Конденсаторный двигатель принцип работы: устройство, принцип работы, схема подключения

Содержание

Конденсаторные двигатели — устройство, принцип действия, применение. Конденсаторы для асинхронных двигателей

Асинхронный конденсаторный двигатель имеет на статоре две обмотки, занимающие одинаковое число пазов и сдвинутые в про­странстве относительно друг друга на 90 эл. град. Одну из обмоток — главную — включают непосредственно в однофазную сеть, а дру­гую — вспомогательную — включают в эту же сеть, но через ра­бочий конденсатор С ра6 (рис. 16.7, а).

В отличие от рассмотренного ранее однофазного асинхронно­го двигателя в конденсаторном двигателе вспомогательная обмот­ка после пуска не отключается и остается включенной в течение всего периода работы, при этом емкость С раб создает фазовый сдвиг между токами и .

Таким образом, если однофазный асинхронный двигатель по окончании процесса пуска работает с пульсирующей МДС стато­ра, то конденсаторный двигатель — с вращающейся. Поэтому конденсаторные двигатели по своим свойствам приближаются к трехфазным двигателям.

Необходимая для получения кругового вращающегося поля емкость (мкФ)

C раб = 1,6 10 5 I A sin φ A / (f 1 U A k 2),

(16. 4)

при этом отношение напряжений на главной U А и на вспомога­тельной U B обмотках должно быть

U A /U B = tg φ A ≠ 1.

Здесьφ A — угол сдвига фаз между током и напряжением при круговом поле; k = ω B k B / (w A k A ) — коэффициент трансформации, представляющий собой отношение


Рис. 16.7. Конденсаторный двигатель:

а- с рабочей емкостью, б — с рабочей и пусковой емкостями, вмеханические характеристики; 1- при рабочей емкости, 2- при ра­бочей и пусковой емкостях

эффективных чисел витков вспомогательной и главной обмоток; k A и k B — обмоточные коэффициенты обмоток статора.

Анализ (16.4) показывает, что при заданных коэффициенте трансформации kи отношении напряжений U A / U B емкость С ра6 обеспечивает получение кругового вращающегося поля лишь при одном, вполне определенном режиме работы двигателя. Если же и изменится режим (нагрузка), то изменятся и ток I A и фазовый угол φ A , а следовательно, и С раб, соответствующая круговому полю.

Таким образом, если нагрузка двигателя отличается от расчетной, то вращающееся поле двигателя становится эллиптическим и рабочие свойства двигателя ухудшаются. Обычно расчет С раб ведут для номинальной нагрузки или близкой к ней.

Обладая сравнительно высокими КПД и коэффициентом мощности (соs φ 1 = 0,80 ÷ 0,95), конденсаторные двигатели имеют неудовлетворительные пусковые свойства, так как емкость С раб обеспечивает круговое поле лишь при расчетной нагрузке, а при пуске двигателя поле статора эллиптическое. При этом пусковой момент обычно не превышает 0,5М НОМ.

Для повышения пускового момента параллельно емкости С раб включают емкость С пуск, называемую пусковой(рис. 16.7, б). Величину С пуск выбирают, исходя из условия получения кругового поля статора при пуске двигателя, т. е. получения наибольшего пускового момента. По окончании пуска емкость С пуск следует отключать, так как при небольших скольжениях в цепи обмотки статора, содержащей емкость Си индуктивность L

, возможен резонанс напряжений, из-за чего напряжение на обмотке и на конденсаторе может в два-три раза превысить напряжение сети.

При выборе типа конденсатора следует помнить, что его рабо­чее напряжение определяется амплитудным значением синусои­дального напряжения, приложенного к конденсатору U c . При кру­говом вращающемся поле это напряжение (В) превышает напряжение сети U 1 и определяется выражением

U c = U 1 (16.5)


Рис 16.8. Схемы включения двухфазного двига­теля в трехфазную сеть

Конденсаторные двигатели иногда называют двухфаз­ными, так как об­мотка статора этого двигателя содержит две фазы. Двухфаз­ные двигатели могут работать и без кон­денсатора или дру­гого ФЭ, если к фа­зам обмотки статора подвести двухфаз­ную систему напря­жений (два напря­жения, одинаковые по значению и час­тоте, но сдвинутые по фазе относительно друг друга на 90°). Для получения двухфаз­ной системы напряжений можно воспользоваться трехфазной ли­нией с нулевым проводом, включив обмотки статора так, как по­казано на рис. 16.8, а

: одну обмотку — на линейное напряжение U AB ,а другую — на фазное напряжение Uc через автотрансфор­матор AT (для выравнивания значения напряжений на фазных об­мотках двигателя). Возможно включение двигателя и без нулевого провода (рис. 16.8, б), но в этом случае напряжения на обмотках двигателя будут сдвинуты по фазе на 120°, что приведет к некото­рому ухудшению рабочих свойств двигателя.

В этой статье поговорим о конденсаторных двигателях, которые по сути являются обычными асинхронными, отличающимися лишь способом подключения к сети. Затронем тему подбора конденсаторов, разберем причины необходимости точного подбора емкости. Отметим основные формулы, которые помогут в приблизительной оценке требуемой емкости.

Конденсаторным двигателем называется , в цепь статора которого включена дополнительная емкость, с целью создать сдвиг фаз тока в обмотках статора. Зачастую это касается однофазных цепей при использовании трехфазных или двухфазных асинхронных двигателей.

Обмотки статора асинхронного двигателя физически сдвинуты друг относительно друга, и одна из них включается непосредственно в сеть, в то время как вторая, либо вторая и третья подключаются к сети через конденсатор. Емкость конденсатора подбирается так, чтобы сдвиг фаз токов между обмотками получился бы равным или хотя бы близким к 90°, тогда ротору будет обеспечен максимальный вращающий момент.

При этом модули магнитной индукции обмоток должны получиться одинаковыми, чтобы магнитные поля обмоток статора оказались бы сдвинуты относительно друг друга так, чтобы суммарное поле вращалось по кругу, а не по эллипсу, увлекая за собой ротор с наибольшей эффективностью.

Очевидно, ток и его фаза в подключенной через конденсатор обмотке связаны как с емкостью конденсатора, так и с эффективным импедансом обмотки, который в свою очередь зависит от скорости вращения ротора.

При старте двигателя импеданс обмотки определяется лишь ее индуктивностью и активным сопротивлением, поэтому он относительно мал в момент пуска, и здесь нужен конденсатор большей емкости для обеспечения оптимального пуска.

Когда же ротор разгонится до номинальных оборотов, магнитное поле ротора станет индуцировать в обмотках статора ЭДС, которая будет направлена против питающего обмотку напряжения — эффективное сопротивление обмотки теперь растет, и требуемая емкость снижается.

При оптимально подобранной емкости в каждом режиме (пусковой режим, рабочий режим) магнитное поле будет круговым, и здесь имеет значение как скорость вращения ротора, так и напряжение, и число витков обмотки, и подключенная в текущий момент емкость. Если оптимальное значение какого-нибудь параметра нарушено, поле становится эллиптическим, характеристики двигателя соответственно падают.

Для двигателей разного назначения схемы подключения емкостей разные. Когда требуется значительный пусковой момент, применяют конденсатор большей емкости, чтобы обеспечить оптимальные ток и фазу именно в момент пуска. Если пусковой момент не особо важен, то внимание уделяют только созданию оптимальных условий рабочего режима, при номинальной скорости вращения, и емкости подбирается для номинальных оборотов.

Довольно часто для качественного пуска применяют пусковой конденсатор, который на время запуска подключается параллельно рабочему конденсатору относительно малой емкости, чтобы вращающееся магнитное поле и при пуске было круговым, затем пусковой конденсатор отключают, и двигатель продолжает работу только с рабочим конденсатором. В особых случаях прибегают к набору конденсаторов с возможностью переключения для разных нагрузок.

Если пусковой конденсатор случайно не будет отключен после выхода двигателя на номинальные обороты, сдвиг фаз в обмотках уменьшится, не будет уже оптимальным, и магнитное поле статора станет эллиптическим, что ухудшит рабочие характеристики двигателя. Крайне важно правильно подобрать пусковую и рабочую емкости, чтобы двигатель работал эффективно.

На рисунке показаны типичные схемы включения конденсаторных двигателей, применяемые на практике. Например рассмотрим двухфазный двигатель с короткозамкнутым ротором, статор которого имеет две обмотки для питания в двух фазах А и В.

В цепь дополнительной фазы статора включен конденсатор С, поэтому токи IA и IВ текут в обеих обмотках статора в двух фазах. Наличием емкости добиваются фазового сдвига токов IA и IВ в 90°.

Векторная диаграмма показывает, что суммарный ток сети образован геометрической суммой токов обеих фаз IA и IВ. Подбором емкости С добиваются такого сочетания с индуктивностями обмоток, чтобы фазовый сдвиг токов получился именно 90°.

Ток IA запаздывает относительно приложенного сетевого напряжения UА на угол φА, а ток IВ — на угол φВ относительно напряжения UB, приложенного к зажимам второй обмотки в текущий момент. Угол между напряжением сети и напряжением, приложенным ко второй обмотке составляет 90°. Напряжение на конденсаторе UС образует угол 90° с током IВ.

По диаграмме видно, что полная компенсация фазового сдвига при φ = 0 достигается тогда, когда реактивная мощность потребляемая двигателем из сети равна реактивной мощности конденсатора С. Рядом на рисунке показаны типичные схемы включения трехфазных двигателей с конденсаторами в цепях обмоток статоров.

Промышленностью сегодня выпускаются конденсаторные двигатели на базе двухфазных. Трехфазные легко модифицируются вручную для питания от однофазной сети. Встречаются и мелкосерийные трехфазные модификации, уже оптимизированные при помощи конденсатора под однофазную сеть.

