Полиэтилен — Википедия
Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.
Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].
История
Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка
По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].
История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД [4].
Видео по теме
Названия
Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.
- Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
- Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПЭНД, ПНД, HDPE (High Density Polyethylene).
- Полиэтилен среднего давления (высокой плотности) — ПЭСД[6].
- Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
- Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD
- Полиэтилен очень низкой плотности — VLDPE
- Полиэтилен сверхнизкой плотности — ULDPE
- Металлоценовый линейный полиэтилен низкой плотности — MPE
- Сшитый полиэтилен — PEX или XLPE, XPE.
- Высокомолекулярный полиэтилен — ВМПЭ, HMWPE или PEHMW или VHMWPE[1].
- Сверхвысокомолекулярный полиэтилен — UHMWPE
В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.
Молекулярное строение
Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.
Показатель | ПЭВД | ПЭСД | ПЭНД |
---|---|---|---|
Общее число групп СН3 на 1000 атомов углерода: | 21,6 | 5 | 1,5 |
Число концевых групп СН3 на 1000 атомов углерода: | 4,5 | 2 | 1,5 |
Этильные ответвления | 14,4 | 1 | 1 |
Общее количество двойных связей на 1000 атомов углерода | 0,4—0,6 | 0,4—0,7 | 1,1-1,5 |
в том числе: | |||
винильных двойных связей (R-CH=CH | 17 | 43 | 87 |
винилиденовых двойных связей , % | 71 | 32 | 7 |
транс-виниленовых двойных связей (R-CH=CH-R’), % | 12 | 25 | 6 |
Степень кристалличности, % | 50-65 | 75-85 | 80-90 |
Плотность, г/см³ | 0,9-0,93 | 0,93-0,94 | 0,94-0,96 |
Полиэтилен высокой плотности HDPE (High-Density — высокая плотность)
Параметр | Значение |
---|---|
Плотность, г/см³ | 0,94-0,96 |
Разрушающее напряжение, кгс/см² | |
при растяжении | 100—170 |
при статическом изгибе | 120—170 |
при срезе | 140—170 |
относительное удлинение при разрыве, % | 500—600 |
модуль упругости при изгибе, кгс/см² | 1200—2600 |
предел текучести при растяжении, кгс/см² | 90-160 |
относительное удлинение в начале течения, % | 15-20 |
твёрдость по Бринеллю, кгс/мм² | 1,4-2,5 |
С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.
С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться
Разрушающее напряжение, кгс/см² | Температура, ºС | |||
---|---|---|---|---|
20 | 40 | 60 | 80 | |
при сжатии | 126 | 77 | 40 | — |
при статическом изгибе | 118 | 88 | 60 | — |
при срезе | 169 | 131 | 92 | 53 |
Температура, °С | -120 | -100 | -80 | -60 | -40 | -20 | 0 | 20 | 50 |
---|---|---|---|---|---|---|---|---|---|
Модуль упругости при изгибе, кгс/см² | 28100 | 26700 | 23200 | 19200 | 13600 | 7400 | 3050 | 2200 | 970 |
Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).
Сверхвысокомолекулярный полиэтилен высокой плотности
Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от — 200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.
Химические свойства
Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия [8].
При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80°C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180°C воде.
Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.
Получение
На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:
Получение полиэтилена высокого давления
Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:
в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.
Получение полиэтилена среднего давления
Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:
продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.
Получение полиэтилена низкого давления
Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:
Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.
Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2 и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.
Другие способы получения полиэтилена
Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.
Модификации полиэтилена
Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.
На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.
Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.
Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.
Применение
- Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
- Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
- Полимерные трубы для канализации, дренажа, водо-, газоснабжения
- Электроизоляционный материал.
- Полиэтиленовый порошок используется как термоклей[10].
- Броня (бронепанели в бронежилетах)[11]
- Корпуса для лодок[12], вездеходов, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.
- Вспененный полиэтилен (пенополиэтилен) используется, как теплоизолятор. Наиболее известны следующие марки: МультиФлекс, Изоком, Изолон, Порилекс, Алентекс
- Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[13]
- Полиэтилен низкого давления широко применяется в благоустройстве придомовых территорий и детских площадок, отодвигая фанеру и дерево на второй план, ведь срок использования скатов из ПНД более 15 лет в то время как у «деревянных аналогов» срок использования всего 10 лет причем через 3-5 лет дерево теряет товарный вид
Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.
