Ldpe полиэтилен – Из чего делают полиэтилен? Производство полиэтилена. Изделия из полиэтилена

Содержание

это что такое? Применение полиэтилена

Что собой представляет полиэтилен? Какие у него характеристики? Как происходит получение полиэтилена? Это весьма интересные вопросы, которые обязательно будут рассмотрены в этой статье.

Общая информация

Полиэтилен – это химическое вещество, которое представляет собой цепочку атомов углерода, к каждому из них при этом присоединено две молекулы водорода. Несмотря на наличие одинакового состава, всё же существует две модификации. Отличаются они по своей структуре и, соответственно, свойствам. Первая представляется собой линейную цепь, в которой степень полимеризации превышает показатель в пять тысяч. Вторая структура – это разветвление из 4-6 атомов углерода, что присоединяются к основной цепи произвольным способом. Как же в общих чертах получается линейный полиэтилен? Это достигается благодаря использованию особых катализаторов, что влияют на полиолефины при умеренной температуре (до 150 градусов по Цельсию) и давлении (до 20 атмосфер). Но что же он собой представляет? Мы знаем его химические свойства, а какие тогда физические?

Что он собой представляет?

Полиэтилен – это термопластичный полимер, в котором процесс кристаллизации осуществляется при температуре меньше минус 60 градусов по Цельсию. Он не прозрачен в толстом слое, не смачивается водой, органические растворители при комнатной температуре на него не влияют. Если температура превысит плюс 80 градусов по Цельсию, то сначала осуществляется набухание, а потом распад на ароматические углеводороды и галогенопроизводные. Полиэтилен – это вещество, которое успешно противостоит негативному влиянию растворов кислот, солей и щелочей. Но если температура превышает 60 градусов тепла по Цельсию, то его довольно быстро могут разрушить азотная и серная кислоты. Для склейки изделий из полиэтилена они могут обрабатываться окислителями, с последующим нанесением необходимых веществ.

Как осуществляется получение полиэтилена?

Для этого используют:

  • Метод высокого давления (низкой плотности). Полиэтилен создаётся при высоком давлении, которое находится в диапазоне от 1 000 до 3 000 атмосфер при температуре в 180 градусов тепла по Цельсию. В качестве инициатора выступает кислород.
  • Метод низкого давления (высокой плотности). В этом случае полиэтилен создаётся при давлении, которое составляет не меньше пяти атмосфер и температуры в 80 градусов Цельсия с использованием органического растворителя и катализаторов Циглера-Натта.
  • И отдельно находится цикл производства линейного полиэтилена, о котором говорилось выше. Он является промежуточным между вторым и первым пунктами.

Следует отметить, что это не единственные технологии, которые применяются. Так, довольно распространённым ещё является и использование металлоценовых катализаторов. Смысл данной технологии заключается в том, что посредством неё добиваются значительной массы полимера, увеличивая при этом прочность изделия. В зависимости от того, какая структура и свойства необходимы при использовании одного мономера, и происходит выбор метода получения. Также на это могут повлиять требования к температуре плавления, прочности, твердости и плотности.

Почему же наблюдается сильная разница?

Основная причина различия свойств – это разветвленность макромолекул. Так, чем она больше, тем меньше кристалличность и выше эластичность полимера. Почему это важно? Дело в том, что механические показатели полиэтилена растут вместе с его плотностью и молекулярной массой. Давайте рассмотрим небольшой пример. Полиэтилен листовой обладает значительной жесткостью и не прозрачностью. Но если используется метод низкой плотности, то полученный материал будет обладать относительно неплохой гибкостью и относительной видимостью через него. Почему же выпускается такой различный ассортимент? Из-за отличий условий эксплуатации. Так, полиэтилен неплохо справляется с ударными нагрузками. Также он хорошо переносит морозы. Диапазон рабочей температуры этого материала – от -70 до +60 по Цельсию. Хотя отдельные марки приспособлены и для несколько иного градиента – от -120 и до +100. На это влияет плотность полиэтилена и его структура на молекулярном уровне.

Специфика материала

Следует отметить один существенный недостаток – быстрое старение полиэтилена. Но это дело поправимое. Увеличение срока службы достигается благодаря специальным добавкам-противостарителям, в роли которых может выступать газовая сажа, фенолы или же амины. Также следует отметить и то, что материал низкой плотности более вязок, благодаря чему он легче может быть переработан в изделия. Нельзя не упомянуть и электрические свойства. Полиэтилен благодаря тому, что он неполярный полимер, является высококачественным высокочастотным диэлектриком. Благодаря этому проницаемость и тангенс угла потерь слабо меняются от изменений влажности, температуры (в диапазоне от -80 до +100) и частоты электрического поля. Тут следует отметить одну особенность. Так, если в полиэтилене имеются остатки катализатора, то это способствует повышению тангенса угла диэлектрических потерь, что ведёт к некоторому ухудшению изоляционный свойств. Что ж, сейчас нами была рассмотрена общая ситуация. А теперь давайте уделим внимание конкретике.

Что собой представляет полиэтилен низкого давления?

Это эластичный лёгкий кристаллизующийся материал, теплостойкость которого находится в диапазоне от -80 до +100 градусов по Цельсию. Обладает блестящей поверхностью. Стеклование начинается при -20. А плавление — в диапазоне 120-135. Характерным является хорошая ударная прочность и теплостойкость. Плотность полиэтилена значительно влияет на получаемые свойства. Так, вместе с нею растёт прочность, жесткость, твердость и химическая стойкость. Но одновременно падает склонность к растяжению и проницаемость для паров и газов. Нельзя не отметить ползучесть, что наблюдается при длительной нагрузке. Такой полиэтилен биологически инертен, и его легко можно переработать. Что весьма полезно в современных условиях. Говоря про применение полиэтилена, необходимо отметить, что его используют для изготовления упаковок и тары. Так, примерно треть продукции идёт на то, чтобы создать контейнеры выдувного формирования, что используются в пищевой промышленности, косметике, автомобильной, бытовой, энергетической областях и пленок. Но встретить его можно и при создании труб и деталей трубопроводов. Важным преимуществом такого материала является его долговечность, дешевизна и простота сварки.

Полиэтилен высокого давления

Это эластичный лёгкий кристаллизующийся материал, теплостойкость которого (без нагрузки) находится в диапазоне от -120 до +90 градусов по Цельсию. Свойства также сильно зависят от плотности полученного материала. Так происходит повышение прочности, твердости, жесткости и химической стойкости. Вместе с этим толщина полиэтилена негативно сказывается на ударопрочности, удлинении, стойкости к трещинам и проницаемости для паров и газов. К тому же, он не отличается стабильностью размеров и заметно негативное влияние при относительно небольших нагрузках. Следует отметить действительно высокую химическую стойкость и отличные диэлектрические характеристики. Из негатива – на такой полиэтилен плохо влияют жиры, масла и ультрафиолетовое излучение. Биологически инертен, можно легко переработать. Также ещё можно охарактеризовать и как стойкого к радиации. Применение полиэтилена высокого давления больше всего можно встретить при создании технических, пищевых и сельскохозяйственных пленок. Хотя, конечно, это не единственный вариант.

Линейный полиэтилен

Он представляет собой эластичный кристаллизующийся материал. Может выдерживать температуру до 118 градусов тепла по Цельсию. Также важным преимуществом данного материала является его стойкость к растрескиванию, теплостойкость и ударная прочность. Применяется для изготовления упаковок, емкостей и контейнеров. Что же предлагает этот полиэтилен? Характеристики данного материала весьма высоки по сравнению с аналогом, получаемым способом низкого давления. Поэтому у него довольно неплохие свойства. Но всё же, как правило, он не может равняться с полиэтиленом высокого давления.

Как может быть представлен материал?

Итак, мы уже рассмотрели основные виды полиэтилена. В каком же виде он создаётся? Наиболее популярные – это полиэтилен листовой и пленочный. Эти формы могут быть изготовлены из материала любой плотности. Хотя всё же есть и определённые предпочтения. Так, для получения эластичных и тонких пленок широко используют подход низкого давления. Ширина полученного материала, как правило, достигает 1400 миллиметров, а длина – 300 метров. Линейный и полиэтилен высокого давления более жесткие, поэтому их используют для конструкций, которые не должны подвергаться влиянию: те же листы, трубы, формированные и литьевые изделия и прочее.