Часто такие решения можно встретить в бытовых приборах, таких как посудомоечные машины и комнатные вентиляторы. Промышленные циркуляционные насосы, воздуходувки и дымососы также часто используют в своей работе конденсаторные двигатели. Если требуется включить трехфазный двигатель в однофазную сеть — применяют фазосдвигающий конденсатор, то есть опять же переделывают двигатель в конденсаторный.

Для приблизительного расчета емкости конденсатора применяют известные формулы, в которые достаточно подставить напряжение питания и рабочий ток двигателя, и легко вычислить необходимую емкость для .

Для нахождения рабочего тока двигателя достаточно прочитать данные на его шильдике (мощность, кпд, косинус фи), и так же подставить в формулу. В качестве пускового конденсатора принято устанавливать конденсатор в два раза большей емкости, чем рабочий.

К преимуществам конденсаторных двигателей, по сути — асинхронных, относится главным образом одно — возможность включить трехфазный двигатель в однофазную сеть. Из недостатков — необходимость оптимальной емкости под конкретную нагрузку, и недопустимость питания от инверторов с модифицированной синусоидой.

Надеемся, что эта статья была для вас полезной, и теперь вы понимаете, для чего асинхронным двигателям конденсаторы, и как подбирать их емкость.

Добрый день, уважаемые читатели блога сайт

В рубрике «Принадлежности» рассмотрим конденсаторы для однофазных . У трехфазных двигателей при подключении к сети питания возникает вращающееся магнитное поле, за счет которого и происходит запуск двигателя. В отличие от трехфазных двигателей, у однофазных в статоре имеется две обмотки рабочая и пусковая. Рабочая обмотка подключена к однофазной сети питания напрямую, а пусковая последовательно с конденсатором. Конденсатор необходим для создания сдвига фаз между токами рабочей и пусковой обмоток. Самый большой вращающий момент в двигателе возникает тогда, когда сдвиг фаз токов обмоток достигает 90°, а их амплитуды создают круговое вращающееся поле. Конденсатор является элементом электрической цепи и предназначен для использования его ёмкости. Он состоит из двух электродов или правильней обкладок, которые разделёны диэлектриком. Конденсаторы имеют возможность накапливать электрическую энергию. В Международной системе единиц СИ за единицу ёмкости принимается ёмкость конденсатора, у которого на один вольт возрастает разность потенциалов при сообщении ему заряда в один кулон (Кл). Емкость конденсаторов измеряется в фарадах (Ф). Емкость в одну фараду очень большая. На практике используются более мелкие единицы измерения микрофарады (мкФ) одна мкФ равняется 10 -6 Ф, пикофарады (пФ) одна пФ равняется 10 -12 мкФ. В однофазных асинхронных двигателях в зависимости от мощности используются конденсаторы емкостью от нескольких до сотен мкФ.

Основные электрические параметры и характеристики

К основным электрическим параметрам относятся: номинальная емкость конденсатора и номинальное рабочее напряжение. Кроме этих параметров существует еще температурный коэффициент емкости (ТКЕ), тангенс угла потерь (tgd), электрическое сопротивление изоляции.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрический заряд характеризуется его емкостью. Емкость (С) определяется как отношение накопленного в конденсаторе заряда (q), к разности потенциалов на его электродах или приложенному напряжению (U). Емкость конденсаторов зависит от размеров и формы электродов, их расположения друг относительно друга, а также материала диэлектрика который разделяет электроды. Чем емкость конденсатора больше, тем и накопленный им заряд больше Удельная ёмкость конденсатора – выражает отношение его ёмкости к объёму. Номинальная ёмкость конденсатора – это ёмкость, которую имеет конденсатор согласно нормативной документации. Фактическая же ёмкость каждого отдельного конденсатора отличается от номинальной, но она должна быть в пределах допускаемых отклонений. Значения номинальной ёмкости и ее допустимое отклонение в различных типах конденсаторов постоянной ёмкости установлена стандартом.

Номинальное напряжение – это то значение напряжения обозначенное на конденсаторе, при котором он работает в заданных условиях длительное время и при этом сохраняет свои параметры в допустимых пределах. Значение номинального напряжения зависит от свойств используемых материалов и конструкции конденсаторов. В процессе эксплуатации рабочее напряжение на конденсаторе не должно превышать номинальное. У многих типов конденсаторов при увеличении температуры допустимое номинальное напряжение снижается.

Температурный коэффициент емкости (ТКЕ) – это параметр выражающий линейную зависимостью емкости конденсатора от температуры внешней среды. На практике ТКЕ определятся как относительное изменение емкости при изменении температуры на 1°С. Если эта зависимость нелинейная, тоТКЕконденсатора характеризуется относительным изменением емкости припереходе от нормальной температуры(20±5°С) к допустимомузначению рабочей температуры. Для конденсаторов используемых в однофазных двигателях этот параметр важный и должен быть как можно меньше. Ведь в процессе эксплуатации двигателя его температура повышается, а конденсатор находится непосредственно на двигателе в конденсаторной коробке.

Тангенс угла потерь (tg d ). Потеря накопленной энергии в конденсаторе обусловлена потерями в диэлектрике и его обкладках. Когда через конденсатор протекает переменный ток, то векторы тока и напряжения сдвинуты относительно друг друга на угол (d). Этот угол (d) и называют углом диэлектрических потерь. Если потери отсутствуют, то d=0. Тангенс угла потерь это отношение активной мощности (Pа) к реактивной (Pр) при напряжении синусоидальной формы определённой частоты.

Электрическое сопротивление изоляции – электрическое сопротивление постоянному току, определяется как отношение приложенного к конденсатору напряжения (U) , к току утечки (I ут ), или проводимости. Качество применяемого диэлектрика и характеризует сопротивление изоляции. Для конденсатора с большой емкостью сопротивление изоляции обратно пропорционально его площади обкладок, или его ёмкости.

На конденсаторы оказывает очень сильное воздействие влага. Асинхронные электродвигатели используемые в насосном оборудовании перекачивают воду, и высока вероятность попадания влаги на двигатель и в конденсаторную коробку. Воздействие влаги приводит к снижению сопротивления изоляции (возрастает вероятность пробоя), увеличению тангенса угла потерь, коррозии металлических элементов конденсатора.

Кроме всего при эксплуатации двигателя на конденсаторы воздействует различного вида механические нагрузки: вибрация, удары, ускорение и т.д. Как следствие могут появится обрыв выводов, трещины и уменьшение электрической прочности.

Рабочий и пусковой конденсаторы

В качестве рабочих и пусковых используются конденсаторы с оксидным диэлектриком (ранее они назвались электролитическими) Рабочие и пусковые конденсаторы для асинхронных двигателей включаются в сеть переменного тока, и они должны быть неполярными. Они имеют сравнительно большое 450 вольт для оксидных конденсаторов рабочее напряжение, которое в два раза превышает напряжение промышленной сети. На практике применяются конденсаторы с емкостью порядка десятков и сотен микрофарад. Как мы говорили выше, рабочий конденсатор используется для получения вращающего магнитного поля. Пусковая же емкость используется для получения магнитного поля, необходимого для повышения пускового момента электродвигателя. Пусковой конденсатор подключается параллельно рабочему через центробежный выключатель. Когда есть пусковая емкость вращающееся магнитное поле асинхронного двигателя в момент пуска приближается к круговому, а магнитный поток увеличивается. Это повышает пусковой момент и улучшает характеристики двигателя. При достижении асинхронным двигателем оборотов достаточных для отключения центробежного выключателя, пусковая емкость отключается и двигатель остается в работе только с рабочим конденсатором. Схема включения рабочего и пускового конденсаторов приведены на (Рис. 1).

Схема с рабочим и пусковым конденсаторами

В таблице приведены обособленные характеристики рабочих и пусковых конденсаторов для асинхронных двигателей .

РАБОЧИЙ

ПУСКОВОЙ

НазначениеДля асинхронных электродвигателей
Схема подключенияПоследовательно с пусковой обмоткой электродвигателяПараллельно рабочему конденсатору
В качествеФазосмещающего элементаФазосмещающего элемента
Для чегоДля получения кругового вращающееся магнитного поля, необходимого для работы электродвигателяДля получения магнитного поля, необходимого для повышения пускового момента электродвигателя
Время включенияВ процессе эксплуатации электродвигателяВ момент пуска электродвигателя

Эксплуатация, обслуживание и ремонт

В процессе эксплуатации насосного оборудования с однофазным асинхронным двигателем особое внимание следует обращать на питающее напряжение электрической сети. В случае пониженного напряжения сети, как известно, снижается пусковой момент и частота вращения ротора, из-за увеличения скольжения. При низком напряжении увеличивается также нагрузка на рабочий конденсатор и возрастает время запуска двигателя. В случае значительного провала напряжения питания более 15% высока вероятность того, что асинхронный двигатель не запустится. Очень часто при низком напряжении выходит из строя рабочий конденсатор из-за повышенных токов и перегрева. Он расплавляется и из него вытекает электролит. Для ремонта необходимо приобрести и установить новый конденсатор соответствующей емкости. Очень часто случается, что нужного конденсатора под рукой нет. В этом случае можно подобрать требуемую емкость из двух или даже трех и четырех конденсаторов, подключив их параллельно. Здесь следует обратить внимание на рабочее напряжение, оно должно быть не ниже, чем напряжение на заводском конденсаторе. Общая емкость конденсатора(ов) должна отличаться от номинала не более чем 5%. Если установить емкость большего номинала, то двигатель запустится в работу и будет работать, но при этом начнет греться. Если с помощью клещей измерить номинальный ток двигателя, то ток будет завышен. Так как полное электрическое сопротивление цепи в обмотках двигателя состоит из активного сопротивления цепи и реактивного сопротивления обмоток двигателя и емкости, то с увеличением емкости общее сопротивление возрастает. Сдвиг фаз токов в обмотках из-за увеличения полного сопротивления электрической цепи обмоток после запуска двигателя сильно уменьшится, магнитное поле из синусоидального превратится в эллиптическое, и рабочие характеристики асинхронного двигателя очень сильно ухудшаются, снижается КПД и возрастают тепловые потери.