Утилизация
Переработка
Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.
Сжигание
При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210°С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430°С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.
Биоразложение
Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 миллиграммов полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[14][15].
См. также
Примечание
- ↑ 1 2 3 4 Описание и марки полимеров — Полиэтилен
- ↑ Король упаковки: как появился целлофан
- ↑ История полиэтилена: неожиданное рождение пластикового пакета
- ↑ 1 2 Дж. Уайт, Д.Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
- ↑ Vasile C., Pascu M.// Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
- ↑ 1 2 3 4 5 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
- ↑ Сайт Polymeri.ru » Сверхвысокомолекулярный полиэтилен: рынок в ожидании переработчиков»
- ↑ 1 2 Цветков Л. А. § 10. Понятие о высокомолекулярных соединениях // Органическая химия. Учебник для 10 класса. — 20-е изд. — М.: Просвещение, 1981. — С. 52—57. — 1 210 000 экз.
- ↑ Шульпин Г. Эти разные полимеры // Наука и жизнь. — 1982. — № 3. — С. 80—83.
- ↑ Сжать и провернуть: Сделано в России
- ↑ Доспехи XXI века
- ↑ Total Petrochemicals создала ротомолдинговую лодку из полиэтилена
- ↑ Геомембрана HDPE
- ↑ Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена. N+1 Интернет-издание (25 апреля 2017). Проверено 25 апреля 2017.
- ↑ Bombelli P., Howe C. J., Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — Vol. 27. — P. R283—R293. — DOI:10.1016/j.cub.2017.02.060.
Ссылки
wiki2.red
Полиэтилен — Википедия РУ
Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.
Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически стоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].
История
Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[3].
По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].
История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД[4].
Названия
Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.
- Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
- Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПЭНД, ПНД, HDPE (High Density Polyethylene).
- Полиэтилен среднего давления (высокой плотности) — ПЭСД[6].
- Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
- Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD[1].
- Полиэтилен очень низкой плотности — VLDPE
- Полиэтилен сверхнизкой плотности — ULDPE
- Металлоценовый линейный полиэтилен низкой плотности — MPE
- Сшитый полиэтилен — PEX или XLPE, XPE.
- Высокомолекулярный полиэтилен — ВМПЭ, HMWPE или PEHMW или VHMWPE[1].
- Сверхвысокомолекулярный полиэтилен — UHMWPE
В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.
Молекулярное строение
Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.
Показатель | ПЭВД | ПЭСД | ПЭНД |
---|---|---|---|
Общее число групп СН3 на 1000 атомов углерода: | 21,6 | 5 | 1,5 |
Число концевых групп СН3 на 1000 атомов углерода: | 4,5 | 2 | 1,5 |
Этильные ответвления | 14,4 | 1 | 1 |
Общее количество двойных связей на 1000 атомов углерода | 0,4—0,6 | 0,4—0,7 | 1,1-1,5 |
в том числе: | |||
винильных двойных связей (R-CH=CH2), % | 17 | 43 | 87 |
винилиденовых двойных связей , % | 71 | 32 | 7 |
транс-виниленовых двойных связей (R-CH=CH-R’), % | 12 | 25 | 6 |
Степень кристалличности, % | 50-65 | 75-85 | 80-90 |
Плотность, г/см³ | 0,9-0,93 | 0,93-0,94 | 0,94-0,96 |
Полиэтилен высокой плотности HDPE (High-Density — высокая плотность)
Параметр | Значение |
---|---|
Плотность, г/см³ | 0,94-0,96 |
Разрушающее напряжение, кгс/см² | |
при растяжении | 100—170 |
при статическом изгибе | 120—170 |
при срезе | 140—170 |
относительное удлинение при разрыве, % | 500—600 |
модуль упругости при изгибе, кгс/см² | 1200—2600 |
предел текучести при растяжении, кгс/см² | 90-160 |
относительное удлинение в начале течения, % | 15-20 |
твёрдость по Бринеллю, кгс/мм² | 1,4-2,5 |
С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.