Заключение

И напоследок нельзя не упомянуть регулирующие документы, согласно которым и производится полиэтилен. ГОСТ 16338-85 отвечает за продукцию, которая создаётся при низком давлении. Он действует ещё с 1985 года. ГОСТ 16337-77 регламентирует вопросы, связанные с полиэтиленом высокого давления. Он ещё более старый и датируется 1977 годом. Эти нормативные документы содержат в себе информацию о требованиях к материалам, из которых и изготавливаются плёнки, упаковки и другая различная продукция. Причем следует отметить широкий диапазон применения получаемой продукции и её видового разнообразия. Так, к примеру, весьма распространены армированные полиэтиленовые пленки. Их особенностью является то, что при одинаковой толщине они на голову выше по своим свойствам, чем обычные образцы продукции. Из тех же самых армированных полиэтиленовых пленок делают скатерти, мешки и много иных полезных вещей. А их свойства получаются благодаря внедрению специальных нитей из природных или синтетических волокон.

fb.ru

Из чего делают полиэтилен? Производство полиэтилена. Изделия из полиэтилена

В истории науки некоторые открытия происходили случайно, а востребованные сегодня материалы часто являлись побочным продуктом какого-либо опыта. Совершенно случайно были открыты анилиновые красители для ткани, давшие впоследствии экономический и технический прорыв в легкой промышленности. Похожая история произошла и с полиэтиленом.

Открытие материала

Первый случай получения полиэтилена произошел в 1898 году. В ходе разогревания диамезотана химик немецкого происхождения Ганс фон Пехман обнаружил не дне пробирки странный осадок. Материал был достаточно плотным и напоминал воск, коллеги ученого назвали его полиметиллином. Дальше случайности у этой группы ученых дело не пошло, результат был почти забыт, интереса ни у кого не возникло. Но все же идея повисла в воздухе, требуя прагматичного подхода. Так и случилось, через тридцать с лишком лет полиэтилен был вновь открыт как случайный продукт неудачного эксперимента.

Англичане подхватывают и выигрывают

Современный материал полиэтилен появился на свет в лаборатории английской компании Imperial Chemical Industries. Э. Фоссет и Р. Джибсон проводили эксперименты с участием газов высокого и низкого давления и заметили, что один из узлов техники, в которой проводились опыты, покрылся неизвестным восковидным веществом. Заинтересовавшись побочным эффектом, они совершили несколько попыток получить вещество, но безуспешно.

Синтезировать полимер удалось М. Перрину, сотруднику той же компании, через два года. Именно он создал технологию, послужившую основой для промышленного производства полиэтилена. В дальнейшем свойства и качества материала изменялись лишь с помощью применения различных катализаторов. Массовое производство полиэтилена началось в 1938 году, а запатентован он был в 1936 году.

Сырье

Полиэтилен – это твердый полимер белого цвета. Относится к классу органических соединений. Из чего делают полиэтилен? Сырьем для его получения является газ этилен. Газ полимеризуют при высоком и низком давлении, на выходе получают гранулы сырья для дальнейшего использования. Для некоторых технологических процессов полиэтилен производится в виде порошка.

Основные виды

На сегодняшний день полимер выпускается двух основных марок ПВД и ПНП. Материал, изготовленный при среднем давлении относительного новое изобретение, но в перспективе количество выпускаемого продукта будет неизменно расти в связи с улучшающимися характеристиками и широким полем для применения.

Для коммерческого использования производят следующие виды материала (классы):

  • Низкой плотности или другое название – высокого давления (ПЭВД, ПВД).
  • Высокой плотности, или низкого давления (ПЭНП, ПНП).
  • Линейный полиэтилен, или полиэтилен среднего давления.

Также существуют другие виды полиэтилена, каждый из которых имеет свои свойства и сферу применения. В гранулированный полимер в процессе производства добавляются различные красители, позволяющие получить черный полиэтилен, красный или любого другого цвета.

ПВД

Производством полиэтилена занимается химическая промышленность. Газ этилен — основной элемент (из чего делают полиэтилен), но не единственный, требующийся для получения материала.

Получение полиэтилена высокого давления происходит в автоклавах, трубчатых реакторах. Марок ПВД изготовленных в автоклаве, согласно ГОСТу, существует восемь. Из трубчатого реактора получают двадцать один тип полиэтилена высокого давления.

Для синтеза ПВП требуется соблюдение следующих условий:

  • Температурный режим – от 200 до 250°С.
  • Катализатор – чистый кислород, пероксид (органический).
  • Давление от 150 до 300 МПа.

Поимеризированная масса в первой фазе имеет жидкое состояние, после чего перемещается в сепаратор, далее в гранулятор, где происходит формовка гранул готового материала.

Качества ПЭВД используются для производства упаковочных пленок, термопленок, многослойной упаковки. Также полиэтилен высокого давления применяется в автомобильной, химической, пищевой промышленностях. Из него делают качественные прочные трубы, используемые в жилом секторе.

Линейный полиэтилен

Из чего делают полиэтилен среднего давления или линейный полиэтилен?

  • Температура нагревания составляет до 120 °С.
  • Режим давления до 4 МПа.
  • Стимулятор процесса – катализатор (Циглера-Натта, смесь хлорида титана с мелаллоорганическим соединением).

Процесс сопровождается выпадением полиэтилена в виде хлопьев, которые потом проходят процесс отделения от раствора с последующей грануляцией.

Этот вид полиэтилена характеризуется более высокой плотностью, устойчивостью к нагреванию и разрыву. Сферой применения являются различные виды упаковочных пленок, в том числе для фасовки горячих материалов/продуктов. Из гранулированного сырья этого типа полимера изготавливают детали для крупногабаритных машин методом литья, изоляционные материалы, трубы повышенной прочности, товары народного потребления и пр.

Полиэтилен низкого давления

Производство ПНП имеет три способа. Большинство предприятий использует метод «суспензионной полимеризации». Процесс получения ПНП происходит с участием суспензии и постоянном перемешивании исходного сырья, для запуска процесса требуется катализатор.

Вторым по распространенности способом производства является полимеризация в растворе под воздействием температуры и участии катализатора. Метод не слишком эффективен, поскольку в процессе полимеризации катализатор вступает в реакцию, и конечный полимер теряет часть своих качеств.

Последним из способов производства ПНП является газофазная полимеризация, она почти ушла в прошлое, но иногда встречается на отдельных предприятиях. Процесс происходит с помощью смешивания газовых фаз сырья под воздействием диффузии. Конечный полимер получается с неоднородной структурой и плотностью, что сказывается на качестве готового продукта.

Производство полиэтилена низкого давления происходит при следующем режиме:

  • Температура поддерживается на уровне от 120°C до 150°C.
  • Давление не должно превышать 2 МПа.
  • Катализаторы процесса полимеризации (Циглера-Натта, смесь хлорида титана с мелаллоорганическим соединением).

Материал такого способа изготовления характеризуется жесткостью, высокой плотностью, малой эластичностью. Поэтому сферой его применения является промышленность. Технический полиэтилен применяется для изготовления крупногабаритных емкостей с повышенными характеристикам прочности. Востребован в строительной сфере, химической промышленности, для производства ТНП он почти не применяется.

Свойства

Полиэтилен устойчив к воздействию воды, ко многим видам растворителей, кислотам (органическим, неорганическим), не вступает в реакцию с солями. При горении выделяется запах парафина, наблюдается свечение голубого оттенка, огонь слабый. Разложение происходит при воздействии азотной кислоты, хлора и фтора в газообразном или жидком состоянии. При старении, которое происходит на воздухе, в материале образуются поперечные связи между цепями молекул, что делает материал хрупким, крошащимся.

Потребительские качества

Полиэтилен – уникальный материал, привычный в быту и производстве. Вряд ли рядовой потребитель, сможет определить с каким количеством предметов из него он сталкивается ежедневно. В мировом выпуске полимеров полиэтилен занимает львиную долю рынка – 31% от общего валового продукта.