Иногда бывает, что вместе с конденсатором выходит из строя и пусковая обмотка однофазного двигателя. В такой ситуации стоимость ремонта резко возрастает, ибо надо не только заменить конденсатор, но еще и перемотать статор. Как известно, перемотка статора одна из самых дорогих операций при ремонте двигателя. Очень редко, но бывает и такая ситуация когда при низком напряжении выходит из строя только пусковая обмотка, а конденсатор при этом остается рабочим. Для ремонта двигателя нужно перематывать статор. Все эти ситуации с двигателем случаются при низком напряжении однофазной питающей сети. Для решения этой проблемы в идеальном случае необходим стабилизатор напряжения.

Спасибо за оказанное внимание

Существует разные схемы подключения, больше вариантов для трёхфазных двигателей, различающиеся способом соединения обмоток двигателя и составом дополнительных элементов, но минимальная работоспособная схема содержит один конденсатор, от чего и происходит название.

Как правило, одна из обмоток («фаза двигателя») запитывается напрямую от однофазной сети, а другие обмотки запитывается через электрический конденсатор , который сдвигает фазу подводимого тока почти на +90°, или через катушку индуктивности , которая сдвигает фазу почти на −90°. Чтобы результирующее вращающееся магнитное поле не было эллиптическим, последовательно с конденсатором включается переменный проволочный резистор , с помощью которого добиваются кругового вращающегося магнитного поля.

Применение

Промышленные конденсаторные двигатели имеют в основе, как правило, двухфазный двигатель (проще производство и схема подключения). Трёхфазные двигатели переделываются под однофазную сеть обычно в частном порядке или мелкосерийном производстве в силу массовости таких типов двигателей и сетей, выбирая при этом между сложностью схемы и недоиспользованием мощности двигателя.

Такие двигатели используются в основном в бытовой технике малой мощности: активаторных стиральных машинах, механизмах катушечных и стационарных кассетных магнитофонов, недорогих проигрывателях виниловых дисков, вентиляторах и другой подобной технике.

Также такие двигатели применяются в циркуляционных насосах водопроводных и отопительных систем (напр. компании Grundfos ), и в воздуходувках и дымососах отопительных и водонагревательных агрегатов (напр. Buderus ).

Трёхфазные асинхронные двигатели в однофазную электрическую сеть включают через фазосдвигающий конденсатор.

Вывод одной обмотки электродвигателя подключается к «фазовому» проводу, вывод второй обмотки — к нейтральному проводу . Вывод третьей обмотки подключается через конденсатор, ёмкость которого подбирается по формулам, в зависимости от того, как соединены обмотки двигателя — «звездой» или «треугольником» .

Если обмотки соединены «звездой», тогда ёмкость «рабочего» конденсатора должна быть

C R A B . Z V E Z D A = 2800 I U {\displaystyle C_{RAB.ZVEZDA}=2800{\frac {I}{U}}} .

Если обмотки соединены «треугольником», тогда ёмкость «рабочего» конденсатора должна быть

C R A B . T R E U G O L N I K = 4800 I U {\displaystyle C_{RAB.TREUGOLNIK}=4800{\frac {I}{U}}} , где

U {\displaystyle U} — напряжение сети, вольт ;

I {\displaystyle I} — рабочий ток двигателя, ампер ;

C {\displaystyle C} — электрическая ёмкость , микрофарад .

При пуске двигателя кнопкой подключается пусковой конденсатор C P U S K {\displaystyle C_{PUSK}} , ёмкость которого должна быть в два раза больше ёмкости рабочего. Как только двигатель наберёт нужные обороты, кнопку «Пуск» отпускают.

Переключатель B 2 {\displaystyle B_{2}} позволяет изменять направление вращения электродвигателя. Выключатель B 1 {\displaystyle B_{1}} отключает электродвигатель.

Используя паспортные данные электродвигателя, можно определить его рабочий ток I {\displaystyle I} по формуле:

I = P 1 , 73 U η cos ⁡ φ {\displaystyle I={\frac {P}{1{,}73~U~\eta ~\cos \varphi }}} , где

Асинхронные двигатели получили широкое применение, потому что они малошумны и легки в эксплуатации. Особенно это касается трехфазных короткозамкнутых асинхронников с их прочной конструкцией и неприхотливостью.

Основным условием для преобразования электрической энергии в механическую является факт наличия вращающегося магнитного поля. Для формирования такого поля требуется трехфазная сеть, при этом электрообмотки должны быть смещенными между собой на 120 0 . Благодаря вращающемуся полю система начнёт работать. Однако бытовая техника, как правило, используется в домах, имеющих лишь однофазную сеть 220 В.

Для начала определимся с терминологией. Конденсатор (лат. condensatio — «накопление») – это электронный компонент, хранящий электрический заряд и состоящий из двух близкорасположенных проводников (обычно пластин), разделенных диэлектрическим материалом. Пластины накапливают электрический заряд от источника питания. Одна из них накапливает положительный заряд, а другая – отрицательный.


Емкость – это количество электрического заряда, которое хранится в электролите при напряжении 1 Вольт. Емкость измеряется в единицах Фарад (Ф).

Метод подключения двигателя через конденсатор – этот способ применяют для достижения мягкого пуска агрегата. На статоре однофазного движка с короткозамкнутым ротором размещают дополнительно к основной электрообмотке ещё одну. Две обмотки соотнесены между собой на угол 90 0 . Одна из них является рабочей, её предназначение заставить работать мотор от сети 220 В, другая – вспомогательная, нужна для запуска.

Рассмотрим схемы подключения конденсаторов:

  • с выключателем,
  • напрямую, без выключателя;
  • параллельное включение двух электролитов.

1 вариант

К обмотке асинхронника подсоединяется фазосдвигающий конденсатор. Подключение осуществляется в однофазную сеть 220 В по специальной схеме.


Здесь видно, что электрообмотка прямо подключена к линии питания 220 В, вспомогательная соединена последовательно с конденсатором и выключателем. Последний предназначен для отключения дополнительной обмотки от источника питания после запуска.

Коммутационный аппарат настроен так, чтобы оставаться закрытым и поддерживать вспомогательную обмотку в эксплуатации до тех пор, пока мотор запускается и разгоняется примерно до 80% от полной нагрузки. На такой скорости, выключатель размыкается, отключая цепь вспомогательной обмотки от источника питания. Затем мотор работает как асинхронный двигатель на основной обмотке.

2 вариант

Схема идентична конденсаторному мотору, но без выключателя. Пусковой момент составляет только 20–30% от полной нагрузки крутящего момента.


Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Возможны различные модификации схем с предварительным расчетом необходимой емкости конденсатора для подсоединения к двигателю 220 В.

Стоит отметить, что обеспечение лучших характеристик нужно при изменении нагрузки мотора. Увеличение емкости ведёт к уменьшению сопротивления в цепи переменного тока. Правда замена емкости электролита несколько усложняет схему.

3 вариант

Схема подключения двух электролитов, подсоединенных параллельно к мотору, приведена ниже. При параллельном соединении общая ёмкость равна сумме емкостей всех подключенных электролитов.


C s – это пусковой конденсатор. Величина емкостного реактивного сопротивления Х тем меньше, чем больше ёмкость электролита. Она рассчитывается по формуле:

х с = 1/2nfC s .

При этом следует учитывать, что на 1 кВт приходится 0,8 мкФ рабочей емкости, а для пусковой емкости потребуется больше в 2,5 раза. Перед подключением к движку следует «прогнать» конденсатор через мультиметр. Подбирая детали нужно помнить, что пусковой кондер должен быть на напряжение 380 В.

Для управления пусковыми токами (контролем и ограничением их величины) используют преобразователь частоты. Такая схема подключения обеспечивает тихий и плавный ход электродвигателя. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. д. Машины такого типа имеют более высокий КПД и производительность, чем их аналоги, работающие лишь на основной электрообмотке.

Методы подключения трёхфазного электродвигателя

Попытка приспособить некоторое оборудование встречает определённые трудности, так как трёхфазные асинхронники большей частью подключаться должны к 380 В. А в доме у всех сеть на 220 В. Но подключить трёхфазный движок к однофазной сети – это вполне выполнимая задача.

  1. Включение трехфазного асинхронного мотора.


  1. Подключения трехфазного движка к 220 В, с реверсом и кнопкой управления.


  1. Соединение обмоток трехфазного мотора и запуск как однофазного.


  1. Другие возможные способы соединений трёхфазных электродвигателей.


Заключение

Асинхронники на 220 В широко применяются в быту. Исходя из требуемой задачи, существуют различные методы подключения однофазного и трёхфазного мотора через конденсатор: для обеспечения плавного пуска либо улучшения рабочих характеристик. Всегда можно самому легко добиться нужного эффекта.

Конденсаторный двигатель: классификация, схемы подключения, рекомендации по подбору конденсаторов Конденсаторный двигатель: схематика и особенности подключения

Содержание

  • 1 Сфера применения
  • 2 Принцип работы конденсаторного электродвигателя
  • 3 Схемы подключения однофазных КД
  • 4 Схема подключения трехфазного электромотора к сети 220 В
    • 4. 1 Подключение треугольником, пуск электромотора – без нагрузки
    • 4.2 Подключение звездой, пуск электромотора – без нагрузки
  • 5 Реверс трехфазного электромотора, подключенного к сети 220 В
  • 6 Подбор конденсаторов
  • 7 Особенности использования блока конденсаторов

Конденсаторные электромоторы – это подвид асинхронных двигателей, отличительной особенностью которых является наличие включенного в схему конденсатора. Его предназначение – сдвиг фазы тока, обычно на 90°. Конденсаторный двигатель можно использовать только в однофазных сетях. В зависимости от числа фаз статора конденсаторные электродвигатели подразделяются на двухфазные и трехфазные. Первые достаточны просты в изготовлении и являются наиболее распространенными. Трехфазные конденсаторные двигатели (КД) могут использоваться в однофазных сетях посредством переделки схемы.

