Металл похожий на алюминий – самый распространенный металл в земной коре :: SYL.ru

Содержание

самый распространенный металл в земной коре :: SYL.ru

Металлы – это группа простых веществ, которые обладают характерными металлическими свойствами. Некоторые из них ценятся выше золота за удивительные характеристики, которые позволяют использовать их в самых разных сферах. Многие металлы содержатся в составе земной коры в небольших количествах. Но сегодня мы рассмотрим, какой самый распространенный металл в земной коре.

Что мы знаем об алюминии?

Да, именно алюминий является наиболее распространным металлом. Он был открыт в 1825 году датским ученым Эрстедом. Однако еще за 500 лет до нашей эры люди использовали так называемые алюминиевые квасцы. Их применяли в качестве протравы при окрашивании тканей и дублении кожи.

Алюминий, похожий на серебро внешне, изначально ценился очень дорого. Это связано с тем, что его достаточно трудно получить в чистом виде. Да и о том, что это самый распространенный металл в земной коре, известно не было. В 19-м веке, в период с 1855 по 1890 год, удалось получить лишь 200 т чистого металла.

Однако сегодня геологи утверждают, что 8 % коры Земли состоят из алюминя. Он уступает по количеству содержания в земной коре лишь кислороду и кремнию. В свободном виде в природе не встречается.

Алюминий получил широкое применение в странах СССР благодаря разработкам ученых. Найденный метод получения алюминия давал неограниченные возможности для развития алюминиевой промышленности. На его основе активно изготавливали столовую утварь, которую каждый из нас видел на кухнях у бабушек. Первый спутник СССР также был изготовлен из сплава алюминия. Применяют его и в электротехнической промышленности (кабели, цоколи, конденсаторы).

Основные свойства алюминия

Самый распространенный металл в земной коре обладает целым рядом свойств, которые позволяют активно использовать его в составе металлоконструкций. Он легок, мягок и быстро поддается штамповке.

Алюминий обладает высокой коррозийной устойчивостью. При контакте с воздухом он покрывается пленкой, препятствующей его окислению. Он неядовит (если не попадает в организм в большом количестве), обладает высокой электро- и теплопроводностью. Именно он обеспечивает передачу электроэнергии на Земле.

Однако металл не отличается прочностью. Поэтому при изготовлении металлоконструкций зачастую используется сплав алюминия с другими металлами – медью, магнием. Такие сплавы называются дюралюминий.

Электропроводность металла можно сравнить с медью, но он дешевле, поэтому ему нашли более широкое применение. Один из немногих недостатков алюминия – его тяжело паять из-за прочной оксидной пленки. Кстати, он легко воспламеняется и если бы не эта оксидная пленка, он горел бы на воздухе.

Алюминий – драгоценный металл

Интересно, что в 19-м веке алюминий очень ценился. За килограмм металла просили около 3 000 франков. Поэтому ювелиры активно изготавливали украшения на его основе. Ведь металл легко поддается обработке, обладает красивым серебристым оттенком и позволяет придавать изделию любую форму.

Однако уже через несколько лет он стал падать в цене и вскоре вышел из моды. Многие алюминиевые драгоценности не пережили обесценивание металла. Сегодня они – большая редкость.

Совсем недавно алюминий стал главной темой выставки, организованной в Питтсбурге (штат Пенсильвания) в музее Карнеги. Интерес к нему появляется снова. Самый распространенный цветной металл в земной коре сегодня применяется в виде металлической пены. Это новейшая разработка, на основе которой можно изготавливать даже корабельные корпуса.

Вред алюминия

Еще в 1960 году ученые выяснили, что в мозге у людей, страдающих болезнью Альцгеймера, присутствует высокий уровень алюминия. Недавние исследования подтвердили, что металл вызывает ускоренное старение клеток мозга, становится причиной дегенеративных неврологических заболеваний. Низкая усвояемость алюминия дает ложное представление о его безопасности для организма. Но на самом деле длительный прием его небольших доз в конечном итоге вызывает отключение нейронов головного и спинного мозга.

Золото – самый часто встречающийся драгоценный металл

Золото является самым распространенным металлом в земной коре среди благородных. Когда-то людям были известны лишь 2 драгметалла – золото и серебро. Однако позже список расширился. Сегодня благородными являются платиновая группа металлов. В эту группу, помимо платины, входят также ее элементы – родий, осмий, рутений и иридий. Кстати, иридий – самый редкий металл в этой группе. Благородным признан и технеций, однако из-за радиоактивности его не включили в список драгоценных.

Золото, как и другие благородные металлы, обладает рядом уникальных свойств. Оно блестит на открытом воздухе, ему не вредит длительное пребывание в воде, а также воздействие щелочей и кислот, высоких температур. Золото легко поддается обработке, обладает высокой плотностью. Металл встречается в виде самородков, песка и в сочетании с другими элементами. Однако при этом золото уступает многим металлам по прочности и устойчивости. Сегодня это далеко не самый дорогой драгметалл. Цена его составляет $45 за 1 грамм.

www.syl.ru

АЛЮМИНИЙ . . . ТЯЖЕЛЕЕ?. Металл Века

АЛЮМИНИЙ . . . ТЯЖЕЛЕЕ?

Нет, алюминий не тяжелее титана. Напротив — в полтора раза легче. Но почему же в таком случае титановые детали используют вместо алюминиевых для облегчения самолета? Когда обычную сталь заменяют “легкой сталью”, это понятно, и никаких особенных разъяснений не требуется. Но алюминий … Если уж облегчать конструкцию, то, казалось бы, алюминий следует заменять более легким металлом. Но все объясняется иной причиной — высокой удельной прочностью титановых сплавов.

Каждый узел, каждая деталь самолета должны с гарантией выдерживать определенную нагрузку, быть достаточно прочными для этого. Есть поговорка: “Где тонко, там и рвется”, то есть, говоря иначе, заданная прочность обеспечивается определенной массой материала. Титан несколько тяжелее алюминия, но он и гораздо прочнее его, и для тех же деталей самолета титана требуется меньше, чем алюминия, стало быть, конструкция становится легче.

