловедение
Просмотров: 10663
Химические свойства металлов и сплавов металлов
К ним относятся растворимость, окисляемость, коррозионная стойкость.
Способность металлов растворять различные элементы позволяет при повышенных температурах атомам вещества, окружающего поверхность металла, диффундировать внутрь него, создавая поверхностный слой измененного состава. При этой обработке изменяется не только состав, но и структура поверхностных слоев, а также часто и сердцевина. Такая обработка называется химико-термической.
Коррозия (лат. corrosio — разъедание) — разрушение твердых тел, вызванное химическими и электрохимическими процессами, развивающимися на поверхности тела при его взаимодействии с внешней средой.
Коррозионная стойкость — способность материалов сопротивляться коррозии.
У металлов и сплавов коррозионная стойкость определяется скоростью коррозии, т. е. массой материала, превращенной в продукты коррозии, с единицы поверхности в единицу времени либо толщиной разрушенного слоя в миллиметрах в год.
Коррозионная усталость — понижение предела выносливости металла или сплава при одновременном воздействии циклических напряжений и коррозионной среды.
Различают, по крайней мере, 3 формы коррозионного разрушения: равномерную, местную, межкристаллическую коррозию.
Равномерная коррозия разрушает металл, мало влияя на его механическую прочность. Она встречается у серебряного припоя (см. табл. 102).
Местная коррозия приводит к разрушению только отдельных участков металла и проявляется в виде пятен и точечных поражений различной глубины. Она возникает в случае неоднородной поверхности, при наличии включений или внутренних напряжений, при грубой структуре металла. Этот вид коррозии снижает механические свойства деталей.
Межкристаллическая коррозия характеризуется разрушением металла по границе зерен (кристаллов). При этом нарушается связь между кристаллами, и агрессивная среда, проникая вглубь, разрушает металл. Ей особенно подвержены нержавеющие стали.
Кристаллы (греч. Krystallos, первоначально — лед) — твердые тела, атомы или молекулы которых образуют упорядоченную периодическую структуру (кристаллическую решетку).
Кристаллы обладают симметрией атомной структуры, соответствующей ей симметрией внешней формы, а также анизотропией физических свойств (т. е. зависимостью свойств от формы и вида кристалла). Кристаллы — равновесное состояние твердых тел: каждому веществу, находящемуся при данных температуре и давлении, в кристаллическом состоянии соответствует определенная атомная структура. При изменении внешних условий структура кристаллов может измениться.
Химическая коррозия — взаимодействие металла с агрессивными средами, не проводящими электрического тока. Так, сильное нагревание железа в присутствии кислорода воздуха сопровождается образованием оксидов (окалины). Образующаяся окисная пленка может защищать металл от диффузии в него агрессивного агента.
В условиях полости рта металлы находятся во влажной среде ротовой жидкости. Последняя, являясь электролитом, создает условия для электрохимической коррозии металлических пломб, вкладок и других металлических протезов.
Добавить комментарий
stom-portal.ru