Таких схем существует немало ввиду распространенности трехфазных электромоторов и однофазных сетей. Они различаются количеством и видовым составом дополнительных компонентов, но главное – методами соединения обмоток КД. В любом случае даже самые простые схемы содержат конденсатор, что и дало название целой группе асинхронных электродвигателей.

Отметим, что в последнее время все активнее используется конденсаторное торможение асинхронного электродвигателя, но это немного другая задача, к конденсаторным КД не имеющая прямого отношения.

Сфера применения

Поскольку однофазные асинхронные электродвигатели могут работать от обычной бытовой сети 220 В, они весьма популярны и используются в быту повсеместно, ими оснащают:

  • вентиляторы бытовые;
  • холодильники;
  • соковыжималки;
  • стиральные машины активаторного типа;
  • кухонные комбайны, миксеры;
  • пылесосы;
  • электрические швейные машинки;
  • электродрели, шуруповерты;
  • водяные насосы;
  • триммеры;
  • вытяжки;
  • бустеры;
  • кусторезы.

Кроме бытовых приборов, КД используются в циркуляционных насосах, дымососах водонагревательных систем, в том числе промышленных, отопительных систем, систем водоснабжения.

Принцип работы конденсаторного электродвигателя

Для начала давайте попробуем разобраться в устройстве и принципе функционирования конденсаторных двигателей, подключаемых к однофазной сети. В целом их конструкция схожа с двух- и трехфазными электромоторами, модифицированными для работы в однофазной бытовой электросети номиналом 220 В.

Отметим лишь, что включение конденсатора в электрическую схему делает невозможным использование таких двигателей в трехфазных сетях с номиналом напряжения 380 В.

Как мы уже отмечали выше, конденсаторный двигатель является разновидностью асинхронного электромотора, поэтому его схематика и принцип работы практически идентична родительскому, за единственным, но важным исключением. Дело в том, что здесь в цепи обмоток присутствует конденсатор, необходимый для создания электродвижущей силы посредством формирования переменного магнитного поля.

Асинхронный КД состоит из двух основных элементов:

  • закрепленного в корпусе статора с двумя обмотками, пусковой и рабочей;
  • находящегося на вращающемся валу ротора, который приводится в движение создаваемой статором электромагнитной силой.

Асинхронность мотора означает, что статор имеет обмотки, который смещены друг относительно друга на 90°. Такой двигатель отличается от обычного трехфазного асинхронника наличием включенного на цепи вторичной обмотки конденсатора.

На этом рисунке представлены диаграммы токов асинхронного трехфазного мотора (а) и конденсаторного (б) электродвигателя.

Классический асинхронный мотор вначале, в момент пуска, задействует пусковую обмотку. По мере раскручивания ротора до номинальных оборотов вступает в действие рабочая обмотка, а первичная отключается. Главным недостатком такого двигателя является момент пуска, когда для набора оборотов ротором требуется повышенная электродвижущая сила. Любая внешняя нагрузка вы этот момент недопустима. В итоге по сравнению с трехфазными аналогами у однофазного пусковой момент будет намного меньшим.

В случае КД в схему включается фазосдвигающий конденсатор, необходимый для того, чтобы в момент включения в работу ротора его крутящий момент был максимальным. Что делает этот конденсатор? Он обеспечивает сдвиг фаз во второй обмотке, который теоретически составляет 90°, а на самом деле – чуть меньше.

В этом случае условие недопущения пуска мотора под нагрузкой не является обязательным, что дает конденсаторному двигателю заметное преимущество перед обычным асинхронным.

В старых советских стиральных машинах, да и в некоторых современных моделях, стоят именно КД. При включении стиралки мотору необходимо сразу начинать вращать барабан с водой, а это серьезная нагрузка. Без пускового конденсатора электромотор будет сильно гудеть и греться, но без вращения.

Схемы подключения однофазных КД

Обычный однофазный асинхронный электромотор (их еще называют бифилярными) отличается от конденсаторного тем, что у него имеется пусковая обмотка, работающая только на фазу пуска – как только ротор раскручивается до номинальных оборотов, она отключается. Обычно – посредством срабатывания центробежного выключателя, реже – с помощью пускозащитного реле (такой способ реализован в холодильниках). Если не сделать такого переключения на рабочую обмотку, КПД мотора заметно снизится.

У конденсаторных моторов обмотки тоже две, основная и вспомогательная, но они в работе постоянно, причем смещены друг относительно друга на 90°, что позволяет легко реализовать реверс. Как правило, конденсатор на КД монтируется на корпус, что позволяет легко его идентифицировать чисто внешне.

На практике получили распространение три варианта однофазных конденсаторных моторов:

В схеме с конденсатором, включенным в цепь к стартовой обмотке, получаем уверенный пуск, но потери мощности при выходе на номинальный режим работы. Такие двигатели должны обеспечивать хороший старт под усиленной нагрузкой, типичный пример – бетономешалка.

Вариант с конденсатором, используемым с подключением к рабочей обмотке, демонстрирует противоположный эффект: слабый пуск и отличные рабочие параметры. Такие моторы хороши, если к пуску не предъявляются завышенные требования. Пример – самодельная циркулярка.

Промежуточный вариант – схема с двумя конденсаторами, обеспечивающая неплохой пуск и относительно хорошие рабочие характеристики. Особенность таких изделий заключается в необходимости использования в момент старта только пускового конденсатора, при выходе на рабочий режим работают уже обе обмотки. Поскольку этот тип объединяет достоинства первых двух, он и встречается чаще их.

Некоторые советуют использовать частотник для КД. В схемах с частотником обычно указывается, что конденсатор не нужен, его применение даже вредно, поскольку частотник будет испытывать перезаряд емкости и будет часто уходить в защиту. А может и не успеть. Стоит ли его в таком случае подключать?

Схема подключения трехфазного электромотора к сети 220 В

Трехфазные асинхронники весьма распространены, и они обладают повышенной мощностью. Было бы неразумным не использовать их в бытовых целях в сетях 220 В, благо для этого их схема усложняется весьма незначительно – добавлением конденсаторов.

Обычная схема предполагает разделение цепи на две обмотки, подключенные последовательно и рассчитанные на 220 вольт каждая. Но в таком случае потери мощности – почти двукратные, и теряется одно из важнейших достоинств трехфазного электромотора.

Включение в схему конденсатора позволят обойтись минимальными потерями по мощности, особенно при подключении треугольником. В этом случае каждая обмотка рассчитана на свое рабочее напряжение, поэтому и управление более точное, и мощность высокая, и обороты практически паспортные.

При подключении асинхронного трехфазного 380-вольтового эл. мотора через конденсатор к сети 220В нужно придерживаться ряда правил.

Во-первых, подходят только бумажные (пусковые) конденсаторы. Во-вторых, их номинальное напряжение не должно быть меньше напряжения сети, рекомендуется двукратное его превышение.

Правила определения емкости будут описаны ниже.

Как известно, обмотки любых электромоторов подключаются с использованием двух схем: «звезда» (символьная идентификация – Y) и «треугольник» (Δ, «дельта»). Для работы в сети 220 В обычно используется подключение треугольником. Схема подключения (по крайней мере, на моторах отечественного производства, например, 4АМАТ80А2УЗ, 4АМАТ8А2, АИР71А4 У5) указывается на шильдике двигателя:

Если он отсутствует, аналогичная информация присутствует в паспортных данных, в крайнем случае, тип схемы можно узнать из интернета.

В данном случае наличие фрагмента «Δ/Y 220/380V» нужно интерпретировать следующим образом: для работы в сети 220В обмотки должны быть соединены треугольником, в сети 380В – звездочкой.

Второй важный момент, который нужно выяснить до начала работ – параметры пуска мотора (на холостых оборотах или под нагрузкой).

В первом случае в схему добавляется только рабочий конденсатор, если мотору предстоит работать с нагрузкой прямо со старта, добавляется пусковой конденсатор, работающий только на начальном этапе, пока ротор не раскрутится.

Рассмотрим схемы, используемые для подключения моторов на 380В к бытовой сети в варианте «звезда» и «треугольник».

Подключение треугольником, пуск электромотора – без нагрузки

Номинал емкости рабочего конденсатора определяется по следующей формуле:

Cраб=4800*Iном/U

Здесь Iном – паспортный номинальный ток мотора, U – напряжение сети.

Хотя в данной схеме указан однополюсный выключатель, можно обойтись и без него, реализовав питание электродвигателя посредством бытовой штепсельной вилки (как вариант – через кнопочный выключатель).

Подключение звездой, пуск электромотора – без нагрузки

Здесь коэффициент в формуле будет другим:

Cраб=2800*Iном/U

Если предполагается работа КД момент пуска под любой, даже минимальной нагрузкой, в схему нужно включить дополнительный пусковой конденсатор (ПК). При игнорировании этой рекомендации силы момента при запуске будет недостаточно для раскрутки вала ротора.

ПК должен включаться в эл. схему параллельно рабочему, а его работа необходима только на этапе запуска – когда двигатель раскрутится, пусковой конденсатор нужно отключить.

Важно: номинал емкости пускового конденсатора, которому придётся работать с токами повышенного номинала, должен превышать емкость РК в 2.5-3 раза.

Для пуска моторов под нагрузкой нужно в момент запуска нажать и удерживать кнопку SB, а когда мотор запустится, нужно подать на него напряжение с помощью автоматического выключателя, отпустив кнопку SB.

Вместо кнопочного или иного ручного выключателя предпочтительнее использовать пускатель ПНВС-10, который имеет исполнение с двумя кнопками. При нажатии кнопки «Пуск» (черного цвета) замыкается цепь с пусковым конденсатором, когда мотор запустится, кнопка отпускается, при этом пусковой конденсатор отключается, а рабочий остается включённым. Красная кнопка – для остановки электромотора.