Благодаря использованию титана взамен алюминия массу самолета удается уменьшить на 20—25 процентов. А это чрезвычайно важно. Облегчить самолет — значит повысить его скорость, потолок и радиус действия, увеличить маневренность и грузоподъемность. Поэтому авиация заинтересована в использовании титана при изготовлении реактивных двигателей, кожухов камер сгорания, капотов, роторов турбин, деталей планера, колес — везде, где только возможно, вплоть до таких несложных изделий, как гайки и болты.

Подсчитано, что если при утяжелении конструкции масса самолета повышается всего на одну десятую, то чтобы сохранить неизменными все его прежние летные характеристики, необходимо настолько увеличить мощность двигателя, запас горючего, площадь крыла и т.п., что полетная масса самолета возрастает вдвое.

Каждый сэкономленный килограмм массы двигателя позволяет сберечь за счет облегчения фюзеляжа до десяти килограммов в общей массе самолета. Отсюда становится еще более понятным, как много значит каждый дополнительный килограмм массы, на который удается облегчить самолет благодаря применению титановых сплавов. В результате замены стали и алюминия титаном масса самолета снижается на сотни килограммов, а нередко и тонны. Крыло сверхзвукового военного самолета, целиком изготовленное из стали, имеет массу более двух тонн, титановое же крыло — чуть больше 1800 килограммов. В этом случае экономится 200—250 килограммов массы.

В самолетах применяется большое количество болтов, гаек, винтов, заклепок и других крепежных деталей, которые должны быть очень прочными и надежными. Казалось бы, что эти изделия незначительно утяжеляют конструкцию, так как масса каждого из них исчисляется граммами. Но если учесть, что число крепежных деталей в истребителе достигает 20 тысяч, а в транспортном реактивном самолете — почти 50 тысяч, то суммарная их масса составляет солидную цифру — около 100 килограммов в истребителе и 300 килограммов в транспортном самолете. Замена стали титаном уменьшает массу крепежных деталей на одну треть. Чем крупнее самолет, тем ощутимее замена. В гигантском военно-транспортном самолете США ”Локхид С-5А” благодаря использованию титановых заклепок взамен алюминиевых сэкономлено 3,5 тонны массы.

Большая, чем у алюминия, прочность титана позволила уменьшить диаметр заклепок, в результате чего конструкции самолета в состоянии нести более высокие динамические нагрузки, так как усталостная прочность титана выше, чем алюминия или стали.

Титановые сплавы применяют для изготовления каркаса фюзеляжа, шпангоутов, трубопроводов, элементов жесткости, лонжеронов. Замена титаном алюминиевых сплавов несколько снижает жесткость конструкции, так как применяют листы более тонкие, чем прежде. Чтобы сохранить высокую жесткость, используют “сотовые” титановые панели. Благодаря высокой сопротивляемости окислению и достаточной жаропрочности титан используют вместо стали для изготовления противопожарных перегородок.

В последнее время титан успешно применяют в конструкциях вертолетов. Из титановых сплавов изготовляют двери, пол, лопасти несущих винтов. В частности, обшивка титаном лопастей винтов позволяет снизить массу вертолета на 30 килограммов.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Алюминий | Мир металлов

Алюминий — первый и главный «летающий» металл. Предположение о том, что в глиноземе имеются соединения какого-то нового металла, впервые были высказаны в XVI в. Однако «годом рождения» алюминия считается 1825 г., когда датский ученый Х.К.Эрстед (1777—1851) получил из глинозема хлористый алюминий. Но чистый алюминий массой в 30 г был получен 22 октября 1827г. немецким химиком Ф. Велером (1800—1882), а промышленный способ получения был разработан усилиями французского химика А.-Э. Сент-Клер Девиля (1818—1881) и русского ученого акад. Н.Н.Бекетова (1827—1911).

Существует легенда о том, что еще в период Римской империи был известен белый легкий металл, полученный из «глинистой земли». Есть мнение, что жители легендарной Атлантиды знали металл, похожий по описанию на алюминий. А возможно, это тоже легенда, как и сама Атлантида? Предположения об использовании алюминия в глубокой древности есть и у археологов. Например, при раскопках древнего кургана в Китае была обнаружена гробница Чжау-Чжу — китайского полководца, жившего 1700 лет назад. Анализ материала орнамента гробницы показал, что это сплав, в состав которого входит 85 % алюминия, 10 % меди, 5 % магния. Невероятно, но факт!

Сплавы такого состава сегодня мы называем деформируемыми алюминиевыми и наша промышленность их выпускает более 38 марок. Уточнение одно — в современных сплавах на основе алюминия меди более 8,5 % не бывает. Наука доказала, что легирование деформируемых алюминиевых сплавов медью свыше 6—8 % не дает существенного повышения свойств. Очевидно, мы можем простить «ошибку» древним металлургам — очень давно это было и поэтому не могли они знать диаграмму состояния «А1 — СиА12», построенную в начале нашего, XX в. Как получили древние мастера такой сплав — пока загадка.

(Первые годы и даже десятилетия разработанные и освоенные методы производства алюминия не могли дать его в достаточном для промышленности количестве. За период с 1825 по 1886 гг. было получено всего 220 т алюминия. Требовались другие, нехимические, способы его производства.

Такой способ — электрический — был разработан в 1886 г. французским изобретателем П. Эру (1863—1914), а на способы обогащения глинозема, давшие увеличенный процент выхода алюминия, патенты в 1885 и 1888 гг. выданы инженеру химического завода в Петербурге К. И. Байеру. Это позволило к 1900 г. в 10—15 раз увеличить ежегодное производство алюминия.