С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться
Разрушающее напряжение, кгс/см² | Температура, ºС | |||
---|---|---|---|---|
20 | 40 | 60 | 80 | |
при сжатии | 126 | 77 | 40 | — |
при статическом изгибе | 118 | 88 | 60 | — |
при срезе | 169 | 131 | 92 | 53 |
Температура, °С | -120 | -100 | -80 | -60 | -40 | -20 | 0 | 20 | 50 |
---|---|---|---|---|---|---|---|---|---|
Модуль упругости при изгибе, кгс/см² | 28100 | 26700 | 23200 | 19200 | 13600 | 7400 | 3050 | 2200 | 970 |
Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).
Сверхвысокомолекулярный полиэтилен высокой плотности
Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от — 200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.[7]
Химические свойства
Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия[8].
При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80°C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180°C воде.
Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.
Получение
На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:
Получение полиэтилена высокого давления
Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:
в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.
Получение полиэтилена среднего давления
Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:
продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.
Получение полиэтилена низкого давления
Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:
Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.
Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2 и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.
Другие способы получения полиэтилена
Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.
Модификации полиэтилена
Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.
На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.
Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.
Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.
Применение
- Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
- Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
- Полимерные трубы для канализации, дренажа, водо-, газоснабжения
- Электроизоляционный материал.
- Полиэтиленовый порошок используется как термоклей[10].
- Броня (бронепанели в бронежилетах)[11]
- Корпуса для лодок[12], вездеходов, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.
- Вспененный полиэтилен (пенополиэтилен) используется, как теплоизолятор. Наиболее известны следующие марки: МультиФлекс, Изоком, Изолон, Порилекс, Алентекс
- Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[13]
- Полиэтилен низкого давления широко применяется в благоустройстве придомовых территорий и детских площадок, отодвигая фанеру и дерево на второй план, ведь срок использования скатов из ПНД более 15 лет в то время как у «деревянных аналогов» срок использования всего 10 лет причем через 3-5 лет дерево теряет товарный вид
Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.
Утилизация
Переработка
Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.
Сжигание
При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210°С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430°С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.
Биоразложение
Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 миллиграммов полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[14][15].
См. также
Примечание
- ↑ 1 2 3 4 Описание и марки полимеров — Полиэтилен
- ↑ Король упаковки: как появился целлофан
- ↑ История полиэтилена: неожиданное рождение пластикового пакета
- ↑ 1 2 Дж. Уайт, Д.Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
- ↑ Vasile C., Pascu M.// Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
- ↑ 1 2 3 4 5 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
- ↑ Сайт Polymeri.ru » Сверхвысокомолекулярный полиэтилен: рынок в ожидании переработчиков»
- ↑ 1 2 Цветков Л. А. § 10. Понятие о высокомолекулярных соединениях // Органическая химия. Учебник для 10 класса. — 20-е изд. — М.: Просвещение, 1981. — С. 52—57. — 1 210 000 экз.
- ↑ Шульпин Г. Эти разные полимеры // Наука и жизнь. — 1982. — № 3. — С. 80—83.
- ↑ Сжать и провернуть: Сделано в России
- ↑ Доспехи XXI века
- ↑ Total Petrochemicals создала ротомолдинговую лодку из полиэтилена
- ↑ Геомембрана HDPE
- ↑ Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена. N+1 Интернет-издание (25 апреля 2017). Проверено 25 апреля 2017.
- ↑ Bombelli P., Howe C. J., Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — Vol. 27. — P. R283—R293. — DOI:10.1016/j.cub.2017.02.060.
Ссылки
http-wikipediya.ru
Полиэтилен Википедия
Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.
Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически стоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].
Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[3].
По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].
История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД[4].
Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.
- Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
- Полиэтилен высокой плотности (низкого давления) — ПЭВП
ruwikiorg.ru
Полиэтилен — википедия орг
Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.
Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически стоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].
История
Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[3].
По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].
История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД[4].
Названия
Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.
- Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
- Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПЭНД, ПНД, HDPE (High Density Polyethylene).
- Полиэтилен среднего давления (высокой плотности) — ПЭСД[6].
- Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
- Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD[1].
- Полиэтилен очень низкой плотности — VLDPE
- Полиэтилен сверхнизкой плотности — ULDPE
- Металлоценовый линейный полиэтилен низкой плотности — MPE
- Сшитый полиэтилен — PEX или XLPE, XPE.