Реверс трехфазного электромотора, подключенного к сети 220 В

Рассматривая вышеприведенные схемы, можно прийти к заключению, что независимо от способа соединения пусковой и рабочей обмотки (звездой или треугольником) у нас имеется три клеммных вывода: один идет на ноль, ко второй клемме подключается фаза, на третий тоже подается фаза, но с включением конденсатора. Но как быть, если в результате КД начал вращаться в сторону, противоположную нужной?

Реверс на таких схемах осуществляется очень просто: необходимо поменять фазные провода местами, оставив нулевой без изменений.

Рисунок наглядно демонстрирует, как осуществить изменение направления вращения вала электромотора.

Подбор конденсаторов

Мы уже приводили формулы расчета номинала конденсаторов для подключения треугольником и звездой.

Если вы не знаете паспортный номинал по току, его можно измерить клещами в питающем проводе. При отсутствии измерительного прибора можно воспользоваться другой формулой:

Сном=66*Р

Номинал мощности электродвигателя должен присутствовать на шильдике. Согласно этой упрощенной формуле, конденсатора номиналом 7 мкФ, используемого в рабочей обмотке, достаточно для мотора мощностью 100 Вт. Именно эта формула чаще всего используется, если речь идет о подключении трехфазного асинхронника 380а к сети 220В. Важность правильного подбора номинала конденсатора очень важна, поскольку именно он контролирует силу тока. Главное условие – чтобы ни на какой фазе рабочие показатели тока двигателя не превышали номинальный.

Пусковой конденсатор необходим, если при запуске КД предполагается хотя бы минимальная нагрузка. Время его работы редко превышает нескольких секунд, достаточных для набора ротором рабочих частот. При не отключенном пусковом конденсаторе двигателю грозит быстрый перегрев и выход из строя из-за перекоса фаз. Емкость ПК должна быть выше рабочего в 2-3 раза.

Что касается напряжения, то оно должно превышать напряжение сети в полтора раза. То есть для бытовой электросети нужно выбирать конденсатор, рассчитанный на напряжение 330 В.

Наконец, о типе используемых в схеме конденсаторов. Понятно, что желательно использовать изделия одинаковых марок и моделей, самый доступный вариант – бумажный тип, заключенный в металлический корпус. Правда, придется смириться с тем, что у них относительно большие габариты. Когда появится необходимость переделки трехфазного 380-вольтового мотора на 220 вольт, для набора нужного номинала придется устанавливать приличное количество конденсатором, что с точки зрения эстетики не лучший способ.

Электролитические в принципе тоже подойдут, но в этом случае схема усложнится, поскольку придется включать в нее дополнительные резисторы и диоды с симистором, рассчитывать их номиналы, осуществлять регулировку оборотов и т. д. К тому же при пробое такие изделия взрываются.

Более дорогой современный вариант – металлизированные полипропиленовые конденсаторы, которые отличаются небольшими габаритами и считаются достаточно надежными.

При выборе конденсаторов для пусковой обмотки можно поискать специальные изделия с маркировкой, в которой присутствует слово Start.

Особенности использования блока конденсаторов

Чем точнее вы подберете емкость конденсаторов, тем меньше будут потери мощности и тем надежнее окажется электромотор. Почему КПД столь сильно зависит от точности соблюдения расчетных параметров? Дело в том, что именно в этом случае можно обеспечить оптимальный сдвиг вектора тока по отношению к вектору напряжения, гарантируя максимальные характеристики момента на валу ротора.

Но вот в чем загвоздка: часто бывает так, что найти конденсатор с емкостью, равной расчетной, невозможно. В этом случае придется использовать блок подключенных параллельно конденсаторов – при использовании такой схемы подключения их номиналы суммируются.

Так, если нужно набрать 54 мкФ, а изделия такого номинала найти не удалось, можно использовать любую подходящую комбинацию. Желательно – чем меньше конденсаторов, тем лучше (меньше потери и выше надежность). Так, вариант 24 + 30 мкФ предпочтительнее блока из 3 конденсаторов емкостью 4, 20 и 30 мкФ.

Важно: в блоке настоятельно рекомендуется использовать изделия одного типа, с одинаковыми номиналами по частоте и напряжению.

Однофазный двигатель с конденсатором

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Работа электродвигателя без конденсатора

Термоваккумная обработка увеличивает срок службы конденсатора, исключая возможность внутренней коррозии элементов. Чистая комната, с контролем влажности и температуры воздуха, высокопроизводительное швейцарское оборудование. Мы готовы к выпуску до 20 шт. Там, где на других завода работают люди, у нас автоматизированные станки. Быстрее, качественнее, надежней. Наличие собственных тестовых лабораторий на все типы выпускаемой продукции позволяют дать дополнительную гарантию клиентам в качестве продукции.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.


Использование электролитических конденсаторов

Пусковой конденсатор для начала работы трёхфазного двигателя от 220в обязан иметь большую ёмкость. Чтобы сдвинуть с места вал движка мощностью 3 киловатта, необходимо 2100 мкФ ёмкости. Для подбора такой величины С понадобится целая батарея неполярных компонентов. Электролитические двухполюсники (электролиты) обладают большей ёмкостью при меньших размерах. Но включение их в цепь переменного тока надолго недопустимо.

Осторожно. При длительном присоединении емкости электролит закипает, и элемент взрывается.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Простые способы присоединения электромотора

Простейшее включение моторов – присоединение к трёхфазной сети. Электрообмотки мотора соединяются двумя способами:

Порядок соединения указаны на крышке клеммника с обратной стороны.

Внимание! Соединение обмоток «треугольником» быстро выводит двигатель на максимальную мощность, но тогда величина пускового тока возрастает семикратно. Плавный пуск, при отсутствии пускового реостата, затруднён.

Соединение обмоток «звездой» позволяет устойчиво и длительно работать мотору при плавном запуске. Машина выдерживает кратковременные перегрузки и не перегревается. Мощность её несколько ниже, чем при альтернативном подключении.

Соединить в одну точку начала обмоток могут уже при изготовлении. На клеммник выводят только три их конца. Поэтому выводы просто подключают к фазам сети. Направление вращения выбирают, изменяя местами подключение выводов к двум соседним фазам.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя; Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.


Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Проверка и замена пускового конденсатора

Термоваккумная обработка увеличивает срок службы конденсатора, исключая возможность внутренней коррозии элементов. Чистая комната, с контролем влажности и температуры воздуха, высокопроизводительное швейцарское оборудование. Мы готовы к выпуску до 20 шт. Там, где на других завода работают люди, у нас автоматизированные станки. Быстрее, качественнее, надежней.

Наличие собственных тестовых лабораторий на все типы выпускаемой продукции позволяют дать дополнительную гарантию клиентам в качестве продукции. Завод активно участвует в тематических выставках, региональных тематических мероприятиях. Моторные конденсаторы производства ООО «Нюкон» серии К предназначены для соединения с обмотками асинхронных электродвигателей, питающихся от однофазной сети чаcтотой не более 60Гц, а также для перевода трехфазных двигателей на питание от однофазной сети.

В целях безопасности все пусковые конденсаторы должны использоваться с разрядным резистором. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.

В случаях когда конденсатор используется при последовательной схеме включения со вспомогательной обмоткой электродвигателя, напряжение на клеммах конденсатора при рабочей скорости может быть значительно выше напряжения сети. В процессе эксплуатации конденсаторов они могут устанавливаться непосредственно в физическом контакте с электродвигателем. В этом случае при выборе типа конденсатора необходимо учитывать, что конденсатор будет подвергаться воздействию повышенной температуры и вибраций — как от самого электродвигателя, так и от других пассивных элементов различного рода устройств, в составе которых будет применятся конденсатор.

В процессе выбора необходимой емкости и рабочего напряжения нужно учитывать фактор резонанса, то есть когда значения напряжения вспомогательной обмотки электродвигателя и конденсатора находятся в околорезонансной точке. В этом случае происходит повышение напряжения на клеммах изделия.

Предельное напряжение на клеммах пускового конденсатора должно быть не более В, а его емкость выбирается, как правило, в два и более раз больше емкости рабочего конденсатора. Для определения пусковой емкости Спуск. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется. Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп. Рис 1. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве.

При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов. Пользуясь данным сайтом и любым его сервисами, Вы подтверждаете свое согласие на обработку персональной информации.

Расположение завода:. Контакты Покупателю Пресс-центр О заводе. Спасибо за интерес, проявленный к нашей Компании. Версия для печати. Как показывает практика, на каждые Вт мощности электродвигателя требуется около мкФ. Область применения конденсаторов для асинхронных двигателей Таблица: Область применения конденсаторов для асинхронных двигателей рабочий пусковой Применение В схемах асинхронных электродвигателей В схемах асинхронных электродвигателей Тип подключения Последовательно со вспомогательной обмоткой электродвигателя Параллельно рабочему конденсатору В качестве Является фазосмещающим элементом Предназначение Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя Позволяет получить магниное поле, необходимое для повышения пускового момента электродвигателя Время включения В процессе работы электродвигателя В момент пуска электродвигателя Существуют две основные области применения конденсаторов для асинхронных электродвигателей.

Приблизительный расчет для данного типа соединения производится по следующей формуле: Сраб. Рис 2. Подбор конденсаторной установки:. Номинальная мощность, кВАр. Построить маршрут к заводу из: м.

Черкизовская ; м. Щёлковская ; м. Преображенская пл. Адрес: г. Москва, ул. Амурская д. Будем рады Вашему обращению в нашу компанию. Представьтесь, пожалуйста:. Название компании:. Выберите предпочтительный способ связи с заводом, либо используйте оба варианта. Введите e-mail:. Введите телефон с кодом города :. Я даю согласие на обработку моих персональных данных. Если отправляете другу, укажите от кого:. Корзина 0 0.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

Что такое трехфазный двигатель?

Большинство силовых агрегатов, преобразующих электрическую энергию с тепловую, представляют собой асинхронные машины. Если разобрать любой такой двигатель, то станет понятно, что он имеет два ключевых компонента, на взаимодействии которых строится вся его работа.