В зависимости от того, из чего сделан полиэтилен и технологии производства, определяются его качества. Этот материал соединяет порой противоположные показатели: гибкость и прочность, пластичность и твердость, сильное растяжение и устойчивость к разрыву, устойчивость к агрессивным средам и биологическим агентам. В быту мы используем пакеты различной плотности, одноразовую посуду, полиэтиленовые крышки, детали бытовых приборов и многое другое.

Области применения

Применение изделий из полиэтилена не имеет ограничений, любая отрасль промышленности или человеческой деятельности сопровождается этим материалом:

  • Наибольшее распространение полимер получил в изготовлении упаковочных материалов. На эту часть применения приходится около 35% всего производимого сырья. Такое использование оправдано грязеооталкивающими свойствами, отсутствием среды для возникновения грибкового поражения и жизнедеятельности микроорганизмов. Одна из удачных находок – рукав полиэтиленовый, имеющий широкое применение. Варьируя по собственному усмотрению длину, пользователь ограничен лишь шириной упаковки.
  • Помня, из чего сделан полиэтилен, становится понятным, почему он получил распространение как один из лучших изоляционных материалов. Одним из его востребованных в этой сфере качеств стало отсутствие электропроводимости. Также незаменимы его свойства водоотталкивания, что нашло применение в производстве гидроизоляционных материалов.
  • Устойчивость к разрушительной силе воды, как растворителя, позволяет изготавливать трубы из полиэтилена для бытовых и промышленных потребителей.
  • В строительной отрасли используются шумоизолирующие качества полиэтилена, его низкая теплопроводность. Эти свойства пригодились при изготовлении на его основе материалов для утепления жилых и промышленных объектов. Полиэтилен технический используется для изоляции тепловых трасс, в машиностроении и пр.
  • Не менее устойчив материал к агрессивным средам химической промышленности, трубы из полиэтилена применяются в лабораториях и химических производствах.
  • В медицине полиэтилен полезен в виде перевязочных материалов, протезов конечностей, используют его в стоматологии и т.д.

Способы переработки

В зависимости от того каким способом было переработано гранулированное сырье, будет зависеть какой марки полиэтилен будет получен. Распространенные способы:

  • Экструзия (выдавливание). Применяется для изготовления труб, упаковочных и других видов пленок, листового материала для строительства и отделки, изготовления кабелей, производится рукав полиэтиленовый и прочие изделия.
  • Литье, формование термо-вакуумным способом. В основном используется для изготовления упаковочных материалов, боксов и т.д.
  • Экструзионно-выдувной, ротационный. С помощью этого способа получают объемные емкости, крупногабаритную тару, сосуды.
  • Армирование. По определенной технологии в формируемую массу полиэтилена закладываются усиливающие элементы (металл), что позволяет получить строительный материал повышенной прочности, но с меньшей стоимостью.

Из чего делают полиэтилен, кроме основных составляющих веществ? Обязательным является катализатор процесса и добавки, меняющие свойства, качества готового материала.

Вторичная переработка

Стойкость полиэтилена — это его плюс в качестве потребительского товара и его минус, как одного из главных загрязняющих окружающую среду факторов. На сегодняшний день важным становится переработка отходов – рециклинг. Все марки полиэтилена могут быть утилизированы и повторно превращены в гранулированное сырье, из которого можно делать множество востребованных товаров народного и промышленного потребления.

Полиэтиленовые крышки, пакеты, бутылки будут разлагаться на свалке не одну сотню лет, а накопленные отходы отравляют природные жизненно важные ресурсы. Мировая практика демонстрирует рост количества перерабатывающих полиэтилен предприятий. Собирая фактически мусор, в таких компаниях проводят его санацию, дробят. Таким образом, происходит экономия ресурсов, охрана окружающей среды и производство востребованной продукции.

fb.ru

Полиэтилен высокого давления Википедия

Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.

Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].

История

Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка

[3].

По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].

История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД

[4].

Названия

Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.

  • Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
  • Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПЭНД, ПНД, HDPE (High Density Polyethylene).
  • Полиэтилен среднего давления (высокой плотности) — ПЭСД[6].
  • Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
  • Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD
    [1]
    .
  • Полиэтилен очень низкой плотности — VLDPE
  • Полиэтилен сверхнизкой плотности — ULDPE
  • Металлоценовый линейный полиэтилен низкой плотности — MPE
  • Сшитый полиэтилен — PEX или XLPE, XPE.
  • Высокомолекулярный полиэтилен — ВМПЭ, HMWPE или PEHMW или VHMWPE[1].
  • Сверхвысокомолекулярный полиэтилен — UHMWPE

В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.

Молекулярное строение

Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена:
ПоказательПЭВДПЭСДПЭНД
Общее число групп СН3 на 1000 атомов углерода:21,651,5
Число концевых групп СН3 на 1000 атомов углерода:4,521,5
Этильные ответвления14,411
Общее количество двойных связей на 1000 атомов углерода0,4—0,60,4—0,71,1-1,5
в том числе:   
винильных двойных связей (R-CH=CH
2
), %
174387
винилиденовых двойных связей , %71327
транс-виниленовых двойных связей (R-CH=CH-R’), %12256
Степень кристалличности, %50-6575-8580-90
Плотность, г/см³0,9-0,930,93-0,940,94-0,96

Полиэтилен высокой плотности HDPE (High-Density — высокая плотность)

Физико-механические свойства ПЭНД при 20°C:
ПараметрЗначение
Плотность, г/см³0,94-0,96
Разрушающее напряжение, кгс/см²
 
при растяжении100—170
при статическом изгибе120—170
при срезе140—170
относительное удлинение при разрыве, %500—600
модуль упругости при изгибе, кгс/см²1200—2600
предел текучести при растяжении, кгс/см²90-160
относительное удлинение в начале течения, %15-20
твёрдость по Бринеллю, кгс/мм²1,4-2,5

С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.

С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться

Изменение разрушающего напряжения при сжатии, статическом изгибе и срезе в зависимости от температуры (определено при скорости деформации 500 мм/мин и толщине образца 2 мм):
Разрушающее напряжение, кгс/см²Температура, ºС
20406080
при сжатии1267740
при статическом изгибе1188860
при срезе1691319253
Зависимость модуля упругости при изгибе ПЭВД от температуры:
Температура, °С-120-100-80-60-40-2002050
Модуль упругости при изгибе, кгс/см²2810026700232001920013600740030502200970

Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).

Сверхвысокомолекулярный полиэтилен высокой плотности

Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от — 200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.

[7]

Химические свойства

Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.

Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия

[8].

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80°C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180°C воде.

Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Получение

На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:

Получение полиэтилена высокого давления

Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:

в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.

Получение полиэтилена среднего давления

Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:

продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.

Получение полиэтилена низкого давления

Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:

Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.

Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2 и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.

Другие способы получения полиэтилена

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Модификации полиэтилена

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.

Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

Применение

  • Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
  • Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
  • Полимерные трубы для канализации, дренажа, водо-, газоснабжения
  • Электроизоляционный материал.
  • Полиэтиленовый порошок используется как термоклей[10].
  • Броня (бронепанели в бронежилетах)[11]
  • Корпуса для лодок[12], вездеходов, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.
  • Вспененный полиэтилен (пенополиэтилен) используется, как теплоизолятор. Наиболее известны следующие марки: МультиФлекс, Изоком, Изолон, Порилекс, Алентекс
  • Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[13]
  • Полиэтилен низкого давления широко применяется в благоустройстве придомовых территорий и детских площадок, отодвигая фанеру и дерево на второй план, ведь срок использования скатов из ПНД более 15 лет в то время как у «деревянных аналогов» срок использования всего 10 лет причем через 3-5 лет дерево теряет товарный вид

Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.

Утилизация

Переработка

Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.

Сжигание

При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210°С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430°С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.

Биоразложение

Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 миллиграммов полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[14][15].

См. также

Примечание

  1. 1 2 3 4 Описание и марки полимеров — Полиэтилен
  2. ↑ Король упаковки: как появился целлофан
  3. ↑ История полиэтилена: неожиданное рождение пластикового пакета
  4. 1 2 Дж. Уайт, Д.Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
  5. ↑ Vasile C., Pascu M.// Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
  6. 1 2 3 4 5 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
  7. ↑ Сайт Polymeri.ru » Сверхвысокомолекулярный полиэтилен: рынок в ожидании переработчиков»
  8. 1 2 Цветков Л. А. § 10. Понятие о высокомолекулярных соединениях // Органическая химия. Учебник для 10 класса. — 20-е изд. — М.: Просвещение, 1981. — С. 52—57. — 1 210 000 экз.
  9. Шульпин Г. Эти разные полимеры // Наука и жизнь. — 1982. — № 3. — С. 80—83.
  10. ↑ Сжать и провернуть: Сделано в России
  11. ↑ Доспехи XXI века
  12. ↑ Total Petrochemicals создала ротомолдинговую лодку из полиэтилена
  13. ↑ Геомембрана HDPE
  14. Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена. N+1 Интернет-издание (25 апреля 2017). Проверено 25 апреля 2017.
  15. Bombelli P., Howe C. J., Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — Vol. 27. — P. R283—R293. — DOI:10.1016/j.cub.2017.02.060.

Ссылки

wikiredia.ru

Полиэтилен Википедия

Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.

Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].

История

Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[3].

По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].

История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД[4].

Названия

Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.

  • Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
  • Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПЭНД, ПНД, HDPE (High Density Polyethylene).
  • Полиэтилен среднего давления (высокой плотности) — ПЭСД[6].
  • Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
  • Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD[1].
  • Полиэтилен очень низкой плотности — VLDPE
  • Полиэтилен сверхнизкой плотности — ULDPE
  • Металлоценовый линейный полиэтилен низкой плотности — MPE
  • Сшитый полиэтилен — PEX или XLPE, XPE.
  • Высокомолекулярный полиэтилен — ВМПЭ, HMWPE или PEHMW или VHMWPE[1].
  • Сверхвысокомолекулярный полиэтилен — UHMWPE

В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.

Молекулярное строение

Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена:
ПоказательПЭВДПЭСДПЭНД
Общее число групп СН3 на 1000 атомов углерода:21,651,5
Число концевых групп СН3 на 1000 атомов углерода:4,521,5
Этильные ответвления14,411
Общее количество двойных связей на 1000 атомов углерода0,4—0,60,4—0,71,1-1,5
в том числе:   
винильных двойных связей (R-CH=CH2), %174387
винилиденовых двойных связей , %71327
транс-виниленовых двойных связей (R-CH=CH-R’), %12256
Степень кристалличности, %50-6575-8580-90
Плотность, г/см³0,9-0,930,93-0,940,94-0,96

Полиэтилен высокой плотности HDPE (High-Density — высокая плотность)

Физико-механические свойства ПЭНД при 20°C:
ПараметрЗначение
Плотность, г/см³0,94-0,96
Разрушающее напряжение, кгс/см² 
при растяжении100—170
при статическом изгибе120—170
при срезе140—170
относительное удлинение при разрыве, %500—600
модуль упругости при изгибе, кгс/см²1200—2600
предел текучести при растяжении, кгс/см²90-160
относительное удлинение в начале течения, %15-20
твёрдость по Бринеллю, кгс/мм²1,4-2,5

С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.

С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться

Изменение разрушающего напряжения при сжатии, статическом изгибе и срезе в зависимости от температуры (определено при скорости деформации 500 мм/мин и толщине образца 2 мм):
Разрушающее напряжение, кгс/см²Температура, ºС
20406080
при сжатии1267740
при статическом изгибе1188860
при срезе1691319253
Зависимость модуля упругости при изгибе ПЭВД от температуры:
Температура, °С-120-100-80-60-40-2002050
Модуль упругости при изгибе, кгс/см²2810026700232001920013600740030502200970

Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).

Сверхвысокомолекулярный полиэтилен высокой плотности

Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от — 200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.[7]

Химические свойства

Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.

Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия[8].

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80°C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180°C воде.

Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Получение

На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:

Получение полиэтилена высокого давления

Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:

в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.

Получение полиэтилена среднего давления

Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:

продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.

Получение полиэтилена низкого давления

Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:

Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.

Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2 и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.

Другие способы получения полиэтилена

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Модификации полиэтилена

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.

Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

Применение

  • Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
  • Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
  • Полимерные трубы для канализации, дренажа, водо-, газоснабжения
  • Электроизоляционный материал.
  • Полиэтиленовый порошок используется как термоклей[10].
  • Броня (бронепанели в бронежилетах)[11]
  • Корпуса для лодок[12], вездеходов, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.
  • Вспененный полиэтилен (пенополиэтилен) используется, как теплоизолятор. Наиболее известны следующие марки: МультиФлекс, Изоком, Изолон, Порилекс, Алентекс
  • Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[13]
  • Полиэтилен низкого давления широко применяется в благоустройстве придомовых территорий и детских площадок, отодвигая фанеру и дерево на второй план, ведь срок использования скатов из ПНД более 15 лет в то время как у «деревянных аналогов» срок использования всего 10 лет причем через 3-5 лет дерево теряет товарный вид

Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.

Утилизация

Переработка

Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.

Сжигание

При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210°С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430°С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.

Биоразложение

Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 миллиграммов полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[14][15].

См. также

Примечание

  1. 1 2 3 4 Описание и марки полимеров — Полиэтилен
  2. ↑ Король упаковки: как появился целлофан
  3. ↑ История полиэтилена: неожиданное рождение пластикового пакета
  4. 1 2 Дж. Уайт, Д.Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
  5. ↑ Vasile C., Pascu M.// Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
  6. 1 2 3 4 5 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
  7. ↑ Сайт Polymeri.ru » Сверхвысокомолекулярный полиэтилен: рынок в ожидании переработчиков»
  8. 1 2 Цветков Л. А. § 10. Понятие о высокомолекулярных соединениях // Органическая химия. Учебник для 10 класса. — 20-е изд. — М.: Просвещение, 1981. — С. 52—57. — 1 210 000 экз.
  9. Шульпин Г. Эти разные полимеры // Наука и жизнь. — 1982. — № 3. — С. 80—83.
  10. ↑ Сжать и провернуть: Сделано в России
  11. ↑ Доспехи XXI века
  12. ↑ Total Petrochemicals создала ротомолдинговую лодку из полиэтилена
  13. ↑ Геомембрана HDPE
  14. Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена. N+1 Интернет-издание (25 апреля 2017). Проверено 25 апреля 2017.
  15. Bombelli P., Howe C. J., Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — Vol. 27. — P. R283—R293. — DOI:10.1016/j.cub.2017.02.060.

Ссылки

wikiredia.ru

Характеристика, свойства и особенности полиэтилена высокого давления

Структура полиэтилена ПЭВД состоит из большого количества ответвлений различной длины. Они не позволяют молекулам, имеющим высокую молекулярную массу, образовывать кристаллическую структуру. Такая структура имеет слабые межмолекулярные связи, что придаёт полиэтилену низкую устойчивость к разрывам, высокую степень пластичности и повышенную текучесть при расплаве.

В качестве материала для обработки методом полимеризации выступают гранулы до 5 мм.

Образование ПЭВД в реакторах трубчатого или автоклавного типа возможно при следующих условиях:

  • температурный режим в 200–260 °C;
  • показатели давления 150–300 МПа;
  • наличие инициатора в виде кислорода или пероксида органического происхождения.

Получаемый в результате реакции по радикальному механизму материал обладает молекулярным весом 80–500 тыс. и кристалличностью в 50–60%. Полимер в жидком состоянии подвергают грануляции в расплаве.

Метод экструзии позволяет перерабатывать ПЭВД двумя основными способами:

  • раздувом в рукавную плёнку;
  • в плоскую плёнку сквозь охлаждаемый валик с использованием плоскощелевой головки.

Основные свойства

Макромолекулы ПЭВД отличаются содержанием боковых углеводородных цепей C1–С4. При параллельном укладывании друг на друга они образуют ламели. Большое количество боковых ответвлений придаёт материалу низкую кристалличность и плотность.

По своим физическим свойствам ПЭВД отличается блеском, гладкостью, эластичностью, высокой степенью тягучести.

Для ПЭВД при 20° характерны следующие физико-химические свойства:

  • плотность до 0,93 г/см²;
  • деструкция при растяжении до 170 кгс/см²;
  • деструкция при статическом изгибе до 170 кгс/см²;
  • деструкция при срезе до 170 кгс/см²;
  • относительное удлинение на разрыв 500–600%;
  • модуль упругости на изгиб до 2600 кгс/см²;
  • предел текучести при растяжении до 160 кгс/см²;
  • относительное удлинение в начале течения 15–20%;
  • твёрдость по Бринеллю 1,4–2,5 кгс/мм².

Применение в промышленности

ПЭВД с успехом используется для изготовления пакетов с петлевой ручкой, а также ручкой вырубного типа. Блеск ПЭВД делает изображение на такой продукции ярким, а цветовую гамму очень сочной.

Пакеты, изготовленные из ПЭВД, отличаются способностью хорошо держать форму и практически не мнутся. Высокая прочность позволяет использовать такие пакеты для хранения и транспортировки предметов с острыми и режущими углами.

Большое количество положительных характеристик сделали продукцию из ПЭВД наиболее востребованной для производства имиджевых фирменных пакетов. Упаковка подарков на крупных и престижных мероприятиях также производится в продукцию, выработанную из ПЭВД.

Из такого полиэтилена изготавливаются плёнки для обёртки, контейнеры и пластиковые пакеты, которые отличаются красотой, эффектным глянцем и выдерживают порядка 4 кг веса. Низкая кристалличность ПЭВД придаёт этому полимеру гибкость и мягкость. Он пластичный и слегка воскообразный на ощупь.

Широкое применение и востребованность основываются на высокой прочности изготавливаемой из ПЭВД продукции. Исходный материал отличается хорошей стойкостью к разрывам и ударам. Он прочен и легко выдерживает низкие температуры, многократное сжатие и растяжение.

Кроме того, полиэтилен ВД не токсичен. Его применение безопасно для человека, животных и окружающей среды.

Основные сферы применения ПЭВД:

  • экструзия плёнки;
  • кабельное производство;
  • производство пластмасс под действием давления;
  • выработка выдувных изделий.

Страны-производители ПЭВД

Полиэтилен ВД занимает лидирующие позиции по общим объёмам производства и применения. Изначально ПЭВД использовался в качестве изоляции в электротехнической промышленности.

Зарубежные производители полиэтиленовой плёнки имеют индивидуальные стандарты, которые отличаются от российских. За основу при обозначении полиэтилена берутся не показатели технологического давления, а плотность полученного материала. Маркировка изделий и сырья из полиэтилена ВД в соответствии с зарубежной классификацией маркируется как Low Density Polyethylene или ПНП.

Ежегодно на территории России производится порядка 600 тыс. тонн ПЭВД, из которых на внутренний рынок поступает около 500 тыс. тонн. Экспортируется почти 15% выпускаемого в России ПЭВД.

Основные производители ПЭВД в России:

  • «Уфаоргсинтез» от НК «Башнефтехим»,
  • Ангарский завод полимеров от НК «Юкос»,
  • «Салаватнефтеоргсинтез»,
  • «Сэвилен».

Мировыми лидерами по производству ПЭВД являются Китай, Ближний Восток, Европа и США.

Переработка навоза — очень выгодное дело!

Вы хотите приобрести дробилку? Тогда вам необходимо разобраться в теме! В этом вам поможет эта подробная статья.

Всем работающим в перерабатывающем комплексе важно максимально сокраить временные и материальные затраты. Информация по http://greenologia.ru/utilizaciya-texniki/promyshlennoe/razrivatel-paketov.html ссылке предназначена как раз для этого.

Особенности вторичной переработки

Существуют физико-химические, а также механические методы переработки. Механический способ представляет собой измельчение с получением порошкообразных материалов и крошки для использования в литье под давлением. Характеризуется почти абсолютным отсутствием изменений физико-химических свойств.

Физико-химический способ переработки предполагает:

  • разрушение с последующим получением мономеров и олигомеров, которые пригодны для выработки волокна и плёнок;
  • вторичное плавление с последующим получением гранулята, агломерата. Допускается экструзия и литьё под давлением;
  • переосаждение из растворов с последующей выработкой порошковых составов, используемых для покрытий и выработки композиционных составляющих;
  • модификация по химическому принципу с целью выработки материалов, обладающих новыми свойствами.
Учитывая, что ввод новых установок не прогнозируется, а количество покупателей в этом сегменте имеет устойчивые показатели, рынок ПЭВД ожидает стабильность в области спроса и предложения.

greenologia.ru

Полиэтилен • ru.knowledgr.com

Полиэтилен (сократил PE) или полиэтилен (полиэтен имени IUPAC или poly (метилен)) являются наиболее распространенной пластмассой. Ежегодное глобальное производство составляет приблизительно 80 миллионов тонн. Ее основное использование находится в упаковке (полиэтиленовый пакет, пластмассовые пленки, geomembranes, контейнеры включая бутылки, и т.д.). Много видов полиэтилена известны с большей частью наличия химической формулы (CH) H. Таким образом PE обычно — смесь подобных органических соединений, которые отличаются с точки зрения ценности n.

Свойства

Физические свойства

Полиэтилен — термопластический полимер, состоящий из длинных цепей углеводорода. В зависимости от кристалличности и молекулярной массы, точка плавления и стеклование могут или могут не быть заметными. Температура, при которой они происходят, варьируется сильно с типом полиэтилена. Для общих товарных сортов среды — и высокоплотный полиэтилен точка плавления, как правило, находится в диапазоне. Точка плавления для среднего, коммерческого, имеющего малую плотность полиэтилена, как правило.

Химические свойства

У

большей части LDPE, MDPE и сортов HDPE есть превосходное химическое сопротивление, означая, что это не подвергается нападению сильными кислотами или сильными основаниями. Это также стойкое к нежным окислителям и уменьшающим агентам. Полиэтилен медленно горит с синим пламенем, имеющим желтый наконечник, и испускает аромат керосина. Материал продолжает гореть на удалении источника пламени и производит каплю. Прозрачные образцы не распадаются при комнатной температуре. Полиэтилен (кроме поперечного связанного полиэтилена) обычно может растворяться при повышенных температурах в ароматических углеводородах, таких как толуол или ксилол, или в хлорированных растворителях, таких как trichloroethane или trichlorobenzene.

Процесс

Мономер

Компонент или мономер — этилен (этен имени IUPAC), газообразный углеводород с формулой CH, который может быть рассмотрен как пара групп метилена (=) связан друг с другом. Поскольку состав очень реактивный, этилен должен иметь высокую чистоту. Типичные технические требования, этан (общий предшественник этилена), и метан. Этилен обычно производится из нефтехимических источников, но также и произведен обезвоживанием этанола.

Полимеризация

Этилен — довольно стабильная молекула, которая полимеризируется только на контакт с катализаторами. Преобразование очень экзотермическое. Полимеризация координации — самая распространяющаяся технология, что означает, что используются металлические хлориды или металлические окиси. Наиболее распространенные катализаторы состоят из титана (III) хлорид, так называемые катализаторы Циглера-Натты. Другой общий катализатор — катализатор Филлипса, подготовленный, внося хром (VI) окись на кварце. Этилен может быть произведен через радикальную полимеризацию, но этот маршрут только ограничил полезность и как правило требует аппарата высокого давления.

Классификация

Полиэтилен классифицирован в несколько различных категорий, базируемых главным образом на его плотности и переходе. Его механические свойства зависят значительно от переменных, таких как степень и тип перехода, кристаллической структуры и молекулярной массы. Относительно проданных объемов самые важные сорта полиэтилена — HDPE, LLDPE и LDPE.