- Высокомолекулярный полиэтилен — ВМПЭ, HMWPE или PEHMW или VHMWPE[1].
- Сверхвысокомолекулярный полиэтилен — UHMWPE
В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.
Молекулярное строение
Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.
Показатель | ПЭВД | ПЭСД | ПЭНД |
---|---|---|---|
Общее число групп СН3 на 1000 атомов углерода: | 21,6 | 5 | 1,5 |
Число концевых групп СН3 на 1000 атомов углерода: | 4,5 | 2 | 1,5 |
Этильные ответвления | 14,4 | 1 | 1 |
Общее количество двойных связей на 1000 атомов углерода | 0,4—0,6 | 0,4—0,7 | 1,1-1,5 |
в том числе: | |||
винильных двойных связей (R-CH=CH2), % | 17 | 43 | 87 |
винилиденовых двойных связей , % | 71 | 32 | 7 |
транс-виниленовых двойных связей (R-CH=CH-R’), % | 12 | 25 | 6 |
Степень кристалличности, % | 50-65 | 75-85 | 80-90 |
Плотность, г/см³ | 0,9-0,93 | 0,93-0,94 | 0,94-0,96 |
Полиэтилен высокой плотности HDPE (High-Density — высокая плотность)
Параметр | Значение |
---|---|
Плотность, г/см³ | 0,94-0,96 |
Разрушающее напряжение, кгс/см² | |
при растяжении | 100—170 |
при статическом изгибе | 120—170 |
при срезе | 140—170 |
относительное удлинение при разрыве, % | 500—600 |
модуль упругости при изгибе, кгс/см² | 1200—2600 |
предел текучести при растяжении, кгс/см² | 90-160 |
относительное удлинение в начале течения, % | 15-20 |
твёрдость по Бринеллю, кгс/мм² | 1,4-2,5 |
С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.
С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться
Разрушающее напряжение, кгс/см² | Температура, ºС | |||
---|---|---|---|---|
20 | 40 | 60 | 80 | |
при сжатии | 126 | 77 | 40 | — |
при статическом изгибе | 118 | 88 | 60 | — |
при срезе | 169 | 131 | 92 | 53 |
Температура, °С | -120 | -100 | -80 | -60 | -40 | -20 | 0 | 20 | 50 |
---|---|---|---|---|---|---|---|---|---|
Модуль упругости при изгибе, кгс/см² | 28100 | 26700 | 23200 | 19200 | 13600 | 7400 | 3050 | 2200 | 970 |
Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).
Сверхвысокомолекулярный полиэтилен высокой плотности
Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от — 200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.[7]
Химические свойства
Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия[8].
При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80°C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180°C воде.
Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.
Получение
На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:
Получение полиэтилена высокого давления
Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:
в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.
Получение полиэтилена среднего давления
Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:
продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.
Получение полиэтилена низкого давления
Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:
Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.
Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2 и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.
Другие способы получения полиэтилена
Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.
Модификации полиэтилена
Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.
На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.
Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.
Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.
Применение
- Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
- Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
- Полимерные трубы для канализации, дренажа, водо-, газоснабжения
- Электроизоляционный материал.
- Полиэтиленовый порошок используется как термоклей[10].
- Броня (бронепанели в бронежилетах)[11]
- Корпуса для лодок[12], вездеходов, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.
- Вспененный полиэтилен (пенополиэтилен) используется, как теплоизолятор. Наиболее известны следующие марки: МультиФлекс, Изоком, Изолон, Порилекс, Алентекс
- Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[13]
- Полиэтилен низкого давления широко применяется в благоустройстве придомовых территорий и детских площадок, отодвигая фанеру и дерево на второй план, ведь срок использования скатов из ПНД более 15 лет в то время как у «деревянных аналогов» срок использования всего 10 лет причем через 3-5 лет дерево теряет товарный вид
Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.
Утилизация
Переработка
Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.
Сжигание
При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210°С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430°С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.
Биоразложение
Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 миллиграммов полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[14][15].