Статор

Это неподвижная часть мотора, имеющая кольцевидную форму – полый цилиндр. Сразу следует уточнить, что он не является цельным, грубо говоря изготовленным через точение круглой стальной болванки. Статор набирается из кольцевых пластин (магнитопровода), что позволяет избежать образования так называемых поверхностных токов Фуко, которые могут сильно разогревать металл. На внутреннем диаметре имеются продольные пазы, в которые укладывается обмотка из проволоки. Большинство стандартных двигателей являются трехфазными, то есть имеют три обмотки статора (по одной на каждую фазу). Геометрически каждая обмотка/фаза является смещенной относительно других на 120°. Такой расчет позволяет при подаче на фазные клеммы напряжения 380В возбудить в обмотках вращающееся магнитное поле.

Ротор

Это подвижная (вращающаяся) часть, конструктивно объединенная с приводным валом. Он также имеет наборный пластинчатый сердечник (магнитопровод), но в отличии от статора, пазы для обмоток располагаются на внешнем диаметре. Более того, называть их обмотками можно только с функциональной точки зрения, поскольку реально они представляют собой медные прутки определенного диаметра, а не пучки (катушки) проволоки.

С обоих сторон прутки соединяются на кольцевые ограничивающие пластины, образуя некоторое подобие беличьей клетки. Такая компоновка наиболее распространена и называется «коротко замкнутый ротор». При подаче напряжения здесь также магнитное поле, но оно имеет несколько меньшую частоту вращения (асинхронную), нежели у статора. Эта разница называется скольжением и составляет порядка 2…10%. Благодаря ей, между полями наводится ЭДС (электродвижущая сила), которая и заставляет вал вращаться с рабочей частотой.

Как подключить однофазный асинхронный двигатель через конденсатор?

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Типы однофазных асинхронных двигателей

следующий → ← предыдущая

Однофазный асинхронный двигатель запускается некоторыми способами. Механические методы не очень практичны, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель.

Однофазные асинхронные двигатели классифицируются в соответствии с вспомогательными средствами, используемыми для запуска двигателя. Они классифицируются следующим образом:

  1. Двухфазный двигатель
  2. Конденсаторный пусковой двигатель
  3. Электродвигатель с конденсаторным пуском
  4. Электродвигатель с делительным конденсатором (PSC)
  5. Электродвигатель с экранированными полюсами

1.

Двухфазный асинхронный двигатель:

Асинхронный двигатель с расщепленной фазой также известен как двигатель с пусковым сопротивлением . Он состоит из ротора с одной клеткой, а его статор имеет две обмотки ? основная обмотка и пусковая (также известная как вспомогательная) обмотка. Обе обмотки смещены на 90° в пространстве, как обмотки двухфазного асинхронного двигателя. Основная обмотка асинхронного двигателя имеет очень низкое сопротивление и высокое индуктивное сопротивление.

Рисунок: Двухфазный асинхронный двигатель (a) Принципиальная схема (b) Векторная диаграмма

Характеристики двигателя:

Пусковой крутящий момент асинхронного двигателя с пусковым сопротивлением примерно в 1,5 раза превышает крутящий момент при полной нагрузке. Максимальный или выдергивающий крутящий момент примерно в 2,5 раза превышает крутящий момент при полной нагрузке при примерно 75% синхронной скорости. Двухфазный двигатель имеет высокий пусковой ток, который обычно в 7-8 раз превышает значение полной нагрузки.

Применений:

Двигатели с расщепленной фазой

наиболее подходят для легко запускаемых нагрузок, где частота пусков ограничена, и они очень дешевы.

  1. Эти двигатели используются в стиральных машинах.
  2. Используются в вентиляторах кондиционеров.
  3. Используется в миксерах, измельчителях, полировщиках полов, воздуходувках, центробежных насосах,
  4. Они используются в небольших дрелях, токарных станках, офисном оборудовании и т. д.
  5. Иногда они также используются для приводов мощностью более 1 кВт.

Конденсаторные двигатели:

Конденсаторные двигатели — это двигатели с конденсатором в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках. Существует три типа конденсаторных двигателей.


2. Двигатель с конденсаторным пуском:

Двигатель с конденсаторным пуском развивает гораздо более высокий пусковой момент, то есть в 3,0–4,5 раза больше крутящего момента при полной нагрузке. Для получения высокого пускового момента значение пускового конденсатора должно быть большим, а сопротивление пусковой обмотки должно быть низким. . Из-за высокого номинала ВАр требуемого конденсатора используются электролитические конденсаторы порядка 250 Ф. Конденсатор Cs рассчитан на короткое время.

Эти двигатели дороже двигателей с расщепленной фазой из-за дополнительных затрат на конденсатор.

Рисунок: Электродвигатель с конденсаторным пуском (a) принципиальная схема (b) векторная диаграмма

Применений:

  1. Эти двигатели используются для тяжелых нагрузок, где требуется частый пуск.
  2. Эти двигатели используются для насосов и компрессоров, поэтому они используются в качестве компрессора в холодильнике и кондиционере.
  3. Они также используются для конвейеров и некоторых станков.

3. Конденсаторный двигатель с двумя номиналами

Этот двигатель имеет короткозамкнутый ротор, а его статор имеет две обмотки, а именно основную обмотку и вспомогательную обмотку. Две обмотки смещены в пространстве на 90°. В двигателе используются два конденсатора Cs и CR. На начальном этапе два конденсатора соединены параллельно.

Рисунок: Двигатели с двумя конденсаторами

Применений:

  1. Двигатели с двумя конденсаторами используются для нагрузок с более высокой инерцией, требующих частых пусков.
  2. Используются в насосном оборудовании.
  3. Они используются в холодильной технике, воздушных компрессорах и т. д.

4. Двигатель с постоянно разделенным конденсатором (PSC):

Эти двигатели имеют короткозамкнутый ротор, а его ротор состоит из двух обмоток, а именно основной обмотки и вспомогательной обмотки. Однофазный асинхронный двигатель имеет только один конденсатор С, включенный последовательно с пусковой обмоткой. Конденсатор С постоянно включен последовательно с пусковой обмоткой. Конденсатор C постоянно включен в цепь при пусковых и рабочих условиях.

Преимущества

Двигатель с конденсатором с одним номиналом имеет следующие преимущества:

  1. Для двигателей этого типа центробежный выключатель не требуется.
  2. Этот двигатель имеет более высокий КПД.
  3. Имеет более высокий коэффициент мощности из-за постоянно подключенного конденсатора.
  4. Имеет более высокий крутящий момент на отрыв.

Ограничения двигателя с постоянным конденсатором:

  1. Электролитические конденсаторы нельзя использовать для непрерывной работы. Поэтому следует использовать конденсаторы масляного типа с бумажными промежутками. Бумажные конденсаторы того же номинала больше по размеру и дороже.
  2. Однозначный конденсатор имеет низкий пусковой момент, обычно меньший, чем момент при полной нагрузке.

Применение:

  1. Эти двигатели используются для вентиляторов и воздуходувок в обогревателях.
  2. Используется в кондиционерах.
  3. Используется для привода компрессоров холодильников.
  4. Также используется для управления офисной техникой.

5. Двигатель с экранированными полюсами:

Двигатель с расщепленными полюсами представляет собой простой тип самозапускающегося однофазного асинхронного двигателя. Он состоит из статора и ротора клеточного типа. Статор состоит из явно выраженных полюсов. Каждый полюс имеет прорези сбоку, а на меньшей части установлено медное кольцо. Эта часть называется заштрихованным полюсом. Кольцо обычно представляет собой одновитковую катушку и известно как затеняющая катушка.

Рисунок: Двигатель с экранированными полюсами и двумя полюсами статора.

Применений:

  1. Двигатели с экранированными полюсами используются для привода устройств, требующих низкого пускового момента.
  2. Эти двигатели очень подходят для небольших устройств, таких как реле, вентиляторы всех видов и т. д., из-за их низкой начальной стоимости и легкого запуска.
  3. Чаще всего эти двигатели применяются в настольных вентиляторах, вытяжных вентиляторах, фенах, вентиляторах для холодильного оборудования и кондиционеров, электронном оборудовании, охлаждающих вентиляторах и т. д.

Следующая темаПринцип работы однофазного асинхронного двигателя

← предыдущая следующий →

Однофазные промышленные двигатели — как они работают?

Что бы мы были без электродвигателя?

Эти машины дали нам все, от освещения и охлаждения до сверхбыстрых электромобилей, и все это путем преобразования электроэнергии в механическое движение. Существует много типов электродвигателей, но двигатель переменного тока остается обычным явлением в промышленности благодаря своей элегантности и проверенной временем производительности. Эти двигатели используют переменный ток и физику электромагнетизма для создания мощности вращения и бывают разных типов в зависимости от области применения. В этой статье будут рассмотрены однофазные промышленные двигатели, которые являются опорой современного мира и обеспечивают питание многих полезных инструментов. Этот двигатель, его принципы работы и его характеристики будут обсуждаться, чтобы помочь разработчикам понять преимущества однофазных двигателей, а также когда их использовать.

Что такое однофазные двигатели?

Однофазные двигатели представляют собой двигатель переменного тока, в котором используются электромагнитные принципы для создания полезной энергии вращения. Они работают почти так же, как работают двигатели с короткозамкнутым ротором, фазным ротором и другими многофазными двигателями, за исключением того, что они несколько упрощены (дополнительную информацию об этих двигателях можно найти в наших статьях о двигателях с короткозамкнутым ротором, фазным ротором и асинхронных двигателях). «Однофазный» относится только к входной мощности, поэтому существует много типов двигателей, использующих однофазные входы. Они обычно встречаются в асинхронных двигателях, но также могут быть синхронными. Однофазные двигатели содержат как статор, так и роторы, как и большинство электродвигателей, но они используют только одну обмотку в своем статоре, которая пропускает только один переменный ток, а их роторы, как правило, более простые, чем роторы других конструкций. Им также требуется стартер, так как использование только одной фазы входной мощности обеспечивает нулевой пусковой момент в состоянии покоя.

Как работают однофазные двигатели?

В однофазных двигателях используются как статоры, так и роторы, как и в других двигателях переменного тока, хотя они работают по-разному. В трехфазных двигателях 120-градусное разделение фаз между тремя переменными токами, протекающими через обмотки статора, создает вращающееся магнитное поле; однако магнитное поле, созданное только одной фазой, «пульсирует» между двумя полюсами двигателя, поскольку существует только один переменный ток, создающий два возможных состояния магнитного поля (переменный ток имеет два синусоидальных пика, где магнитные поля будут равными, но противоположными). в ориентации или «вверх-вниз»). Это аппроксимирует вращающееся поле, но не полностью. Этим двигателям необходимо дать начальный «толчок» или почувствовать силу «в противофазе» с фазой статора, чтобы произошло начальное движение ротора. Неподвижный ротор не почувствует никаких эффектов от этого пульсирующего магнитного поля «вверх-вниз», если он еще не движется, поскольку магнитные силы вверх-вниз полностью компенсируют друг друга. Пускатели двигателей решают эту проблему, добавляя противофазное воздействие (вспомогательные обмотки, конденсаторы и т. д.), которое затем создает смоделированное вращающееся магнитное поле для запуска двигателя. Более подробную информацию об этих пускателях можно найти в нашей статье о пускателях двигателей.

Типы однофазных двигателей

Однофазный двигатель относится только к типу используемого источника питания, а не к конкретной схеме статор-ротор-стартер. Многие характеристики других двигателей переменного тока применимы при выборе однофазного двигателя, и их можно найти в наших статьях об асинхронных двигателях и двигателях переменного тока. В этой статье будут указаны различные типы однофазных двигателей, чтобы можно было применить общие принципы к этим конкретным конструкциям.

Двигатели с расщепленной фазой

В двигателях с расщепленной фазой

используется вспомогательная обмотка вне катушки статора для обеспечения начальной разности фаз, необходимой для вращения. В обмотке стартера используется провод меньшего диаметра и меньше витков, чем в обмотке статора, что придает ей большее сопротивление. Оно будет не в фазе с основным магнитным полем, потому что повышенное сопротивление изменяет фазу питания. Эта двухфазная обмотка даст начальный толчок для запуска вращения, а основная обмотка будет поддерживать работу двигателя. Затем пусковая обмотка должна быть отключена (обычно с помощью центробежного выключателя на выходном валу), как только двигатель достигнет определенного процента от полной скорости (около 75% от номинальной скорости). Повышение сопротивления пусковой обмотки также увеличивает риск перегорания катушки, поэтому эти выключатели необходимы для правильной и надежной работы двухфазных двигателей.

Конденсаторный пуск и конденсаторный пуск-двигатели с рабочим конденсатором

В этих типах однофазных двигателей конденсаторы рядом со вспомогательной обмоткой обеспечивают разность фаз, необходимую для начала вращения в этих двигателях. Они похожи на двигатели с расщепленной фазой, но используют емкость вместо сопротивления для смещения фазы стартера. В двигателях с конденсаторным пуском центробежный переключатель отключает пусковой конденсатор, когда двигатель достигает определенной скорости (около 75-80% от полной скорости). Конденсаторные двигатели с пусковым конденсатором используют два конденсатора (пусковой конденсатор и рабочий конденсатор), где ток, протекающий через пусковой конденсатор, опережает приложенное напряжение и вызывает фазовый сдвиг. Затем пусковой конденсатор ускоряет запуск двигателя, а рабочий конденсатор переключается, когда двигатель достигает номинальной скорости.

Двигатели с постоянными конденсаторами

В двигателях с постоянно разделенными конденсаторами используется постоянный конденсатор, включенный последовательно с пусковой обмоткой, без центробежного выключателя. Конденсатор постоянно используется при работающем двигателе, а это означает, что он не может обеспечить усиление, которое дает пусковой конденсатор, обычный в двух предыдущих конструкциях. Однако эти двигатели выигрывают от того, что им не нужен пусковой механизм (переключатель, кнопка и т. Д.), Поскольку рабочий конденсатор, включенный последовательно со вспомогательной обмоткой, пассивно изменяет фазу однофазного входа. Двигатели с постоянным конденсатором также являются реверсивными и, как правило, более надежны, чем другие однофазные двигатели.

Двигатели с экранированными полюсами

Этот тип однофазного двигателя не использует никаких обмоток или пускателей для запуска двигателя. Вместо этого в этом двигателе используется конфигурация, показанная на рис. 1 ниже:

.

Рис. 1. Расположение двигателя с экранированными полюсами. Обратите внимание, что заштрихованные катушки являются просто продолжением основной обмотки статора.

Этот двигатель более прост, чем другие однофазные двигатели, так как он не требует дополнительных пусковых цепей или переключателей. Корпус двигателя с С-образным сердечником изготовлен из магнитопроводящего материала (обычно из железа), который передает пульсирующее магнитное поле от основной обмотки статора к ротору. Полюса этого двигателя разделены на две неравные половины, где два «затеняющих» полюса создаются путем удлинения основной обмотки статора до меньших обмоток на одной из этих половин (показано выше). Когда однофазный переменный ток входит в С-сердечник, он «затеняет» намотанные половины, заставляя магнитное поле отставать от затененной части (затеняющая катушка создает противоположное магнитное поле, замедляя магнитный поток). Это вызывает неравномерное распределение индуктивных сил по ротору и заставляет его вращаться.

Применение и критерии выбора

Для некоторых приложений требуются специальные однофазные двигатели. Таблица 1 качественно показывает рабочие характеристики каждого типа двигателя.

Таблица 1: Качественная сводка рабочих характеристик каждого типа однофазного двигателя.

 

Пусковой момент

Эффективность

Надежность

Стоимость

Двухфазный двигатель

Низкий

Низкий

Низкий

Низкий

Конденсатор-пуск

Средний

Средний

Высокий

Средний

Постоянно делящийся конденсатор

Низкий

Высокий

Высокий

Средний

Конденсатор пуск-пуск конденсатора

Высокий

Высокий

Высокий

Высокий

Затененный столб

Низкий

Низкий

Низкий

Низкий

 

 
Двигатели с расщепленной фазой

имеют относительно простую конструкцию, которая снижает как их стоимость, так и производительность. Однако они имеют низкий пусковой момент и склонны к перегреву из-за резистивного характера их пускового механизма. Применения с низким крутящим моментом, такие как ручные шлифовальные машины, небольшие вентиляторы и другие устройства с дробной мощностью, лучше всего подходят для двигателей с расщепленной фазой. Не используйте этот двигатель, если требуется высокий крутящий момент или высокая частота циклов; двигатели с расщепленной фазой почти наверняка сгорят при таком использовании.

Двигатели с конденсаторным пуском

имеют улучшенный пусковой момент по сравнению с двигателями с расщепленной фазой и могут выдерживать высокие частоты циклов. В результате они более широко применимы и являются опорой в промышленных двигателях общего назначения. К ним относятся конвейеры с ременным приводом, большие воздуходувки и редукторы, а также многие другие. Их основным недостатком является их стоимость, поскольку они дороже, чем двигатели с расщепленной фазой.

Двигатели с постоянно разделенными конденсаторами, обладая низким пусковым крутящим моментом, могут хорошо работать при высокой частоте циклов и обладают превосходным КПД и надежностью. Они реверсивны благодаря отсутствию пускового механизма и могут регулировать скорость. Их единственный существенный недостаток заключается в том, что они не могут работать с высоким крутящим моментом, но в остальном являются надежными, высокоэффективными машинами, отлично подходящими для гаражных ворот, открывателей ворот или любых устройств с низким крутящим моментом, требующих мгновенного реверса.

Двигатели с конденсаторным пуском и пусковым конденсатором сочетают в себе преимущества двигателей с постоянным конденсатором и конденсаторного пуска при удвоенной стоимости. Они могут питать устройства, которые слишком сложны для других однофазных двигателей, таких как воздушные компрессоры, насосы высокого давления, вакуумные насосы, устройства мощностью 1-10 л.с. и т. д., используя их высокий пусковой момент. Они эффективны при полном токе нагрузки и надежны благодаря своей упрощенной конструкции. Если приоритетными являются мощность, надежность и эффективность, а стоимость менее важна, рассмотрите этот тип однофазного двигателя.

Двигатели с экранированными полюсами часто считаются «одноразовыми» электродвигателями, поскольку их просто производить и дешевле заменить, чем ремонтировать. Их крутящий момент, эффективность и надежность далеки от того, чего могут достичь другие однофазные двигатели, но они недороги и хорошо работают в приложениях с малой мощностью. К ним относятся бытовые применения, такие как вентиляторы для ванных комнат, фены, электрические часы, игрушки и т. д. Если для проекта требуется лишь незначительная мощность, а цена имеет первостепенное значение, двигатель с экранированными полюсами будет работать нормально.

Резюме

В этой статье представлено понимание того, что такое однофазные промышленные двигатели и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть сведения о конкретных продуктах.