Крайний высокий полиэтилен молекулярной массы (UHMWPE)

UHMWPE — полиэтилен с нумерацией молекулярной массы в миллионах, обычно между 3,1 и 5,67 миллионов. Высокая молекулярная масса делает его очень жестким материалом, но приводит к менее эффективной упаковке цепей в кристаллическую структуру, как свидетельствуется удельными весами меньше, чем высокого полиэтилена плотности (например, 0.930-0.935 г/см). UHMWPE может быть сделан через любую технологию катализатора, хотя катализаторы Циглера наиболее распространены. Из-за его выдающейся крутизны и его сокращения, изнашивания и превосходного химического сопротивления, UHMWPE используется в широком диапазоне заявлений. Они включают, может и части погрузочно-разгрузочного устройства бутылки, движущиеся части на ткацких машинах, подшипниках, механизмах, искусственных суставах, защите края на катках и разделочных досках мясников. Это обычно используется для строительства суставных частей внедрений, используемых для замен бедра и колена. Как волокно, это конкурирует с aramid в пуленепробиваемых жилетах.

Высокоплотный полиэтилен (HDPE)

HDPE определен плотностью больших или равных 0,941 г/см. У HDPE есть низкая степень перехода и таким образом низкие межмолекулярные силы и предел прочности. HDPE может быть произведен катализаторами хрома/кварца, катализаторами Циглера-Натты или metallocene катализаторами. Отсутствие перехода обеспечено соответствующим выбором катализатора (например, катализаторов хрома или катализаторов Циглера-Натты) и условия реакции. HDPE используется в продуктах и упаковке, таких как молочники, моющие бутылки, ванны масла, контейнеры для мусора и водопроводные трубы. Одна треть всех игрушек произведена от HDPE. В 2007 глобальное потребление HDPE достигло объема больше чем 30 миллионов тонн.

Поперечный связанный полиэтилен (PEX или XLPE)

PEX — среда — к высокоплотному полиэтилену, содержащему связи перекрестной связи, введенные в структуру полимера, изменяя термопласт в термореактивный материал. Высокотемпературные свойства полимера улучшены, его поток уменьшен, и его химическое сопротивление увеличено. PEX используется в некоторых системах слесарного дела питьевой воды, потому что трубы, сделанные из материала, могут быть расширены, чтобы соответствовать по металлической соске, и это будет медленно возвращаться к ее оригинальной форме, формируя постоянное, водонепроницаемое, связь.

Полиэтилен средней плотности (MDPE)

MDPE определен диапазоном плотности 0.926-0.940 г/см. MDPE может быть произведен катализаторами хрома/кварца, катализаторами Циглера-Натты или metallocene катализаторами. У MDPE есть хороший шок и свойства сопротивления снижения. Это также менее чувствительно к метке, чем HDPE, сопротивление взламывания напряжения лучше, чем HDPE. MDPE, как правило, используется в газовых трубах, и детали, мешки, сокращают фильм, упаковочный фильм, сумки и вворачивают закрытия.

Линейный имеющий малую плотность полиэтилен (LLDPE)

LLDPE определен диапазоном плотности 0.915-0.925 г/см. LLDPE — существенно линейный полимер со значительным количеством коротких отделений, обычно делаемых copolymerization этилена с альфа-олефинами короткой цепи (например, 1-butene, 1-hexene и 1-octene). У LLDPE есть более высокий предел прочности, чем LDPE, это показывает более высокое воздействие и сопротивление прокола, чем LDPE. Более низкая толщина (мера) фильмы могут быть унесены, по сравнению с LDPE, с лучшим экологическим сопротивлением взламывания напряжения, но не так легки обработать. LLDPE используется в упаковке, особенно фильм для сумок и листов. Более низкая толщина может использоваться по сравнению с LDPE. Это используется для кабельных покрытий, игрушек, крышек, ведер, контейнеров и трубы. В то время как другие заявления доступны, LLDPE используется преобладающе в приложениях фильма из-за его крутизны, гибкости и относительной прозрачности. Примеры продукта колеблются от сельскохозяйственных фильмов, обертки Сарана и пузырчатой упаковки, к многослойным и сложным фильмам. В 2013 мировой рынок LLDPE достиг объема 40 миллиардов долларов США.

Имеющий малую плотность полиэтилен (LDPE)

LDPE определен диапазоном плотности 0.910-0.940 г/см. У LDPE есть высокая степень короткого и долгого перехода цепи, что означает, что цепи не упаковывают вещи в кристаллическую структуру также. У этого есть, поэтому, менее сильные межмолекулярные силы, как привлекательность вызванного диполя мгновенного диполя меньше. Это приводит к более низкому пределу прочности и увеличенной податливости. LDPE создан полимеризацией свободного радикала. Высокая степень перехода с длинными цепями дает литые уникальные и желательные свойства потока LDPE. LDPE используется и для твердых контейнеров и для приложений пластмассовой пленки, таких как обертка фильма и полиэтиленовые пакеты. В 2013 у глобального рынка LDPE был объем почти 33 миллиардов долларов США.

Полиэтилен «Очень низкая плотность» (VLDPE)

VLDPE определен диапазоном плотности 0.880-0.915 г/см. VLDPE — существенно линейный полимер с высокими уровнями отделений короткой цепи, обычно делаемых copolymerization этилена с альфа-олефинами короткой цепи (например, 1-butene, 1-hexene и 1-octene). VLDPE обычно произведен, используя metallocene катализаторы из-за большего объединения co-мономера, показанного этими катализаторами. VLDPEs используются для шланга и шланга трубки, льда и мешков замороженных продуктов, упаковки пищевых продуктов и эластичной обертки, а также влияют на модификаторы, когда смешано с другими полимерами.

Недавно много научно-исследовательской деятельности сосредоточилось на природе и распределении длинных отделений цепи в полиэтилене. В HDPE относительно небольшое количество этих отделений, возможно 1 в 100 или 1 000 отделений за углерод основы, может значительно затронуть реологические свойства полимера.

Сополимеры

В дополнение к copolymerization с альфа-олефинами этилен может также быть copolymerized с широким диапазоном других мономеров и ионного состава, который создает ионизированные свободные радикалы. Общие примеры включают виниловый ацетат (получающийся продукт — ацетатный сополимер этиленового винила или EVA, широко используемый в спортивной обуви единственная пена), и множество акрилатов. Применения акрилового сополимера включают упаковку и спортивные товары и суперпластификатор, используемый для производства цемента.

История

Полиэтилен сначала синтезировался немецким химиком Гансом фон Пехманом, который подготовил его случайно в 1898, занимаясь расследованиями diazomethane. Когда его коллеги Ойген Бамбергер и Фридрих Чирнер характеризовали белое, восковое вещество, которое он создал, они признали, что оно содержало длинные-CH-цепи и назвало его полиметиленом.

Первый промышленно практический синтез полиэтилена (diazomethane общеизвестно нестабильное вещество, которого обычно избегают в промышленном применении) был обнаружен в 1933 Эриком Фосеттом и Реджиналдом Гибсоном, снова случайно, на работах Imperial Chemical Industries (ICI) в Нортвиче, Англия. После оказывания чрезвычайно высокого давления (несколько сотен атмосфер) к смеси этилена и benzaldehyde они снова произвели белый, восковой, существенный. Поскольку реакция была начата кислородным загрязнением следа в их аппарате, эксперимент было, сначала, трудно воспроизвести. Только в 1935, другой химик ICI, Майкл Перрин, развил этот несчастный случай в восстанавливаемый синтез с высоким давлением для полиэтилена, который стал основанием для промышленного производства LDPE, начинающегося в 1939. Поскольку у полиэтилена, как находили, были свойства очень с низким уровнем потерь в очень высокочастотных радиоволнах, коммерческое распределение в Великобритании было приостановлено при внезапном начале Второй мировой войны, наложенная тайна и новый процесс использовалась, чтобы произвести изоляцию для УВЧ и коаксиальных кабелей СВЧ радарных наборов. Во время Второй мировой войны дальнейшее исследование было сделано на процессе ICI, и в 1944 Bakelite Corporation в сабинском, Техас и DuPont в Чарлстоне, Западная Вирджиния, начала крупномасштабное коммерческое производство в соответствии с лицензией от ICI.