Весь этот период (1825—1900 гг.) стоимость алюминия была выше или соизмерима со стоимостью золота. 1-1апример, на Всемирной выставке в Париже в 1855 г. алюминий выступал как металл для ювелирных изделий и демонстрировался под названием «глиний». Было продемонстрировано несколько кусочков алюминия общим весом около 1 кг, которые оценивались в 3000 франков, или 1200 р. золотом. Долгое время высокая цена не позволяла этому металлу войти в промышленное применение.

Известны случаи, которые сегодня воспринимаются нами как анекдотичные. На банкетах, чествованиях, торжественных приемах периода 1840—1860 гг., устраиваемых королями и императорами, для людей «королевской крови» на столы ставили приборы из алюминия, остальная знать пользовалась золотыми и серебряными ложками и вилками.

Началом промышленного применения алюминия можно считать 1865 г. В этом году была получена алюминиевая бронза, которая начала применяться в производстве подшипников, ручного огнестрельного оружия и пушек.

Однако о применении сплавов на основе алюминия не могло быть и речи: цены на алюминий были высоки, а прочность низка — в десять раз меньше прочности стали. Поиски методов упрочения привели немецкого ученого А.Вильма к открытию способности сплава алюминия и меди упрочняться после закалки в 2—3 раза. Произошло это в 1909 г., а в 1911 г. промышленность получила дюралюминий (от немецкого Duren — г. Дюрен, где было начато промышленное производство сплава, и алюминий) — сплав алюминия и меди (до 5,5 %). Тайна этого процесса, называемого старением, в настоящее время раскрыта. Оказывается, после закалки дюралюминия неустойчивая структура в течение 5—7 дней перестраивается с образованием зон, богатых медью, что приводит к искажению кристаллической структуры и повышению, как следствие, прочности.

Это обстоятельство дало алюминиевым сплавам «крылья» в прямом и переносном смысле. (Авиационная промышленность стала выпускать самолеты с фюзеляжем и плоскостями из дюралюминия. Так в 1919 г. алюминий стал первым «крылатым» металлом и в настоящее время трудно найти отрасль промышленности, где бы не применялись сплавы алюминия. Перспектива применения алюминия исключительна. Во первых, он обладает благоприятным комплексом свойств, во-вторых, это самый распространенный на земле металл. Ёго запасы практически неисчерпаемы (8,8 % от массы земной коры). Считают, что его ежегодное производство в недалеком будущем возрастет до 100 млн. Медные и железоуглеродистые сплавы во многих отраслях техники будут заменены сплавами на основе алюминия.

Каковы же основные достоинства, обеспечивающие столь уверенные перспективы? Прежде всего — высокое сопротивление коррозии. Это не значит, что алюминий, как драгоценные металлы, не окисляется. Окисляется и активно! Но окисная пленка, плотная и прочная, надежно предохраняет металл от дальнейшей коррозии. Далее, алюминий не боится отрицательной температуры, технологичен, отлично проводит электричество и передает тепло. Именно эти свойства помогли алюминию за 100 лет пройти путь от ювелирного до второго (после железа) по значению и производству конструкционного материала.

metalls.info

Алюминий: свойства, как добывают, сферы применения и прогноз по инвестициям в металл на 2018 год

Алюминий – один из самых распространенных металлов в земной коре. Обладает серебристо-белым окрасом, легкой массой и высокой электропроводностью. Плавится металл при температуре 660 °С. Среди плюсов отмечают низкую плотность, достаточно высокую прочность, отличную проводимость тепла, стойкость к коррозии. Благодаря этому алюминий считается одним самых важных технических металлов. Алюминиевые сплавы получают литейным, деформируемым и другими способами.

Исторические факты

Впервые об этом металле упоминается во времена римского императора Тиберия. Неизвестно, миф это или правда, но правителю в дар принесли чашу из очень легкого металла, визуально похожего на серебро. Испугавшись, что новый материал обесценит лежавшее в казне золото и серебро, он казнил изобретателя и уничтожил работы из алюминия. Заговорили вновь о легком серебристом металле спустя полторы тысячи лет. Известный немецкий врач и испытатель Парацельс фон Гогенгейм открыл алюминий в процессе исследования квасцовой земли. В то время её называли глиноземом.

Нахождение в природе

Одним из самых распространенных среди металлов считается алюминий. Он занимает 8,8 % всей массы земной коры. Его соединения – боксит, алюмосиликаты, корунд. Большую часть земной коры составляют алюмосиликаты. Боксит относится к горным породам, из которого добывают алюминий.

Практически весь металл алюминий в природе находится лишь в соединения. В редких случаях находят чистый металлический алюминий в очень маленьких количествах. Среди основных соединений стоит отметить такие:

  • Бокситы;
  • Нефелины;
  • Алуниты;
  • Глиноземы;
  • Корунд;
  • Полевые шпаты;
  • Каолинит;
  • Берилл;
  • Хризоберилл.

Также его находят в природных водах в форме низкотоксичных соединений, таких как фторид. Чистый алюминий включает только устойчивый изотоп 27 AI.

Как получают алюминий?

Химический элемент алюминий достаточно сложно получить в чистом виде. Для получения алюминия потребуется провести множество этапов по отделению его от других элементов. Как получают алюминий? Сам процесс состоит из нескольких этапов: измельчение бокситной руды и добыча глинозема, получение алюминия из него. Другими словами его называют кристаллической окисью алюминия, которую электролизуют в криолите. Температура плавления 960 — 970 °С. Для этой процедуры требуется большое количество электроэнергии, поэтому производство алюминия часто находится вблизи масштабных электростанций.

Новый волновой энергетический конвертер «Пингвин»: преобразование энергии волн в электроэнергию

Физические и химические свойства алюминия

Основные физические свойства алюминия заключаются в высокой теплопроводности, практически в два раза больше чем сталь. Кроме того он имеет плотность в три раза меньше, чем у железа и цинка. И ко всему этому стоит добавить высокую прочность  материала. Алюминий реагирует с такими веществами: медь, магний, кремний и другие.

Химические свойства алюминия:

  • Образование соединений ионного и ковалентного вида;
  • Высокая энергия ионизации;
  • Высокая плотность заряда наряду с катионами других подобных материалов;
  • Слабая подверженность коррозии;
  • Реакция с кислородом, галогенами, неметаллами, фтором, серой, азотом, углеродом, водой.

Где и как производят алюминий?

Добыча и производство алюминия в целом состоит из трех стадий. Первый и второй этапы – выработка бокситов и образование из них глинозема. На последнем из глинозема получают чистый материал в процессе электролиза. На 4-5 тонн алюминийсодержащей руды приходится 2 глинозема и 1 алюминий.

Добыча алюминия в мире может производиться из других алюминиевых руд, но самыми распространенными считаются бокситы. Основа их — оксид алюминия и других минералов. Качество определяется высоким содержанием металла. Общий мировой запас алюминиевых руд составляет более 18 миллиардов тонн. Учитывая теперешнюю добычу алюминия в мире по странам, его должно хватит более чем на один век.

Большая часть бокситов находится в странах с тропическим поясом. Только 73 % приходится на Индию, Гвинею и Австралию. Больше всего бокситов сосредоточено в Гвинее. Они имеют высокое качество и минимум минеральных примесей. По подсчетам 2014 года отмечают такие страны — лидеры по добыче алюминия: Китай, Австралия, Бразилия, Гвинея, Индия, Ямайка, Россия и Казахстан.

Свойства никеля. Способы получения, где добывают, динамика курса

Как правило, добыча алюминия осуществляется открытым методом. При помощи специального оборудования убирают слой земной коры, которая перевозится для следующего этапа переработки. Есть точки добычи руды с глубоким залеганием. Для получения ее приходится сооружать шахты. Самая глубокая шахта находится в России. Глубина ее составляет 1550 метров.

Россия по добыче алюминия находится на 7 месте мирового рейтинга. В этой стране существует более пятидесяти месторождений. Одним из самых старых считается Радынское, находящееся в Ленинградской области. Среди всех мест добычи алюминия в России выделяют «Красную шапочку», Кальинское, Ново-Кальинское в Североуральске, Черемузовское в Свердловской области. Наша страна славится также большим разнообразием заводов-производителей металла. Наиболее крупным в России и не только является «Русал», который производит более  3 миллионов тонн металла.

Интересные факты

Этот металл имеет такие особенности:

  • Его соединения существуют не только на нашей планете, но и на Луне и Марсе;
  • В организме человека имеется более 100 мг алюминия;
  • Суточная необходимость в нем составляет 2, 4 мг;
  • Больше всего химического элемента находится в яблоках;
  • Первый слиток чистого металла был произведен в 1932 году.

Сферы применения металла

Алюминий получил широкое применение в качестве конструкционного материала. Главные преимущества его – легкая масса, гибкость штамповки, устойчивость к коррозии, высокий уровень тепло или электропроводности, нетоксичность соединений. Именно эти достоинства привели к его широкому использованию в производстве посуды для кухни, упаковочной тары и фольги для пищевой отрасли.

Говоря о недостатках, следует в первую очередь отметить невысокую прочность. Поэтому в алюминий стали добавлять малую долю меди и магния. Также материал успешно применяется в производстве электротехники, поскольку его электропроводность на высоком уровне. Единственный минус – сложность пайки из-за прочной оксидной пленки.

Урановая руда: свойства, применение, добыча

Легкий металл используется в разных видах транспорта. В сфере авиации он является главным конструкционным материалом.  Применение алюминия коснулось и область судостроения. При помощи сплавов из него производят корпусы, палубы и оборудование для суден.

Применение в качестве восстановителя

Алюминий успешно применяется в качестве восстановителя. Алюминиевое восстановление металлов достаточно распространено. Выплавка алюминия позволяет восстанавливать редкие виды металлов. Также его применяют для пиротехники.

Виды сплавов

Для производства конструктивных материалов требуется большая прочность. Алюминий таковой не обладает, поэтому его соединяют с другими химическими элементами в меньшем количестве. Самые распространенные сплавы:

  1. Алюминиево-магниевые. Отличаются высокой прочностью, гибкостью, устойчивостью к коррозии, вибростойкостью и свариваемостью. Процент магний в сплавах составляет не более 6 %.
  2. Алюминиево-марганцевые. Обладают также высокой прочностью, пластичностью, неподверженностью коррозии и свариваемостью.
  3. Алюминиево-медные. Одни из самых высокотехнологичных. Улучшенный вариант низкоуглеродистых сталей. Существенный минус – подверженность коррозии.

Алюминий в ювелирных изделиях

Особенную ценность представлял металл во времена Наполеона III. В тот период из него изготавливали ювелирные изделия, пуговицы, посуду. Ее оценивали наряду с золотой и серебряной. Но спрос на драгоценности из алюминия быстро прошел, после того как возникли новые возможности его добычи.

Другие сферы применения

Скульптура из алюминия

Легкий металл используют в разных отраслях, в том числе военной промышленности. Это как правило касается оружейного производства. Также известно его применение в ракетной технике в качестве твердого топлива и горючих компонентов.

Токсичность металла

Хотя алюминий очень распространен в мире, живые существа не используют его из-за небольшой токсичности. Соединения его долгое время оказывают вредное действие на людей и животных. Наибольшее влияние оказывают ацетат и гидроксид алюминия. Они воздействуют негативным образом на нервную систему и выделительную функцию организма.

Палладий — надежная инвестиция в ваше будущее!

Алюминий в инвестициях

В настоящее время выгодно инвестировать деньги в алюминий. Динамика цен на алюминий в 2018 году колеблется до 2, 562 доллара за тонну. Такой рост обусловлен множеством санкций и последствиями их. Цены на алюминий на бирже в апреле-мае не достигали выше 2,280 долларов.

promdevelop.ru

Самый распространенный металл на Земле • Наука

Самый распространенный металл на Земле

Как ни странно – алюминий

Самым распространенным металлом на земле является алюминий. Алюминий (лат. Aluminium), Al – химический элемент III группы периодической системы Менделеева. Атомный номер 13, атомная масса 26,9815. Серебристо-белый легкий металл. Состоит из одного стабильного изотопа 27Al.

Историческая справка

Название Алюминий происходит от лат. alumen – так еще за 500 лет до н. э. назывались алюминиевые квасцы, которые применялись как протрава при крашении тканей и для дубления кожи. Датский ученый X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl3 и затем отгоняя ртуть, получил относительно чистый Алюминий. Первый промышленный способ производства Алюминия предложил в 1854 французский химик А. Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида Алюминия и натрия Na3AlCl6 металлическим натрием. Похожий по цвету на серебро, Алюминий на первых порах ценился очень дорого. С 1855 по 1890 годы было получено всего 200 т Алюминия. Современный способ получения Алюминия электролизом криолитоглиноземного расплава разработан в 1886 году одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.

Распространение Алюминия в природе

По распространенности в природе Алюминий занимает 3-е место после кислорода и кремния и 1-е – среди металлов. Его содержание в земной коре составляет по массе 8,80% . В свободном виде Алюминий в силу своей химической активности не встречается. Известно несколько сотен минералов Алюминия, преимущественно алюмосиликатов. Промышленное значение имеют боксит, алунит и нефелин. Нефелиновые породы беднее бокситов глиноземом, но при их комплексном использовании получаются важные побочные продукты: сода, поташ, серная кислота. В СССР разработан метод комплексного использования нефелинов. Нефелиновые руды в СССР образуют, в отличие от бокситов, весьма крупные месторождения и создают практически неограниченные возможности для развития алюминиевой промышленности.

Физические свойства Алюминия

Алюминий сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддается ковке, штамповке, прокатке, волочению. Алюминий хорошо сваривается газовой, контактной и других видами сварки. Решетка Алюминия кубическая гранецентрированная с параметром а = 4,0413 Å. Свойства Алюминий, как и всех металлов, в значит, степени зависят от его чистоты. Свойства Алюминия особой чистоты (99,996%): плотность (при 20°С) 2698,9 кг/м3; tпл 660,24°С; tкип около 2500°С; коэффициент термического расширения (от 20° до 100°С) 23,86·10-6; теплопроводность (при 190°С) 343 вт/м·К [0,82 кал/(см·сек·°С)], удельная теплоемкость (при 100°С) 931,98 дж/кг·К. [0,2226 кал/(г·°С)]; электропроводность по отношению к меди (при 20 °С) 65,5%. Алюминий обладает невысокой прочностью (предел прочности 50-60 Мн/м2), твердостью (170 Мн/м2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности Алюминия возрастает до 115 Мн/м2, твердость – до 270 Мн/м2, относительное удлинение снижается до 5% (1 Мн/м2~ и 0,1 кгс/мм2). Алюминий хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, Алюминий на воздухе покрывается тонкой, но очень прочной пленкой оксида Al2О3, защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность оксидной пленки и защитное действие ее сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. Алюминий стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной кислотой, с органических кислотами, пищевыми продуктами.

Химические свойства Алюминия

Внешняя электронная оболочка атома Алюминия состоит из 3 электронов и имеет строение 3s21. В обычных условиях Алюминий в соединениях 3-валентен, но при высоких температурах может быть одновалентным, образуя так называемых субсоединения. Субгалогениды Алюминия, AlF и АlСl, устойчивые лишь в газообразном состоянии, в вакууме или в инертной атмосфере, при понижении температуры распадаются (диспропорционируют) на чистый Аl и AlF3 или АlСl3 и поэтому могут быть использованы для получения сверхчистого Алюминия. При накаливании мелкоизмельченный или порошкообразный Алюминий энергично сгорает на воздухе. Сжиганием Алюминия в токе кислорода достигается температура выше 3000°С. Свойством Алюминия активно взаимодействовать с кислородом пользуются для восстановления металлов из их оксидов (Алюминотермия). При темно-красном калении фтор энергично взаимодействует с Алюминием, образуя AlF3. Хлор и жидкий бром реагируют с Алюминием при комнатной температуре, иод – при нагревании. При высокой температуре Алюминий соединяется с азотом, углеродом и серой, образуя соответственно нитрид AlN, карбид Al4C3 и сульфид Al2S3. С водородом Алюминий не взаимодействует; гидрид Алюминия (AlН3)X получен косвенным путем. Большой интерес представляют двойные гидриды Алюминия и элементов I и II групп периодической системы состава МеНn·nAlH3, так называемые алюмогидриды. Алюминий легко растворяется в щелочах, выделяя водород и образуя алюминаты. Большинство солей Алюминия хорошо растворимо в воде. Растворы солей Алюминия вследствие гидролиза показывают кислую реакцию.