См. также
Примечание
- ↑ 1 2 3 4 Описание и марки полимеров — Полиэтилен
- ↑ Король упаковки: как появился целлофан
- ↑ История полиэтилена: неожиданное рождение пластикового пакета
- ↑ 1 2 Дж. Уайт, Д.Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
- ↑ Vasile C., Pascu M.// Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
- ↑ 1 2 3 4 5 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
- ↑ Сайт Polymeri.ru » Сверхвысокомолекулярный полиэтилен: рынок в ожидании переработчиков»
- ↑ 1 2 Цветков Л. А. § 10. Понятие о высокомолекулярных соединениях // Органическая химия. Учебник для 10 класса. — 20-е изд. — М.: Просвещение, 1981. — С. 52—57. — 1 210 000 экз.
- ↑ Шульпин Г. Эти разные полимеры // Наука и жизнь. — 1982. — № 3. — С. 80—83.
- ↑ Сжать и провернуть: Сделано в России
- ↑ Доспехи XXI века
- ↑ Total Petrochemicals создала ротомолдинговую лодку из полиэтилена
- ↑ Геомембрана HDPE
- ↑ Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена. N+1 Интернет-издание (25 апреля 2017). Проверено 25 апреля 2017.
- ↑ Bombelli P., Howe C. J., Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — Vol. 27. — P. R283—R293. — DOI:10.1016/j.cub.2017.02.060.
Ссылки
www-wikipediya.ru
Полиэтилен высокого давления (ПВД) LDPE низкого давления (ПНД) HDPE линейный
Полиэтилен
Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка.
Полиэтилен является самой массовой пластмассой в производстве упаковки. Являясь одним из старейших полимерных материалов, он остается незаменимым в производстве ряда специальных пленок – термоусадочных, стретч, с твист-эффектом. Также полиэтилен применяется в производстве других видов упаковки – контейнеров, пакетов, канистр и т. д. Несмотря на развитие технологий и внедрение новых материалов, значение полиэтилена не уменьшается, но спрос на него продолжает расти.
Физические, химические и эксплуатационные свойства полиэтилена зависят от молекулярной массы и плотности полимера, поэтому отличаются для разных его видов:
- Полиэтилен низкого давления (ПНД)
- Полиэтилен высокого давления (ПВД)
- Линейный полиэтилен высокого давления (ЛПВД)
- Металлоценовый линейный полиэтилен высокого давления (МЛПВД)
Полиэтилен высокого давления (ПВД)-LDPE
Полиэтилен высокого давления (ПВД) — это широко применяемый упаковочный материал, который обладает высокой химической стойкостью. Продукция из ПВД очень широко востребована. Из полиэтилена высокого давления делают такие изделия, как: пластиковые пакеты, упаковочные пленки, контейнеры. Характерным свойством изделий из ПВД является: стойкость к ударам, прочность, паро- и водонепроницаемость.
Характерные свойства:
Полиэтилен высокого давления (ПВД) отличается высокой эластичностью и легкостью. Cтоит отметить, что свойства ПВД сильно зависят от плотности данного полимера. Чем больше плотность, тем больше прочность и жесткость.
Изделия из ПВД всегда должны иметь специальную маркировку, обозначающую максимальный вес, так как при больших увеличениях нагрузок ПВД может трескаться.
Полиэтилен низкого давления (ПНД)-HDPE
Полиэтилен низкого давления (ПНД) также широко применяется в производстве. Из ПНД изготавливают различные типы пленок, пакеты и другие типы упаковки.
Ниже представлены типы полиэтилена низкого давления (ПНД):
- ПНД выдувной
- ПНД литьевой
- ПНД пленочный
- ПНД трубный
Характерные свойства:
Для упаковки из полиэтилена низкого давления (ПНД) характерна прочность при сжатиях и растяжениях, низкий показатель сопротивлению ударам, химическая стойкость и водопроницаемость.
Линейный полиэтилен низкой плотности
Линейный полиэтилен низкой плотности (LLDPE) — это полупрозрачный материал с молочным оттенком. Имеет высокую эластичность, а также низкое водопоглощение. Из полиэтилена этого вида изготавливается термоустойчивая пленка и стрейч пленка. Полиэтилен низкой плотности прекрасно выдерживает сильные механические нагрузки, хорошо тянется, не рвется, а при нагревании не выделяет ядовитых веществ. При низкой температуре данный материал сохраняет свои свойства, поэтому используется для хранения замороженных продуктов.
Характерные свойства:
Линейный полиэтилен низкой плотности (LLDPE) обладает очень важным свойством, благодаря которому его используют в пищевой промышленности. Данное свойство заключается в его биологической инертности и экологичности. Поэтому продукты, которые хранятся в данной упаковке, не приобретают посторонних запахов, а также сохраняют свои вкусовые качества.
Полиэтилен низкой плотности надежно перекрывает доступ воздуха, что также позволяет существенно увеличить срок хранения пищевых продуктов. Упаковка, которая изготовлена из линейного полиэтилена низкой плотности (LLDPE) подходит для любого типа продукции, поэтому ее популярность возрастает с каждым годом.
Полипропилен
Полипропилен — твердый термопластический полимерный материал, обладающей высокой прочностью, стойкостью к износам и химическим веществам, низкой паро- и газопроницаемостью. Полипропилен также стоек к кислотам, щелочам, минеральным и растительным маслам при высоких температурах. Не растворяется при комнатной температуре в органических растворителях.
Характерные свойства:
- Низкая плотность
- Высокая прочность, твердость
- Химическая стабильность
- Повышенная теплостойкость
- Стойкость в высокоагрессивных средах
- Возможность регенерации.
Из полипропилена изготавливаются такие изделия, как: полипропиленовые трубы, полипропиленовые отводы, муфты, тройники, краны, клипсы, заглушки. Полипропиленовые изделия просты в исполнении, имеют длительный срок службы. Именно поэтому, на сегодняшний день, они приобретают все большую популярность, так как имеют преимущества перед другими полимерными материалами.
Преимущества полипропилена:
- Пластичный, прочный материал
- Не подвержен коррозии, соляным и известковым отложениям
- Не токсичен и безопасен для здоровья
- Не воздействует на вкус и запах перемещаемой среды
- Справляется с перепадами давления, в том числе и гидравлическими ударами
- Длительный срок эксплуатации
polietileny.ru
Полиэтилен — WiKi
Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.
Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически стоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].
История
Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[3].
По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].
История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД[4].
Названия
Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.
- Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
- Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПЭНД, ПНД, HDPE (High Density Polyethylene).
- Полиэтилен среднего давления (высокой плотности) — ПЭСД[6].
- Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
- Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD[1].
- Полиэтилен очень низкой плотности — VLDPE
- Полиэтилен сверхнизкой плотности — ULDPE
- Металлоценовый линейный полиэтилен низкой плотности — MPE
- Сшитый полиэтилен — PEX или XLPE, XPE.
- Высокомолекулярный полиэтилен — ВМПЭ, HMWPE или PEHMW или VHMWPE[1].
- Сверхвысокомолекулярный полиэтилен — UHMWPE
В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.
Молекулярное строение
Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.
Показатель | ПЭВД | ПЭСД | ПЭНД |
---|---|---|---|
Общее число групп СН3 на 1000 атомов углерода: | 21,6 | 5 | 1,5 |
Число концевых групп СН3 на 1000 атомов углерода: | 4,5 | 2 | 1,5 |
Этильные ответвления | 14,4 | 1 | 1 |
Общее количество двойных связей на 1000 атомов углерода | 0,4—0,6 | 0,4—0,7 | 1,1-1,5 |
в том числе: | |||
винильных двойных связей (R-CH=CH2), % | 17 | 43 | 87 |
винилиденовых двойных связей , % | 71 | 32 | 7 |
транс-виниленовых двойных связей (R-CH=CH-R’), % | 12 | 25 | 6 |
Степень кристалличности, % | 50-65 | 75-85 | 80-90 |
Плотность, г/см³ | 0,9-0,93 | 0,93-0,94 | 0,94-0,96 |
Полиэтилен высокой плотности HDPE (High-Density — высокая плотность)
Параметр | Значение |
---|---|
Плотность, г/см³ | 0,94-0,96 |
Разрушающее напряжение, кгс/см² | |
при растяжении | 100—170 |
при статическом изгибе | 120—170 |
при срезе | 140—170 |
относительное удлинение при разрыве, % | 500—600 |
модуль упругости при изгибе, кгс/см² | 1200—2600 |
предел текучести при растяжении, кгс/см² | 90-160 |
относительное удлинение в начале течения, % | 15-20 |
твёрдость по Бринеллю, кгс/мм² | 1,4-2,5 |
С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.
С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться
Разрушающее напряжение, кгс/см² | Температура, ºС | |||
---|---|---|---|---|
20 | 40 | 60 | 80 | |
при сжатии | 126 | 77 | 40 | — |
при статическом изгибе | 118 | 88 | 60 | — |
при срезе | 169 | 131 | 92 | 53 |
Температура, °С | -120 | -100 | -80 | -60 | -40 | -20 | 0 | 20 | 50 |
---|---|---|---|---|---|---|---|---|---|
Модуль упругости при изгибе, кгс/см² | 28100 | 26700 | 23200 | 19200 | 13600 | 7400 | 3050 | 2200 | 970 |
Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).
Сверхвысокомолекулярный полиэтилен высокой плотности
Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от — 200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.[7]
Химические свойства
Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия[8].
При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80°C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180°C воде.
Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.
Получение
На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:
Получение полиэтилена высокого давления
Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:
в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.
Получение полиэтилена среднего давления
Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:
продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.
Получение полиэтилена низкого давления
Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:
Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.
Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2 и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.
Другие способы получения полиэтилена
Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.
Модификации полиэтилена
Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.
На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.
Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.
Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.
Применение
- Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
- Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
- Полимерные трубы для канализации, дренажа, водо-, газоснабжения
- Электроизоляционный материал.
- Полиэтиленовый порошок используется как термоклей[10].
- Броня (бронепанели в бронежилетах)[11]
- Корпуса для лодок[12], вездеходов, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.
- Вспененный полиэтилен (пенополиэтилен) используется, как теплоизолятор. Наиболее известны следующие марки: МультиФлекс, Изоком, Изолон, Порилекс, Алентекс
- Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[13]
- Полиэтилен низкого давления широко применяется в благоустройстве придомовых территорий и детских площадок, отодвигая фанеру и дерево на второй план, ведь срок использования скатов из ПНД более 15 лет в то время как у «деревянных аналогов» срок использования всего 10 лет причем через 3-5 лет дерево теряет товарный вид
Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.
Утилизация
Переработка
Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.
Сжигание
При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210°С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430°С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.
Биоразложение
Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 миллиграммов полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[14][15].
См. также
Примечание
- ↑ 1 2 3 4 Описание и марки полимеров — Полиэтилен
- ↑ Король упаковки: как появился целлофан
- ↑ История полиэтилена: неожиданное рождение пластикового пакета
- ↑ 1 2 Дж. Уайт, Д.Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
- ↑ Vasile C., Pascu M.// Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
- ↑ 1 2 3 4 5 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
- ↑ Сайт Polymeri.ru » Сверхвысокомолекулярный полиэтилен: рынок в ожидании переработчиков»
- ↑ 1 2 Цветков Л. А. § 10. Понятие о высокомолекулярных соединениях // Органическая химия. Учебник для 10 класса. — 20-е изд. — М.: Просвещение, 1981. — С. 52—57. — 1 210 000 экз.
- ↑ Шульпин Г. Эти разные полимеры // Наука и жизнь. — 1982. — № 3. — С. 80—83.
- ↑ Сжать и провернуть: Сделано в России
- ↑ Доспехи XXI века
- ↑ Total Petrochemicals создала ротомолдинговую лодку из полиэтилена
- ↑ Геомембрана HDPE
- ↑ Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена. N+1 Интернет-издание (25 апреля 2017). Проверено 25 апреля 2017.
- ↑ Bombelli P., Howe C. J., Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — Vol. 27. — P. R283—R293. — DOI:10.1016/j.cub.2017.02.060.
Ссылки
ru-wiki.org
Полиэтилен высокого давления (ПВД) LDPE низкого давления (ПНД) HDPE линейный
Полиэтилен
Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка.
Полиэтилен является самой массовой пластмассой в производстве упаковки. Являясь одним из старейших полимерных материалов, он остается незаменимым в производстве ряда специальных пленок – термоусадочных, стретч, с твист-эффектом. Также полиэтилен применяется в производстве других видов упаковки – контейнеров, пакетов, канистр и т. д. Несмотря на развитие технологий и внедрение новых материалов, значение полиэтилена не уменьшается, но спрос на него продолжает расти.