 

Источники:
  1. https://geosci.uchicago.edu
  2. http://hyperphysics.phy-astr.gsu.edu/hbase/magnet/indmot.html
  3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
  4. https://people.ucalgary.ca
  5. https://faculty.up.edu/lulay/me401/fetchpdf.cgi.pdf
  6. https://www.electrical4u.com/types-of-однофазный-индукционный-двигатель/

Другие товары для двигателей

  • Все о бесщеточных двигателях постоянного тока: что это такое и как они работают
  • Все о двигателях с постоянными магнитами — что это такое и как они работают
  • Все о двигателях постоянного тока с обмоткой серии — что это такое и как они работают
  • Все о шунтирующих двигателях постоянного тока — что это такое и как они работают
  • Все о шаговых двигателях — что это такое и как они работают
  • Шаговые двигатели
  • и серводвигатели — в чем разница?
  • Все о контроллерах двигателей переменного тока — что это такое и как они работают
  • Синхронные двигатели
  • и асинхронные двигатели — в чем разница?
  • Бесщеточные двигатели
  • и щеточные двигатели — в чем разница?
  • Кто изобрел паровой двигатель? Урок промышленной истории
  • Все о двигателях с электронным управлением — что это такое и как они работают
  • Двигатели постоянного тока
  • и серводвигатели — в чем разница?
  • Шаговые двигатели
  • и двигатели постоянного тока — в чем разница?
  • Все о контроллерах серводвигателей — что это такое и как они работают
  • Что такое трехфазный двигатель и как он работает?
  • ECM Motors и PSC Motors — в чем разница?
  • Все о устройствах плавного пуска двигателей: что это такое и как они работают
  • Все о контроллерах двигателей постоянного тока — что это такое и как они работают
  • Основы тестирования двигателя (и ротора)
  • Что такое штамповка двигателя и как это работает?
  • Все о двигателях с дробной мощностью

Другие товары от Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Его конструкция, принцип работы и типы

 

Якоби добился выдающегося успеха, когда в мае 1834 года впервые изобрел первый в мире электродвигатель. люди в нем. Позже многие исследователи по всему миру начали создавать двигатели, похожие на оригинальный двигатель Якоби. В конце концов, много лет спустя именно Никола Тесла изобрел первый однофазный асинхронный двигатель, проводя эксперименты в 1887 году. Сегодня мы можем найти применение однофазных асинхронных двигателей во многих бытовых приборах, включая вентиляторы, посудомоечные и стиральные машины.

 

Что такое однофазный асинхронный двигатель?

Двигатель — это устройство, которое преобразует электрическую энергию в механическую для выполнения функциональных задач. Двигатели можно разделить на две большие категории: двигатель переменного тока и двигатель постоянного тока. Однофазный асинхронный двигатель является примером двигателя переменного тока, в котором используется однофазный переменный ток (ток, который меняет направление, полярность и величину). Однофазная индукция работает по принципу электромагнитной индукции.

 

Конструкция однофазного асинхронного двигателя

Конструкция однофазного асинхронного двигателя очень проста и состоит из двух основных компонентов: статора и ротора. Как следует из названия, ротор — это вращающаяся часть, а статор — неподвижная часть. И статор, и ротор имеют обмотки из проволоки, которые создают магнитный поток или поле, когда через них проходит ток. Если посмотреть на ротор, то можно обнаружить, что он слегка перекошен. Стержни ротора наклонены для снижения шума и вибрации. Ротор находится в сердечнике статора, а статор ламинирован для уменьшения потерь на вихревые токи.

Принцип работы однофазного асинхронного двигателя

Однофазный асинхронный двигатель работает по принципу электромагнитной индукции. Электромагнитная индукция — это явление, возникающее в проводнике всякий раз, когда он помещается в изменяющееся или движущееся магнитное поле. За счет электромагнитной индукции в проводнике возникает электродвижущая сила.

Чтобы понять принцип работы, вы должны понять два важных факта в физике, первый и второй законы Фарадея.

Первый закон Фарадея гласит: «Всякий раз, когда проводник помещается в переменное магнитное поле, индуцируется электродвижущая сила».

Второй закон Фарадея гласит: «ЭДС индукции в катушке равна скорости изменения потокосцепления».

 

 

Мы знаем, что переменный ток переменный по своей природе, обеспечивая необходимый поток для наведения ЭДС.

Когда мы включаем двигатель, через обмотки статора начинает течь переменный ток. Однофазный переменный ток создает магнитный поток, который имеет переменный характер. ЭДС индуцируется в обмотке ротора, расположенной в центре статора. Направление ЭДС индукции можно объяснить с помощью закона Ленца. Закон Ленца гласит, что ЭДС индукции в проводнике равна по величине и противоположна по направлению, а проводник создает магнитный поток, противодействующий вызвавшей его причине’ 

ротор сначала пытается противодействовать изменяющемуся магнитному полю статора. Когда на ротор передается пусковой момент, ротор начинает вращаться вместе с изменяющимся магнитным полем катушки статора. Но что такое пусковой момент? Крутящий момент – это сила, необходимая для вращения механизма. В начальном состоянии крутящий момент ротора равен нулю. Стартовый момент должен быть приложен извне, чтобы заставить ротор вращаться.

 

Зачем однофазному асинхронному двигателю нужен пусковой момент?

Однофазный асинхронный двигатель нуждается в пусковом моменте, поскольку он не запускается самостоятельно. Это можно объяснить еще одним фактом, называемым теорией двойного вращения поля. Согласно теории двойного вращения магнитное поле, создаваемое однофазным переменным током в статоре, можно разделить на две составляющие. Эти две составляющие равны по величине и противоположны по направлению. Из-за этого эффекта ротор вместо вращения начинает вибрировать. По этой причине однофазный асинхронный двигатель не запускается самостоятельно.

Чтобы решить эту проблему, к статору добавлена ​​еще одна обмотка. Таким образом, статор имеет две обмотки, одна — основная, создающая магнитный поток, а другая — вспомогательная.

 

Что такое вспомогательная обмотка?

Вспомогательная обмотка — это вторичная обмотка статора для достижения начального крутящего момента ротора, необходимого для вращения. Обычно вспомогательная обмотка работает до тех пор, пока ротор не достигнет 80% полной скорости, после чего ее отключает центробежный выключатель. Существует множество способов создания пускового момента с помощью вспомогательной обмотки, по которым однофазный асинхронный двигатель классифицируют на пять типов.

Типы однофазного индукционного двигателя

1. Индукционный мотор расщепленного фазы

. Ауусилиарная ветра помещена перпендикулярной на главную ветку в сплит-лифу-индуцированном индуинде. Вспомогательная обмотка имеет меньшее количество витков и является резистивной, а основная обмотка имеет большее количество витков и является индуктивной. Поскольку вспомогательная обмотка резистивная, ток, протекающий через нее, совпадает по фазе с входным напряжением. Из-за индуктивности основной обмотки напряжение отстает. Таким образом достигается разность фаз между потоком, создаваемым вспомогательной обмоткой и основной обмоткой, достаточная для обеспечения пускового момента. После того, как двигатель достигает 75% своей полной скорости, центробежный выключатель размыкается и отключает вспомогательную обмотку. Для этого двигателя требуется высокий пусковой ток, примерно в 7-8 раз превышающий потребность двигателя при работе с полной нагрузкой.

Разница фаз очень мала; следовательно, пусковой момент, достигаемый этим методом, также невелик. Таким образом, вы можете найти асинхронные двигатели с расщепленной фазой в приложениях, требующих низкого пускового момента, таких как воздуходувки, вентиляторы и т. д.

 

усовершенствованная версия асинхронного двигателя с расщепленной фазой. В нем вы можете найти конденсатор, включенный последовательно со вспомогательной обмоткой, чтобы обеспечить необходимую разность фаз. Достигнутая разность фаз почти равна 90 градусов, что является максимальной разностью фаз, которую можно получить. Следовательно, пусковой крутящий момент также высок, до 300% крутящего момента в условиях полной нагрузки. Конденсатор и вспомогательная обмотка отключаются, когда двигатель достигает 80% полной скорости.

Благодаря высокому пусковому крутящему моменту этот тип двигателя можно найти в приложениях, требующих высокого пускового крутящего момента, таких как токарные станки и компрессоры.

 

3. Пуск конденсатора Работа конденсатора

Как следует из названия, в этом двигателе используются два конденсатора: один пусковой, а другой рабочий. Пусковой конденсатор имеет очень высокое значение емкости, а рабочий конденсатор имеет низкое значение емкости. Пусковой конденсатор отключается от вспомогательной обмотки с помощью включенного последовательно с ней центробежного выключателя. Два конденсатора соединены параллельно друг другу и последовательно со вспомогательной обмоткой. Рабочий конденсатор постоянно подключен к цепи. Начальный крутящий момент и эффективность двигателя высоки, и вы можете найти этот тип асинхронного двигателя в конвейерных лентах и ​​насосах.

 

4. Асинхронный двигатель с разделенными конденсаторами постоянного тока

В асинхронном двигателе с постоянными конденсаторами вспомогательная обмотка остается в цепи на протяжении всего времени работы двигателя. Один и тот же конденсатор действует как пусковой и рабочий конденсатор и имеет низкое значение емкости. Этот двигатель не имеет центробежного выключателя для отключения вспомогательной обмотки от цепи. Начальный крутящий момент, достигаемый в этом двигателе, не такой высокий, как у асинхронного двигателя с конденсаторным пуском. Он используется в приложениях, требующих умеренного пускового момента от 80% до 100% от полного крутящего момента двигателя. Вы можете найти этот двигатель в обогревателях, потолочных вентиляторах и вытяжных вентиляторах.

 

5. Асинхронный двигатель с экранированными полюсами

 

 

Асинхронный двигатель с экранированными полюсами имеет другую конфигурацию и не имеет вспомогательной обмотки. Вместо вспомогательной обмотки используется экранированное кольцо для создания разности фаз. Заштрихованное кольцо и обмотка статора намотаны на одни и те же полюса, но заштрихованное кольцо заштриховано от обмотки статора. Заштрихованное кольцо обладает высокой индукцией; следовательно, когда ток проходит через обмотку статора, в заштрихованном кольце индуцируется ЭДС. Согласно закону Ленца, ЭДС индукции в заштрихованном кольце будет противоположна по направлению и будет противодействовать основному потоку, создаваемому обмоткой статора. Таким образом, создается разность фаз между основным потоком и потоком, создаваемым заштрихованным кольцом. Так работает асинхронный двигатель с расщепленными полюсами. Асинхронный двигатель с экранированными полюсами имеет низкий пусковой момент, и вы найдете его в игрушках, радиоприемниках, настольных вентиляторах и других небольших устройствах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *