Легированная сталь свойства – Легированная сталь – классификация, маркировка, свойства, применение

Общая характеристика легированных сталей

Требуемые свойства в стальном изделии получают добавлением легирующих элементов в сталь при ее выплавке или их введением в поверхностный слой изделия при химико-термической обработке и соответствующей термической обработкой.

Классификация примесей

Все примеси, содержащиеся в стали, можно разделить на 4 группы:

1 . Постоянные или обыкновенные примеси.

Это невредные примеси: марганец 0,3-0,7% вес, кремний 0,2-0,4% (их введение необходимо при производстве стали для раскисления жидкого металла, причем в кипящей стали кремния мало <0,07%).

К этой же группе относят вредные примеси: серу 0,01-0,04% (попадает самопроизвольно из руды и топлива) и фосфор 0,02-0,05% (из руды). Полностью очистить сталь от вредных примесей трудно.

2. Скрытые примеси. Это водород, кислород и азот, присутствующие в любой стали в малых количествах. В обычных технических условиях на сталь не указывают ограничений на содержание этих газов, по сколько методы их химического анализа в стали очень сложны.

3. Случайные примеси попадают в сталь самопроизвольно из шихтовых материалов. Например, уральские железные руды содержат медь, керченские- мышьяк, переплавляемый металлический лом(скрап) может содержать луженые, оцинкованные никелированные отходы и отслужившие изделия из легированной стали. Содержание хрома в нелегированной стали может достигать 0,1-0,3% и никеля 0,2-0,3%.

Легирующие добавки — элементы, специально вводимые в сталь в определенных концентрациях с целью изменения ее строения и свойств. Стали с легирующими элементами называют легированными, а иногда специальными.

Если в сталь ввели 0,1% титана или 0,005% бора специально с целью получения требуемых свойств, то сталь считают легированной, а при добавке марганца сталь будет легированной только в случае заметного превышения его технологически необходимой концентрации (0,7%), например до 1,0% и более.

Классификация сталей

Сталями называют сплавы, в которых железа содержится более 50вес%. При содержании железа менее 50%, но больше чем любого другого элемента – это сплав на основе железа.

По степени легированности стали делят на:

а.) нелегированные (углеродистые), содержащие только технологические, открытые и случайные примеси (эти стали составляют 2/3 всего тоннажа стали, выплавляемой в стране)

б.) низколегированные стали (малолегированные), содержащие в сумме до 2,5% легирующих элементов,

в.) среднелегированные стали содержат в сумме 2,5-10% легирующих добавок,

г.) высоколегированные стали содержат в сумме более 10% легирующих элементов . Сталь называют хромистой, кремнистой, хромоникелевой и т.д. в соответствии с введенными в нее легирующими добавками.

Часто применяют комплексное(сложное) легирование, т.е. вводят в сталь одновременно 5-6 легирующих элементов.

Существуют и другие способы классификации сталей, например, по структуре после отжига (доэвтектоидная, эвтектоидная, заэвтектоидная), по структуре после нормализации (перлитного, мартенситного, аустенитного, ледебуритного класса), по назначению (конструкционная, инструментальная, сталь особого назначения).

Обозначение марок легированной сталей. В большинстве случаев обозначение марки легированной стали начинается с двухзначного (или трехзначного) числа, обозначающего содержание углерода в сотых долях процента, например, сталь 15Г содержит 0,15% углерода. Если марка начинается с однозначного числа, то концентрация углерода выражена в десятых долях процентам например, сталь 5ХНМ содержит 0,5% углерода, нелегированная сталь У8-0,8% углерода.

При концентрации углерода в стали более 1,0% его цифровое обозначение может отсутствовать, например, сталь XI 2 содержит до 2% углерода. Если углерода меньше 0,1%, то марка ;тали может начинаться с нуля(ОХ18Н9Т).

Затем в марке следуют буквальные обозначения легирующих элементов, которые зашифрованы буквами русского алфавита; часто это начальная буква русского или латинского названия элемента или другая характерная буква русского названия или химического символа элемента): Х- хром, Н- никель. Т- титан. К- кобальт, М- молибден, В-вольфрам, Ф-ванадий, С- кремний, Ц,- цирконий. Г- марганец, Д- медь, Ю- алюминий, В- ниобий, Р- бор. А- азот( ставится не в конце марки) ,Ч-редкоземельные элементы, Е-селен, П- фосфор.

Цифры после каждой буквы указывают содержание обозначаемого этой буквой элемента в целых процентах, причем, если концентрация элемента менее или около 1%, то число после буквы не ставят, а если элемента содержится около 1,5%, то ставят единицу: 70Г, Х42Ф 1 .

Тема № 11

studfiles.net

Свойство — легированная сталь — Большая Энциклопедия Нефти и Газа, статья, страница 1

Свойство — легированная сталь

Cтраница 1

Свойства легированных сталей в рабочих условиях определяются содержащимися в них углеродом и другими элементами, специально введенными в состав. В зависимости от микроструктуры различают стали перлитного, мартенситного, мар-тенситно-ферритного, ферритного, аустенитно-мартенситного, аустенитно-ферритного и аустенитного классов. В котлостроении применяют стали двух классов: перлитного и аустенитного.  [1]

Свойства легированных сталей в рабочих условиях определяются содержащимися в них углеродом и другими элементами, специально введенными в состав. В зависимости от микроструктуры различают стали перлитного, мартенситного, мар-тенситно-ферритного, ферритного, аустенитно-мартенситного, аустенитно-ферритного и аустенитного классов. В котлостроении применяют стали двух классов: перлитного и аустенитного.  [2]

Свойства низкоотпущенной легированной стали определяются прежде всего количеством находящегося в стали углерода. Сравнительно незначительное изменение содержания углерода сопровождается резким изменением механических свойств. При содержании углерода оксло 0 45 % достигается почти максимальный предел прочности стали; дальнейшее же увеличение процента углерода отмечается лишь снижением ударной вязкости стали.  [3]

На свойства легированных сталей оказывает влияние толщина сечения отливок.  [5]

Интенсивность изменения

свойств легированной стали зависит не только от природы и количества легирующих элементов, введенных в сталь, но и от их взаимодействия с основными компонентами стали — железом и углеродом, а также от взаимодействия между собой, если введено несколько легирующих элементов. Различные легирующие элементы по-разному влияют на состояние и свойства железа и углерода ( цементита), а также на превращения, протекающие в стали при ее термической и химико-термической обработке.  [6]

Интенсивность изменения свойств легированной стали зависит от природы и количества введенных в нее легирующих элементов, от их взаимодействия с основными компонентами стали — железом и углеродом, а также от взаимодействия между собой, если введено несколько легирующих элементов. Различные легирующие элементы по-разному влияют на структуру и свойства железа и углерода ( цементита), а также на превращения, протекающие в стали при ее термической и химико-термической обработке.  [7]

Типичный пример изменения свойств легированной стали 37ХНЗА после ВТМО и НТМО приведен на рисунке.  [8]

После закалки на мартенсит и низкого отпуска свойства легированной стали определяются концентрацией углерода в мартенсите.  [9]

Все вместе взятое приводит к тому, что свойства легированных сталей при одинаковом отпуске отличаются от углеродистых. При этом чем более сталь легирована, тем выше прочность и ниже пластичность и вязкость.  [11]

Карбиды железа и легирующих металлов, особенно тугоплавких — вольфрама, титана существенно определяют свойства легированных сталей, придавая им твердость, износостойкость.  [12]

Из таблицы видно, что магнитные свойства сплавов алии и алнико ( алюминий, никель, кобальт) значительно превосходят свойства магнитнотвердой легированной стали. Неслучайно поэтому эти сплавы и особенно алии, как не требующий для своего изготовления дорогостоящего кобальта, получают все расширяющееся применение в технике.  [13]

Карбиды, образованные легирующими элементами ( так же как и Fe3C), имеют высокие температуры плавления и твердость; наибольшая твердость у фаз внедрения. Многие свойства легированных сталей определяются процессами растворения карбидов при нагреве и выделения их при охлаждении; их величиной, формой и расположением.  [14]

Фазовый состав ситалла, тип основной кристаллической фазы определяют термические, электрические, химические и другие свойства ситаллов. Твердость и износостойкость ряда ситаллов значительно превышают свойства легированных сталей

.  [15]

Страницы:      1    2

www.ngpedia.ru

Краткая характеристика легированных, инструментальных, жаростойких сталей

Справочная информация

Легированные стали в отличие от углеродистых кроме углерода, железа и обычных примесей содержат определенное количество добавок (лигирующие элементы):
хром — X,
вольфрам — В,
молибден — М,
медь — Д,
кремний — С,
алюминий — Ю,
бор — Р,
цирконий — Ц,
никель — Н,
ванадий — Ф,
марганец — Г,
кобальт — К,
титан — Т,
фосфор — П,
ниобий — Б.
Каждый легирующий элемент имеет свое назначение.
Свойства легированных сталей зависят от содержания в них легирующих элементов.
Никель и хром улучшают механические свойства, повышают жаростойкость и коррозионную стойкость сталей.

Вольфрам повышает твердость, прочность, улучшает режущие свойства стали при высоких температурах (красностойкость).
Марганец повышает твердость, износостойкость, сопротивление ударным нагрузкам сталей.
Кремний повышает упругие свойства стали, увеличивает кислотостойкость сталей.
Титан увеличивает жаропрочность и кислотостойкость стали.
Молибден улучшает механические свойства при нормальной и повышенной температурах, несколько повышает свариваемость сталей. .
Ванадий улучшает пластические свойства стали, измельчает ее микроструктуру.
Кобальт увеличивает ударную вязкость и жаропрочность сталей.

Легированные стали по назначению подразделяются:
*конструкционные,
*инструментальные,
*стали со специальными свойствами.
Конструкционные стали (низколегированные).
Большинство низколегированных сталей содержат углерод нe более 0,6%.
Основные легирующие элементы низколегированных сталей — хром, никель, кремний, марганец.
Другие легирующие элементы вводят в сталь в небольших количествах, чтобы дополнительно улучшить ее свойства. Общее количество легирующих элементов у большинства сталей не превышает 5%.

Конструкционные низколегированные стали (ГОСТ 19281-73, 19282-73) обладают наилучшими механическими свойствами после термической обработки.
При маркировке легированных сталей первые две цифры показывают содержание углерода в сотых долях процента, следующая за ними буква — условно обозначение легирующего элемента, входящего в сталь.
Если количество легирующего элемента составляет 2% и более, то после буквы ставится еще цифра, указывающая это количество.
(пример: ст.15Х — сталь содержит 0,15% углерода и до 1% хрома, ст.20Х2Н4А — сталь содержит 0,20% углерода, около 2% хрома, 4% никеля, высококачественная (А), т. е. содержит меньше вредных примесей серы и фосфора).
Конструкционные легированные стали ст.19Г, ст.14Г, ст.17ГС, ст.14ХГС наиболее широко применяют при строительстве нефтегазопроводов высокого давления диаметром до 820 мм.
Сталь 14Г2 используют для крупных листо-сварных конструкций доменных печей, пылеуловителей, воздухонагревателей.
Сталь 17ГС предназначается для корпусов аппаратов, днищ, фланцев и других деталей паровых котлов, работающих при температурах до 475° С.

Хромокремненикелевые стали ст.10ХСНД, ст.15ХСНД используют для сварных ферм, конструкций мостов, вагонов, рам, аппаратов и сосудов химической промышленности.
Стали ст.35ГС и ст.25Г2С применяются для изготовления арматуры гладкого и периодического профилей, для армирования обычных и предварительно напряженных железобетонных конструкций.

Конструкционные легированные стали хорошо свариваются, не образуют при сварке горячих и холодных трещин. Механические свойства сварных соединений аналогичны свойствам основного металла.

В машиностроении применяют большое количество марок конструкционных легированных сталей, главным образом для изготовления ответственных деталей машин и металлических конструкций:
*валов двигателей,
*тяжелонагруженных зубчатых колес экскаваторов, автокранов и других строительных машин,
*деталей и арматуры, работающих при повышенных температурах.
Из кремнистых сталей изготовляют рессоры и пружины.

Инструментальные стали.
Инструментальные легированные стали подразделяются:
*низколегированные с содержанием легирующих элементов до 5%,
*высоколегированные с содержанием легирующих элементов более 10%.

Низколегированные инструментальные стали (ГОСТ 5950-2000):
ст.ХВГ, ст.9ХС, после термической обработки обладают более высокими показателями механических свойств по сравнению с углеродистыми инструментальными сталями: имеют более высокую твердость после термообработки (62-65 HRC), повышенные износостойкость и теплостойкость (до 200-250°С), меньшую чувствительность и склонность к перегреву и короблению при термообработке.
Низколегированные инструментальные стали применяют для изготовления режущих инструментов большого сечения, работающих при небольших скоростях резания: ручных сверл, протяжек, разверток, гребенок.

Высоколегированные инструментальные стали (ГОСТ 19265-76) содержат большое количество легирующих элементов, образующих в структуре стали химические соединения с углеродом (преимущественно карбиды).
Основной легирующий элемент таких сталей — вольфрам.
Изделия, изготовленные из высоколегированных инструментальных сталей с большим количеством карбида, сохраняют высокие твердость, прочность и износостойкость при температурах 600-620° С, которые появляются в режущей кромке при резании металлов с большой скоростью.
Такие стали называют быстрорежущими.
В состав быстрорежущих сталей входят 0,7-0,95% углерода, 3,1-4,4% хрома, 8,5-19% вольфрама, 1-2,5% ванадия. Маркируются быстрорежущие стали следующим образом:
ст.Р9, ст.Р18, ст.Р12, где буква Р обозначает, что сталь быстрорежущая, цифры 9, 18, 12 показывают среднее содержание вольфрама, предусмотренное стандартом.

У быстрорежущих сталей появляются высокие показатели механических свойств после сложной термической обработки. Из таких сталей изготовляют сверла, фрезы, долбяки, протяжки, развертки, пилы, напильники для твердых металлов и другой инструмент.
К быстрорежующим относяться ст.Р14Ф4, кобальтовые ст.Р9К5, ст.Р9КЮ, кобальто-ванадиевые ст.Р10К5Ф5, ст.Р18К5Ф2 и вольфрамо-молибденовая ст.Р6МЗ.
Эти стали обладают повышенной теплостойкостью, меньшей хрупкостью.
Применяют их для изготовления режущих инструментов, предназначенных для обработки жаропрочных и нержавеющих сталей с высокой вязкостью, титановых сплавов и пластмасс.

Стали со специальными свойствами (ГОСТ 5632-72).
В зависимости от основных свойств стали подразделяются на коррозионностойкие, жаростойкие, жаропрочные и износостойкие. Такие стали содержат большое количество легирующих элементов (10-35%).

Коррозионностойкие нержавеющие стали обладают высокой стойкостью против электрохимической коррозии.
По основным легирующим элементам — хрому и никелю, коррозионностойкие стали бывают хромистые и хромоникелевые.
(к этим сталям относят: ст.12Х18Н9Т, ст.5Х18Н9, ст.15Х25Н19С, ст.45Х17Г13НЗЮ, ст.55Х18П4СТ и другие)
Коррозионностойкие стали применяют для изготовления арматуры, коллекторов выхлопных систем, деталей паровых и газовых турбин, деталей химического машиностроения и т.д.
Жаростойкие стали, обеспечивающие длительную стойкость деталей в работе при небольших нагрузках, можно использовать при температурах выше 550° С.
Такие стали устойчивы против химического разрушения поверхности в газовых средах.
К жаростойким сталям относятся стали марок ст.25Х23Н7С, ст.30X21HI2C, ст.15Х6С10, ст.12X13, ст.09Х14Н16Б, ст.15X28. Применяют эти стали для изготовления клапанов двигателей внутреннего сгорания, лопаток компрессоров, деталей котельных установок, газовых турбин, труб пароперегревателей и других деталей, работающих при высоких температурах и небольшом давлении.
Жаропрочные стали, обеспечивающие длительную стойкость деталей в работе, можно применять при высоких температурах и больших нагрузках; при этом они сохраняют жаростойкость и высокие показатели механических свойств (прочности, пластичности).
К жаропрочным сталям относятся стали марок ст.12Х8ВФ, ст.10X11Н20ТЗР, ст.09Х16Н4Б;
их применяют для изготовления деталей турбин, трубопроводов установок сверхвысокого давления и других деталей.

Износостойкая сталь (ГОСТ 2176-77) марки ст.110Т13Л, получившая наибольшее распространение, содержит в среднем 1,1% углерода и 13% марганца.
Такая сталь очень трудно обрабатывается режущим инструментом, поэтому ее используют для получения деталей, требующих незначительной механической обработки.
Детали изготовляют методом литья, поэтому в маркировке стали на конце стоит буква Л.
Из этой стали отливают стрелки железнодорожных путей, гусеницы бульдозеров, щеки каменных дробилок, зубья ковшей экскаваторов, черпаки и козырьки землечерпательных машин, драг и другие детали.

yaruse.ru

Механическое свойство — легированная сталь

Механическое свойство — легированная сталь

Cтраница 1

Механические свойства легированных сталей выше свойств углеродистых — сталей, однако они требуют более точного соблюдения технологии и режима термической обработки и дороже обычных углеродистых сталей.  [1]

Механические свойства легированных сталей приведены после термообработки.  [2]

Механические свойства легированной стали для отливок после окончательной термической обработки должны удовлетворять требованиям, указанным в табл. 9; приведенные в этой таблице характеристики соответствуют отливкам с преобладающей толщиной стенки не больше 100 мм.  [3]

В малых сечениях механические свойства легированных сталей не отличаются от механических свойств углеродистых сталей, но зато в крупных сечениях механические свойства легированных сталей выше, чем углеродистых сталей.  [4]

Учитывая, что механические свойства легированной стали 12ХНЗА как после обработки по режиму 2 ( повторный нагрев), так и по режиму 3 ( предварительная нормализация) одинаковы по своему значению, то нет необходимости подвергать дополнительной операции ( нормализации) эту сталь, хотя большинства заводов это делает и по настоящее время.  [5]

В табл. Ю-i lO приведены механические свойства трубопроводных легированных сталей при 20 С.  [6]

Для сравнения привести марку, химический состав и механические свойства легированной стали, обладающей хорошей свариваемостью и применяемой для изготовления сварных труб и конструкций, от кото — рых требуются более высокие механические свойства.  [7]

Для сравнения привести марку, химический состав и механические свойства легированной стали, обладающей хорошей свариваемостью и применяемой для изготовления сварных труб и конструкций, от которых требуются более высокие механические свойства.  [8]

Но такие высокие механические свойства, не уступающие механическим свойствам легированных сталей, характерны только для небольшого сечения. Основным недостатком углеродистых сталей является их плохая прокаливаемость, и поэтому высокие механические свойства могут быть получены лишь в малых сечениях. Диаграмма показывает, что с увеличением диаметра прокаливаемость стали резко понижается, например, сталь диаметром 25 мм при закалке в воде в сердцевине уже не прокалилась, а при диаметре 125 мм не прокалилась совсем. Из этого следует, что если необходимы повышенные механические свойства, то углеродистую сталь можно применять только диаметром или толщиной до 10 мм. Стали 40 и 45 имеют широкое распространение для изготовления деталей, которые в дальнейшем подвергаются закалке токами высокой частоты. Для получения качественного результата целесообразно применять сталь с суженным содержанием углерода ( 0 43 — 0 48 % С) и поковки до механической обработки подвергать улучшению.  [9]

В табл. 9 и 10 приведены химический состав и механические свойства легированной стали некоторых марок, применяющихся на заводах и хорошо себя зарекомендовавших.  [11]

В малых сечениях механические свойства легированных сталей не отличаются от механических свойств углеродистых сталей, но зато в крупных сечениях механические свойства легированных сталей выше, чем углеродистых сталей.  [12]

Повышение механических свойств достигается также в результате того, что многие легирующие элементы способствуют измельчению зерна и упрочняют феррит. Механические свойства легированных сталей мало отличаются от механических свойств углеродистой стали в малых сечениях.  [13]

В табл. 6.15 приведены механические свойства металлов, из которых изготавливаются болты и шпильки при температурах до 500 С. В приведенной таблице механические свойства легированных сталей даны для термически обработанного состояния.  [15]

Страницы:      1    2

www.ngpedia.ru

Добавить комментарий

Ваш адрес email не будет опубликован.