Физические, химические и эксплуатационные свойства полиэтилена зависят от молекулярной массы и плотности полимера, поэтому отличаются для разных его видов:
- Полиэтилен низкого давления (ПНД)
- Полиэтилен высокого давления (ПВД)
- Линейный полиэтилен высокого давления (ЛПВД)
- Металлоценовый линейный полиэтилен высокого давления (МЛПВД)
Полиэтилен высокого давления (ПВД)-LDPE
Полиэтилен высокого давления (ПВД) — это широко применяемый упаковочный материал, который обладает высокой химической стойкостью. Продукция из ПВД очень широко востребована. Из полиэтилена высокого давления делают такие изделия, как: пластиковые пакеты, упаковочные пленки, контейнеры. Характерным свойством изделий из ПВД является: стойкость к ударам, прочность, паро- и водонепроницаемость.
Характерные свойства:
Полиэтилен высокого давления (ПВД) отличается высокой эластичностью и легкостью. Cтоит отметить, что свойства ПВД сильно зависят от плотности данного полимера. Чем больше плотность, тем больше прочность и жесткость.
Изделия из ПВД всегда должны иметь специальную маркировку, обозначающую максимальный вес, так как при больших увеличениях нагрузок ПВД может трескаться.
Полиэтилен низкого давления (ПНД)-HDPE
Полиэтилен низкого давления (ПНД) также широко применяется в производстве. Из ПНД изготавливают различные типы пленок, пакеты и другие типы упаковки.
Ниже представлены типы полиэтилена низкого давления (ПНД):
- ПНД выдувной
- ПНД литьевой
- ПНД пленочный
- ПНД трубный
Характерные свойства:
Для упаковки из полиэтилена низкого давления (ПНД) характерна прочность при сжатиях и растяжениях, низкий показатель сопротивлению ударам, химическая стойкость и водопроницаемость.
Линейный полиэтилен низкой плотности
Линейный полиэтилен низкой плотности (LLDPE) — это полупрозрачный материал с молочным оттенком. Имеет высокую эластичность, а также низкое водопоглощение. Из полиэтилена этого вида изготавливается термоустойчивая пленка и стрейч пленка. Полиэтилен низкой плотности прекрасно выдерживает сильные механические нагрузки, хорошо тянется, не рвется, а при нагревании не выделяет ядовитых веществ. При низкой температуре данный материал сохраняет свои свойства, поэтому используется для хранения замороженных продуктов.
Характерные свойства:
Линейный полиэтилен низкой плотности (LLDPE) обладает очень важным свойством, благодаря которому его используют в пищевой промышленности. Данное свойство заключается в его биологической инертности и экологичности. Поэтому продукты, которые хранятся в данной упаковке, не приобретают посторонних запахов, а также сохраняют свои вкусовые качества.
Полиэтилен низкой плотности надежно перекрывает доступ воздуха, что также позволяет существенно увеличить срок хранения пищевых продуктов. Упаковка, которая изготовлена из линейного полиэтилена низкой плотности (LLDPE) подходит для любого типа продукции, поэтому ее популярность возрастает с каждым годом.
Полипропилен
Полипропилен — твердый термопластический полимерный материал, обладающей высокой прочностью, стойкостью к износам и химическим веществам, низкой паро- и газопроницаемостью. Полипропилен также стоек к кислотам, щелочам, минеральным и растительным маслам при высоких температурах. Не растворяется при комнатной температуре в органических растворителях.
Характерные свойства:
- Низкая плотность
- Высокая прочность, твердость
- Химическая стабильность
- Повышенная теплостойкость
- Стойкость в высокоагрессивных средах
- Возможность регенерации.
Из полипропилена изготавливаются такие изделия, как: полипропиленовые трубы, полипропиленовые отводы, муфты, тройники, краны, клипсы, заглушки. Полипропиленовые изделия просты в исполнении, имеют длительный срок службы. Именно поэтому, на сегодняшний день, они приобретают все большую популярность, так как имеют преимущества перед другими полимерными материалами.
Преимущества полипропилена:
- Пластичный, прочный материал
- Не подвержен коррозии, соляным и известковым отложениям
- Не токсичен и безопасен для здоровья
- Не воздействует на вкус и запах перемещаемой среды
- Справляется с перепадами давления, в том числе и гидравлическими ударами
- Длительный срок эксплуатации
polietileny.uz