Получение Алюминия

В промышленности Алюминий получают электролизом глинозема Аl2О3, растворенного в расплавленном криолите NasAlF6 при температуре около 950° С. Используются электролизеры трех основных конструкций: 1) электролизеры с непрерывными самообжигающимися анодами и боковым подводом тока, 2) то же, но с верхним подводом тока и 3) электролизеры с обожженными анодами. Электролитная ванна представляет собой железный кожух, футерованный внутри тепло- и электро-изолирующим материалом – огнеупорным кирпичом, и выложенный угольными плитами и блоками. Рабочий объем заполняется расплавленным электролитом, состоящим из 6-8% глинозема и 94-92% криолита (обычно с добавкой AlF3 и около 5-6% смеси фторидов калия и магния). Катодом служит подина ванны, анодом – погруженные в электролит угольные обожженные блоки или же набивные самообжигающиеся электроды. При прохождении тока на катоде выделяется расплавленный Алюминий, который накапливается на подине, а на аноде – кислород, образующий с угольным анодом CO и CO2. К глинозему, основному расходуемому материалу, предъявляются высокие требования по чистоте и размерам частиц. Присутствие в нем оксидов более электроположительных элементов, чем Алюминий, ведет к загрязнению Алюминия. При достаточном содержании глинозема ванна работает нормально при электрическом напряжении порядка 4-4,5 В. Ванны присоединяют к источнику постоянного тока последовательно (сериями из 150-160 ванн). Современные электролизеры работают при силе тока до 150 кА. Из ванн Алюминий извлекают обычно с помощью вакуум-ковша. Расплавленный Алюминий чистотой 99,7% разливают в формы. Алюминий высокой чистоты (99,9965%) получают электролитическим рафинированием первичного Алюминия с помощью так называемых трехслойного способа, снижающего содержание примесей Fe, Si и Сu. Исследования процесса электролитического рафинирования Алюминия с применением органических электролитов показали принципиальную возможность получения Алюминий чистотой 99,999% при относительно низком расходе энергии, но пока этот метод обладает низкой производительностью. Для глубокой очистки Алюминий применяют зонную плавку или дистилляцию его через субфторид.

Применение Алюминия

При электролитическом производстве Алюминия возможны поражения
электрическим током, высокой температурой и вредными газами. Для
избежания несчастных случаев ванны надежно изолируют, рабочие пользуются
сухими валенками, соответствующей спецодеждой. Здоровая атмосфера
поддерживается эффективной вентиляцией. При постоянном вдыхании пыли
металлического Алюминия и его оксида может возникнуть алюминоз легких. У
рабочих, занятых в производстве Алюминия, часты катары верхних
дыхательных путей (риниты, фарингиты, ларингиты). Предельно допустимая
концентрация в воздухе пыли металлического Алюминий, его оксида и
сплавов 2 мг/м3.

Сочетание физических, механических и химических свойств Алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с других металлами. В электротехнике Алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость Алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из Алюминий вдвое меньше медных). Сверхчистый Алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности оксидной пленки Алюминия пропускать электрический ток только в одном направлении. Сверхчистый Алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа АIII BV,применяемых для производства полупроводниковых приборов. Чистый Алюминий используют в производстве разного рода зеркальных отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, Алюминий применяется как конструкционный материал в ядерных реакторах.

В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т. д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют в оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделий. Резко возросло потребление Алюминий для отделки зданий, архитектурных, транспортных и спортивных сооружений.

Алюминий в металлургии

В металлургии Алюминий (помимо сплавов на его основе)- одна из самых распространенных легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют Алюминий также для раскисления стали перед заливкой ее в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе Алюминия методом порошковой металлургии создан САП (спеченный алюминиевый порошок), обладающий при температурах выше 300°С большой жаропрочностью.

Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения Алюминия.

Производство и потребление Алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.

Геохимия Алюминия

Геохимические черты Алюминия определяются его большим сродством к кислороду (в минералах Алюминий входит в кислородные октаэдры и тетраэдры), постоянной валентностью (3), слабой растворимостью большинства природных соединений. В эндогенных процессах при застывании магмы и формировании изверженных пород Алюминий входит в кристаллическую решетку полевых шпатов, слюд и других минералов – алюмосиликатов. В биосфере Алюминий- слабый мигрант, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органических кислот, Алюминий мигрирует в почвах и водах в виде органоминеральных коллоидных соединений; Алюминий адсорбируется коллоидами и осаждается в нижней части почв. Связь Алюминия с кремнием частично нарушается и местами в тропиках образуются минералы – гидрооксиды Алюминия- бемит, диаспор, гидраргиллит. Большая же часть Алюминия входит в состав алюмосиликатов – каолинита, бейделлита и других глинистых минералов. Слабая подвижность определяет остаточное накопление Алюминия в коре выветривания влажных тропиков. В результате образуются элювиальные бокситы. В прошлые геологические эпохи бокситы накапливались также в озерах и прибрежной зоне морей тропических областей (например, осадочные бокситы Казахстана). В степях и пустынях, где живого вещества мало, а воды нейтральные и щелочные, Алюминий почти не мигрирует. Наиболее энергична миграция Алюминия в вулканических областях, где наблюдаются сильнокислые речные и подземные воды, богатые Алюминием. В местах смещения кислых вод с щелочными – морскими (в устьях рек и других), Алюминий осаждается с образованием бокситовых месторождений.

Алюминий в организме

Алюминий входит в состав тканей животных и растений; в органах млекопитающих животных обнаружено от 10-3 до 10-5% Алюминия (на сырое вещество). Алюминий накапливается в печени, поджелудочной и щитовидной железах. В растительных продуктах содержание Алюминия колеблется от 4 мг на 1 кг сухого вещества (картофель) до 46 мг (желтая репа), в продуктах животного происхождения – от 4 мг (мед) до 72 мг на 1 кг сухого вещества (говядина). В суточном рационе человека содержание Алюминия достигает 35-40 мг. Известны организмы – концентраторы Алюминия, например, плауны (Lycopodiaceae), содержащие в золе до 5,3% Алюминия, моллюски (Helix и Lithorina), в золе которых 0,2-0,8% Алюминия. Образуя нерастворимые соединения с фосфатами, Алюминий нарушает питание растений (поглощение фосфатов корнями) и животных (всасывание фосфатов в кишечнике).

По материалам chem100.ru

samogoo.net

Как отличить лом меди в домашних условиях

У большинства из нас знания о меди и ее свойствах ограничиваются школьным курсом химии, что на бытовом уровне вполне достаточно. Однако иногда возникает необходимость достоверно определить, является ли материал чистым элементом, сплавом или даже композитным материалом. Мнение, что эта информация нужна лишь тем, кто занимается приемом или сдачей металлолома, ошибочно: к примеру, на форумах радиолюбителей и очень часто поднимаются темы, как отличить медь в проводах от омедненного алюминия.

Коротко об элементе №29

Чистая медь (Cu) – золотисто-розовый металл, обладающий высокой пластичностью, тепло- и электропроводностью. Химическую инертность в обычной неагрессивной среде обеспечивает тончайшая оксидная пленка, которая придает металлу интенсивный красноватый оттенок.

Главное отличие меди от других металлов – окраска. На самом деле окрашенных металлов не так много: внешне похожи лишь золото, цезий и осмий, а все элементы, входящие в группу цветных металлов (железо, олово, свинец, алюминий, цинк, магний и никель) обладают серым цветом с различной интенсивностью блеска.

Абсолютную гарантию химического состава любого материала можно получить лишь с помощью спектрального анализа. Оборудование для его проведения очень дорогое, и даже многие экспертные лаборатории могут о нем лишь мечтать. Однако, существует немало способов, как отличить медь в домашних условиях с высокой долей вероятности.

1. Определение по цвету

Итак, перед нами кусок неизвестного материала, который необходимо идентифицировать как медь. Упор на термин «материал», а не «металл», сделан специально, так как в последнее время появилось немало композитов, которые по внешним признакам и тактильным ощущениям очень похожи на металлы.

В первую очередь рассматриваем цвет. Это желательно делать при дневном свете или «теплом» светодиодном освещении (под «холодными» светодиодами красноватый оттенок меняется на желто-зеленый). Идеально, если для сравнения есть медная пластинка или проволока – в этом случае ошибка в цветовосприятии практически исключена.

Важно: старые медные изделия могут быть покрыты окислившимся слоем (зеленовато-голубым рыхлым налетом): в этом случае цвет металла нужно смотреть на срезе или спиле.

2. Определение магнитом

Совпадение по цвету – достоверный, но не достаточный способ идентификации. Вторым шагом самостоятельных экспериментов будет проба с магнитом. Химически чистая медь относится к диамагнетикам – т.е. к веществам, не реагирующим на магнитное воздействие. Если исследуемый материал притягивается к магниту, то это – сплав, в котором содержание основного вещества не более 50%. Однако, даже если образец не среагировал на магнит, радоваться рано, поскольку нередко под медным покрытием спрятана алюминиевая основа, которая тоже не магнитится (исключить подобное можно с помощью надпиливания или среза).

3. Определение по реакции на пламя

Еще один способ распознать медь – раскалить образец на открытом огне (газовая плита, зажигалка или обычная спичка). Медная проволока при накаливании сначала потеряет блеск, а затем окрасится в черно-бурый цвет, покрывшись оксидом. Этим способом можно отсечь и композитные материалы, которые при накаливании начинают дымить с образованием газа с резким запахом.

4. Определение посредством химических экспериментов

Показательной является реакция с концентрированной азотной кислоты: если последнюю капнуть на поверхность медного изделия, произойдет окрашивание в зелено-голубой цвет.

Качественной реакцией на медь является растворение в соляной кислоте с последующим воздействием аммиаком. Если медный образец оставить в растворе HCl до полного или частичного растворения, а потом капнуть туда обычный аптечный нашатырный спирт, раствор окрасится в интенсивно синий цвет.

Важно: работа с химическими реактивами требует соблюдения мер предосторожности. Самостоятельные эксперименты нужно проводить в хорошо проветриваемом помещении с применением средств индивидуальной защиты (резиновые перчатки, фартук, очки).

Как различить медь и сплавы на ее основе?

В промышленности широко распространены медные сплавы. За многие годы исследований удалось получить немало материалов с уникальными свойствами: высокой пластичностью, электропроводностью, химической стойкостью, прочностью (все зависит от легирующих добавок). Самыми распространенными являются бронзы (с добавкой олова, алюминия, кремния, марганца, свинца и бериллия), латуни (с добавлением 10-45% цинка), а также медно-никелевые сплавы (нейзильбер, мельхиор, копель, манганин).

Сложность в плане идентификации представляют лишь бронзы и латуни, поскольку медно-никелевые сплавы значительно отличаются цветом из-за низкого содержания меди.

Медь или латунь?

В латуни может содержаться от 10 до 45% цинка – металла серебристо-серого цвета. Естественно, чем больше цинка, тем бледнее сплав. Однако, высокомедные латуни, в которых количество добавок не превышает 10%, мало отличаются по цвету от медного образца. В этом случае остается лишь доверять своим ощущениям: латунь намного тверже, труднее поддается изгибу (для большей достоверности желательно сравнение с эталонным образцом). Можно попробовать снять стружку: медная будет иметь форму завитка, латунная – прямолинейную, игольчатую. При помещении образцов в раствор соляной кислоты реакции с медью не наблюдается, а на поверхности латуни образуется белый налет хлорида цинка.

Медь или бронза?

Как и латуни, бронзы гораздо прочнее, что объясняется присутствием в сплаве более твердых металлов. Самой достоверной будет проба «на зубок» – на поверхности бронзы вряд ли останется след от надавливания.

Можно также поэкспериментировать с горячим солевым раствором (200 г поваренной соли на 1 литр воды). Медный образец через 10-15 минут приобретет более интенсивный оттенок, чем бронзовый.

Для тех, кто знаком с электротехникой

Очень часто в качестве лома цветных металлов сдаются медные жилы от электрических кабелей, и нередки случаи, когда при производстве электротехнической продукции используется медненый алюминий. Этот материал имеет значительно меньшую плотность, но из-за неправильной геометрической формы определить объем для расчета плотности довольно сложно. В этом случае определить медь можно по электрическому сопротивлению (естественно, при наличии соответствующих приборов – вольтметра, амперметра, реостата). Измеряем сечение и длину жилы, снимаем показания приборов, и – закон Ома вам в помощь. Удельное сопротивление – достаточно точная характеристика, по которой можно с высокой долей достоверности идентифицировать любой металл.

Заключение

Точно определить качество медного лома или содержание основного вещества в сплаве можно только после проведения экспертизы: все вышеприведенные методы являются приблизительными. Если рассматривать ценообразование при покупке металлолома, то дороже всего стоит электротехническая медь, самые дешевые – сплавы латунной группы. Окончательную стоимость сделки можно уточнить у менеджеров компаний, занимающихся скупкой лома цветных металлов.

blizkolom.ru

Металл похожий на золото и его свойства

В этой статье:

Золото завоевало свою популярность своими ценными свойствами, красотой и великолепием. Особенно оно популярно в ювелирном производстве. Но к сожалению, сейчас делают очень много подделок, которые визуально и по различным характеристикам напоминают золото. Металл похожий на золото можно получить в результате различных сплавов, которые сложно отличить внешне.

Как получить металл схожий с золотом?

Для того чтобы получить металл с оттенком и блеском золота чаще всего используют сплав меди, цинка, алюминия, серебра, олова. Больше всего похож на золото сплав золота и серебра использованных в пропорциях 50х50. Его называют «нюрнбергское золото». Так называемое американское золото из сплава меди, в который добавляют нашатырь, магнезию, винный камень, известь. Одними из сплавов, которые преподносят в виде золота являются:

  • Алюминиевая бронза. Сплав меди и алюминия, который дает золотистый оттенок. Сплав устойчив к коррозии, имеет антифрикционные свойства. Бронза отличается хрупкостью и ломкостью, поэтому ажурные изделия из нее не делают.
  • Томпак и пинчбек. Внешне похожий на золото сплав меди и цинка. Не поддается коррозии, отличается износостойкостью, пластичностью. Известен под названием «английское золото». Применяется для изготовления украшений, бижутерии.
  • Электрон. Сплав серебра и золота. Из него в давние времена делали монеты. Он имеет золотистый, желтоватый цвет. Спав твердый, отличается износостойкостью, большой плотностью.
  • Ауфор. Сплав меди и алюминия в пропорциях 90:10.
  • Айха. Сплав железа, цинка и меди, отличается твердостью, почти не окисляется.
  • Батбронза. Это сплав бронзы с оловом, который используют для художественно-промышленных изделий.
  • Мангеймское золото имеет золотистую окраску, оно сплавлено из меди, цинка и олова. Внешне напоминает золото.
  • Симилор. Металл сделан из сплава цинка, меди и олова.
  • Дюраметалл имеет золотисто-желтый цвет, который напоминает золото. В состав входит сплав цинка, меди и алюминия.
  • Платинор. Сплав с золотистым оттенком изготовлен из меди, цинка, платины, серебра, никеля.
  • Орайде. Этот сплав применяется для изготовления недорогих ювелирных украшений, художественных, галантерейных изделий. Он состоит из цинка, меди, олова и иногда железа.
  • Накладное золото. Получается путем сплава меди с драгоценным металлом. Оно используется для корпуса часов.
  • Мозаичное золото. Сплав цинка и меди имеет цвет самородного золота.
  • Musiv. Сульфитное олово с оттенком золота, используется для золочения, не чернеет со временем и не разъедается серой.
  • Голдин. Сплав меди и алюминия. Часто используется для изготовления недорогих ювелирных украшений в Германии. Не имеет общих с золотом характеристик, но очень похож внешне.
  • Гамельтонметалл. Сплав меди и цинка золотистого оттенка, который применяется для золочения.
  • Вермей — это серебро, которое обрабатывают огнем, в результате чего оно приобретает золотой цвет. Для того чтобы получить вермей, используют серебро 925-й пробы. Украшения из вермея считаются драгоценными, а не бижутерией. Доступны в цене. Зачастую, используя вермей, изготовители копируют дизайн украшений из золота. Вермей набирает популярность. Минусом является то, что из-за окисления серебра со временем могут образоваться потемнения. Но с помощью очистки можно вернуть ему прежний вид.
  • Бельгика. Одной из подделок является сплав никеля, железа и хрома. Ничего схожего с драгоценным металлом он не имеет.
  • Золотая фольга. Применяется для позолоты.
  • Палакарт. Сплав палладия, золота и серебра, который по цвету напоминает платину.

Пирит похож на золото

Как распознать подделку?

Поскольку сейчас очень много подделок, которые внешне очень напоминают золото, при покупке покажите их специалисту. Если его нет, то посмотрите пробу и массу в каратах. Хотя этот метод не всегда поможет, так как сейчас ставят пробы и на поддельных украшениях. Осмотрите изделие, если вы увидите потертости на краях и если это подделка, то можно заметить другой металл.

С давних времен золото проверяли на зуб: если его слегка прикусить — на нем останутся следы, а на подделке — нет, разве что в сплав добавлен свинец. Если положить золото в тарелку с уксусом, подделка сразу потемнеет. Также можно проверить и с помощью йода: если им капнуть на украшение, то подделка потемнеет, золотое украшение вид не поменяет. Есть специальный карандаш в медицине, если им провести по изделию, фальшивка потемнеет. Некоторые подделки можно выявить с помощью магнита.

Для того чтобы не поддаться на уловки мошенников, приобретайте золото в магазинах с хорошей репутацией или проверенных. Избегайте покупать украшения в переходах, ларьках, интернет-магазинах. Обращайтесь к профессионалам для того, чтобы проверить подлинность изделия, его качество и ценность.

Как мы видим, немало сплавов внешне похожи на золото, которое выдают за настоящее ювелирное изделие. При покупке будьте осторожны, чтобы не приобрести подделку, которая ничего общего золотом не имеет. Можно приобрести качественную подделку, которую не отличить от оригинала. Сейчас фальшивки, имитирующие золото, — это выгодный бизнес для мошенников и контрабандистов. Проверяйте изделия, которые покупаете. Удачных приобретений!

hochuzoloto.com

Отправить ответ

avatar
  Подписаться  
Уведомление о