Впечатляющий ориентир в коммерческом производстве полиэтилена начался с развития катализатора, которые продвигают полимеризацию при умеренных температурах и давлениях. Первым из них был хром основанный на трехокиси катализатор, обнаруженный в 1951 Робертом Бэнксом и Дж. Полом Хогэном в Phillips Petroleum. В 1953 немецкий химик Карл Циглер разработал каталитическую систему, основанную на галидах титана и составах organoaluminium, которые работали при еще более умеренных условиях, чем катализатор Филлипса. Катализатор Филлипса менее дорогой и легче работать с, однако, и оба метода в большой степени используются промышленно. К концу 1950-х оба Филлипс — и катализаторы Ziegler-типа использовались для производства HDPE. В 1970-х система Циглера была улучшена объединением хлорида магния. О каталитических системах, основанных на разрешимых катализаторах, metallocenes, сообщили в 1976 Уолтер Каминский и Хансйорг Зинн. Циглер — и находящиеся в metallocene семьи катализаторов, оказалось, были очень гибки в copolymerizing этилене с другими олефинами и стали основанием для широкого диапазона смол полиэтилена, доступных сегодня, включая очень низкий полиэтилен плотности и линейный имеющий малую плотность полиэтилен. Такие смолы, в форме волокон UHMWPE, имеют (с 2005) начатый заменить aramids во многих приложениях высокой прочности.

Проблемы охраны окружающей среды

Хотя этилен может быть произведен из возобновляемых источников энергии, полиэтилен, главным образом, сделан из нефтяного или природного газа.

Разлагающиеся пластмассы

Одна из основных проблем полиэтилена — то, что без специального режима это не с готовностью разлагаемо микроорганизмами, и таким образом накапливается. В Японии, избавляющейся от пластмасс безвредным для окружающей среды способом, была основная проблема, обсужденная до аварии на АЭС Фукусима-1 в 2011. Это было перечислено как рынок в размере $90 миллиардов для решений. С 2008 Япония быстро увеличила переработку пластмасс, но все еще имеет большой уровень обертывания пластмассы, которое пропадает зря.

В мае 2008 Дэниел Берд, 16-летний канадец, выиграл Научную Ярмарку всей Канады в Оттаве после обнаружения, что Pseudomonas fluorescens, с помощью Sphingomonas, может ухудшить более чем 40% веса полиэтиленовых пакетов меньше чем через три месяца.

Теплолюбивая бактерия Brevibacillus borstelensis (напрягаются 707) была изолирована от образца почвы и, как находили, использовала имеющий малую плотность полиэтилен в качестве единственного углеродного источника; когда выведено вместе в 50 градусах Цельсия. Biodegredation увеличился со временем, выставленным ультрафиолетовому излучению.

В 2010 японский исследователь, Акинори Ито, выпустил прототип машины, которая создает нефть из полиэтилена, используя маленький, отдельный процесс дистилляции пара.

Acinetobacter sp 351 может ухудшить более низкую молекулярную массу PE oligomers. Когда PE подвергнут термо и photo-oxidization, продукты включая алканы, алкены, кетоны, альдегиды, alcohols, карбоксильную кислоту, кето кислоты, dicarboxylic кислоты, лактоны и сложные эфиры выпущены.

Биополученный полиэтилен

Braskem and Toyota Tsusho Corporation начала совместные маркетинговые действия, чтобы произвести полиэтилен из сахарного тростника. Braskem построит новое сооружение в их существующем промышленном отделении в Triunfo, RS, Бразилия с ежегодной производственной мощностью, и произведет высокоплотный полиэтилен (HDPE) и имеющий малую плотность полиэтилен (LDPE) от биоэтанола, полученного из сахарного тростника.

Полиэтилен может также быть сделан из другого сырья для промышленности, включая зерно пшеницы и сахарную свеклу. Восстановленный от тростникового сахара, т.е. биомассы завода возобновимое сырье для промышленности, Бразилия — первая страна, которая разовьет продукт.

Эти события используют возобновимые ресурсы, а не ископаемое топливо, хотя проблема пластмассового источника в настоящее время незначительна в связи с пластмассовыми отходами и в особенности отходами полиэтилена как показано выше.

Присоединение

Обычно используемые методы для присоединения к частям полиэтилена вместе включают:

  • Горячий газ, сваривающий
  • Инфракрасная сварка
  • Лазер, сваривающий
  • Сверхзвуковая сварка
  • Тепловой сплав

Пластыри и растворители редко используются, потому что полиэтилен неполярен и имеет высокое сопротивление растворителям. Чувствительные к давлению пластыри (PSA) выполнимы, если поверхность — пламя, которое рассматривают, или корона рассматривала.

Обычно используемые пластыри включают:

  • Дисперсия растворяющего типа PSAs
  • Пластыри контакта полиуретана
  • Полиуретан с двумя частями или пластыри эпоксидной смолы
  • Виниловый ацетатный горячий сополимер плавит пластыри

Номенклатура и общее описание процесса

Полиэтилен имени прибывает из компонента а не получающегося химического соединения, которое не содержит двойных связей. Полиэтен научного названия систематически получается из научного названия мономера. Мономер алкена преобразовывает в длинное, иногда очень долго, алкан в процессе полимеризации. При определенных обстоятельствах полезно использовать основанную на структуре номенклатуру; в таких случаях IUPAC рекомендует poly (метилен) (poly (methanediyl), непредпочтительная альтернатива). Различие в именах между этими двумя системами происходит из-за открытия двойной связи мономера на полимеризацию. Имя сокращено до PE. Подобным образом полипропилен и полистирол сокращены к PP и PS, соответственно. В Соединенном Королевстве полимер обычно называют полиэтиленом от торговой марки ICI, хотя это не признано с научной точки зрения.

Библиография

Внешние ссылки

  • История полиэтилена: случайное рождение полиэтиленовых пакетов
  • Полиэтилен технические свойства & заявления

ru.knowledgr.com

Полиэтилен — Википедия

Полиэтиле́н — термопластичный полимер этилена, относится к классу полиолефинов[1]. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода.

Представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, диэлектрик, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), адгезия (прилипание) — чрезвычайно низкая. Часто неверно называется целлофаном[2].

История

Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка[3].

По другой версии, более принятой в научных кругах, развитие полиэтилена можно рассматривать с работ сотрудников компании Imperial Chemical Industries по созданию промышленной технологии производства, проводившихся начиная с 1920-х. Активная фаза создания начата после монтажа установки для синтеза, с которой в 1931 году работали Фосет и Гибсон. Ими был получен низкомолекулярный парафинообразный продукт, имеющий мономерное звено, аналогичное полиэтилену. Работы Фоссета и Гибсона продолжались вплоть до марта 1933, когда было принято решение модернизировать аппарат высокого давления для получения более качественного результата и большей безопасности. После модернизации эксперименты были продолжены совместно с М. В. Перрином и Дж. Г. Паттоном и в 1936 завершились успешно, получением патента на полиэтилен низкой плотности (ПЭНП). Коммерческое производство ПЭНП было начато в 1938 году[4].

История полиэтилена высокой плотности (ПЭВП или ПЭНД) развивалась с 1920-х, когда Карл Циглер начал работы по созданию катализаторов для ионно-координационной полимеризации. В 1954 году технология была в целом освоена, и был получен патент. Позже было начато промышленное производство ПЭНД[4].

Видео по теме

Названия

Различные виды полиэтилена принято классифицировать по плотности[5]. Несмотря на это, имеется множество ходовых названий гомополимеров и сополимеров, часть из которых приведена ниже.

  • Полиэтилен низкой плотности (высокого давления) — ПЭНП[6], ПЭВД, ПВД, LDPE (Low Density Polyethylene).
  • Полиэтилен высокой плотности (низкого давления) — ПЭВП[6], ПЭНД, ПНД, HDPE (High Density Polyethylene).
  • Полиэтилен среднего давления (высокой плотности) — ПЭСД[6].
  • Линейный полиэтилен средней плотности — ПЭСП[6], MDPE или PEMD[1].
  • Линейный полиэтилен низкой плотности — ЛПЭНП[6], LLDPE или PELLD[1].
  • Полиэтилен очень низкой плотности — VLDPE
  • Полиэтилен сверхнизкой плотности — ULDPE
  • Металлоценовый линейный полиэтилен низкой плотности — MPE
  • Сшитый полиэтилен — PEX или XLPE, XPE.
  • Высокомолекулярный полиэтилен — ВМПЭ, HMWPE или PEHMW или VHMWPE[1].
  • Сверхвысокомолекулярный полиэтилен — UHMWPE

В данном разделе не рассматриваются названия разных сополимеров, иономеров и хлорированного полиэтилена.

Молекулярное строение

Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена низкого давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена среднего давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкое содержание кристаллической фазы и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена:
ПоказательПЭВДПЭСДПЭНД
Общее число групп СН3 на 1000 атомов углерода:21,651,5
Число концевых групп СН3 на 1000 атомов углерода:4,521,5
Этильные ответвления14,411
Общее количество двойных связей на 1000 атомов углерода0,4—0,60,4—0,71,1-1,5
в том числе:   
винильных двойных связей (R-CH=CH2), %174387
винилиденовых двойных связей , %71327
транс-виниленовых двойных связей (R-CH=CH-R’), %12256
Степень кристалличности, %50-6575-8580-90
Плотность, г/см³0,9-0,930,93-0,940,94-0,96

Полиэтилен высокой плотности HDPE (High-Density — высокая плотность)

Физико-механические свойства ПЭНД при 20°C:
ПараметрЗначение
Плотность, г/см³0,94-0,96
Разрушающее напряжение, кгс/см² 
при растяжении100—170
при статическом изгибе120—170
при срезе140—170
относительное удлинение при разрыве, %500—600
модуль упругости при изгибе, кгс/см²1200—2600
предел текучести при растяжении, кгс/см²90-160
относительное удлинение в начале течения, %15-20
твёрдость по Бринеллю, кгс/мм²1,4-2,5

С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.

С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться

Изменение разрушающего напряжения при сжатии, статическом изгибе и срезе в зависимости от температуры (определено при скорости деформации 500 мм/мин и толщине образца 2 мм):
Разрушающее напряжение, кгс/см²Температура, ºС
20406080
при сжатии1267740
при статическом изгибе1188860
при срезе1691319253
Зависимость модуля упругости при изгибе ПЭВД от температуры:
Температура, °С-120-100-80-60-40-2002050
Модуль упругости при изгибе, кгс/см²2810026700232001920013600740030502200970

Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).

Сверхвысокомолекулярный полиэтилен высокой плотности

Относительно новой и перспективной разновидностью полиэтилена является сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ, англ. UHMW PE), изделия из которого обладают рядом замечательных свойств: высокой прочностью и ударной вязкостью в большом диапазоне температур (от — 200°С до + 100°С), низким коэффициентом трения, большими химо- и износостойкостью и применяются в военном деле (для изготовления бронежилетов, шлемов), машиностроении, химической промышленности и др.[7]

Химические свойства

Горит голубоватым пламенем, со слабым светом[8], при этом издаёт запах парафина[9], то есть такой же, какой исходит от горящей свечи.

Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой, но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При реакции полиэтилена с галогенами образуется множество полезных для народного хозяйства продуктов, поэтому эта реакция может быть использована для переработки отходов полиэтилена. В отличие от непредельных углеводородов, не обесцвечивает бромную воду и раствор перманганата калия[8].

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80°C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворён в перегретой до 180°C воде.

Со временем подвергается деструкции с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Получение

На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:

Получение полиэтилена высокого давления

Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:

в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.

Получение полиэтилена среднего давления

Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:

продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000—400 000, степень кристалличности 80-90 %.

Получение полиэтилена низкого давления

Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:

Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—300 000, степень кристалличности 75—85 %.

Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2 и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.

Другие способы получения полиэтилена

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Модификации полиэтилена

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.

Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

Применение

  • Полиэтиленовая плёнка (особенно упаковочная, например, пузырчатая упаковка или скотч),
  • Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады)
  • Полимерные трубы для канализации, дренажа, водо-, газоснабжения
  • Электроизоляционный материал.
  • Полиэтиленовый порошок используется как термоклей[10].
  • Броня (бронепанели в бронежилетах)[11]
  • Корпуса для лодок[12], вездеходов, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.
  • Вспененный полиэтилен (пенополиэтилен) используется, как теплоизолятор. Наиболее известны следующие марки: МультиФлекс, Изоком, Изолон, Порилекс, Алентекс
  • Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.[13]
  • Полиэтилен низкого давления широко применяется в благоустройстве придомовых территорий и детских площадок, отодвигая фанеру и дерево на второй план, ведь срок использования скатов из ПНД более 15 лет в то время как у «деревянных аналогов» срок использования всего 10 лет причем через 3-5 лет дерево теряет товарный вид

Малотоннажная марка полиэтилена — так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только прессованием.

Утилизация

Переработка

Изделия из полиэтилена пригодны для переработки и последующего использования. Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия, экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.

Сжигание

При нагревании полиэтилена на воздухе возможно выделение в атмосферу летучих продуктов термоокислительной деструкции. При термической деструкции полиэтилена в присутствии воздуха или кислорода образуется больше низкокипящих соединений, чем при термической деструкции в вакууме или в атмосфере инертного газа. Исследование структурных изменений полиэтилена во время деструкции на воздухе, в атмосфере кислорода или в смеси, состоящей из O2 и О3, при 150—210°С показало, что образуются гидроксильные, перекисные, карбонильные и эфирные группы. При нагревании полиэтилена при 430°С происходит очень глубокий распад на парафины (65—67 %) и олефины (16—19 %). Кроме того, в продуктах разложения обнаруживаются: окись углерода (до 12 %), водород (до 10 %), углекислый газ (до 1,6 %). Из олефинов основную массу составляет обычно этилен. Наличие окиси углерода свидетельствует о присутствии кислорода в полиэтилене, то есть о наличии карбонильных групп.

Биоразложение

Плесневые грибки Penicillium simplicissimum способны за три месяца частично утилизировать полиэтилен, предварительно обработанный азотной кислотой. Относительно быстро разлагают полиэтилен бактерии Nocardia asteroides. Некоторые бактерии, обитающие в кишечнике южной амбарной огнёвки (Plodia interpunctella), способны разложить 100 миллиграммов полиэтилена за восемь недель. Гусеницы пчелиной огнёвки (Galleria mellonella) могут утилизировать полиэтилен еще быстрее[14][15].

См. также

Примечание

  1. 1 2 3 4 Описание и марки полимеров — Полиэтилен
  2. ↑ Король упаковки: как появился целлофан
  3. ↑ История полиэтилена: неожиданное рождение пластикового пакета
  4. 1 2 Дж. Уайт, Д.Чой.// Полиэтилен, полипропилен и другие полиолефины. — СПб.: Профессия, 2007.
  5. ↑ Vasile C., Pascu M.// Practical Guide to Polyethylene. — Shawbury: Smithers Rapra Press, 2008.
  6. 1 2 3 4 5 Кулезнев В. Н. (ред.), Гусев В. К. (ред.)// Основы технологии переработки пластмасс. — М.: Химия, 2004.
  7. ↑ Сайт Polymeri.ru » Сверхвысокомолекулярный полиэтилен: рынок в ожидании переработчиков»
  8. 1 2 Цветков Л. А. § 10. Понятие о высокомолекулярных соединениях // Органическая химия. Учебник для 10 класса. — 20-е изд. — М.: Просвещение, 1981. — С. 52—57. — 1 210 000 экз.
  9. Шульпин Г. Эти разные полимеры // Наука и жизнь. — 1982. — № 3. — С. 80—83.
  10. ↑ Сжать и провернуть: Сделано в России
  11. ↑ Доспехи XXI века
  12. ↑ Total Petrochemicals создала ротомолдинговую лодку из полиэтилена
  13. ↑ Геомембрана HDPE
  14. Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена. N+1 Интернет-издание (25 апреля 2017). Проверено 25 апреля 2017.
  15. Bombelli P., Howe C. J., Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — Vol. 27. — P. R283—R293. — DOI:10.1016/j.cub.2017.02.060.

Ссылки

wikipedia.green

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *