Теплопроводность кирпича
Мы продолжаем разбирать технические характеристики кирпича. Мы уже рассмотрели такие характеристики как морозостойкость и марка прочности . Сегодня речь о теплопроводности.
Итак, разберёмся сначала с тем, что говорит нам действующий кирпичный ГОСТ 530-2012. Теплопроводность обозначают буквой лямбда, а измеряют Вт/(мС). Не будем вдаваться в технические тонкости, по сути, нам надо знать только цифры. Мы приведём их в самом начале, а после разберём, что они значат.
Самый тёплый кирпич называется высокоэффективным, и его лямбда менее 0,20. Есть также кирпич повышенной эффективности с лямбдой: от 0,20 до 0,24. Показатель эффективного кирпича 0,24-0,36; условно-эффективного 0,36-0,46; малоэффективного (обычного) 0,46 и выше. Как Вы уже поняли, чем меньше цифра, тем теплее кирпич. Это понятно, но везде ли и всегда нужно учитывать этот показатель? Нет, не везде. О том, где этот показатель важен, а где можно им пренебречь, речь и пойдёт ниже.
Теплопроводность строительного кирпича и блоков.
Для стеновых материалов теплопроводность — ключевой показатель. Ведь в современных домах задачу сохранения тепла берёт на себя строительный кирпич и утеплитель, и они должны в паре работать на удержание тепла и поддержание комфортного микроклимата в Вашем доме. Самым продвинутым материалом в России и Европе по праву считается крупноформатный керамический блок (подробнее о нём смотрите отдельную статью). Давайте посмотрим, что могут нам предложить ведущие производители. Блоки BRAER. Высокоэффективный кирпич, один из самых современных и тёплых в России. Теплопроводность блоков 0,166, у некоторых позиций и того ниже — 0,134. Кроме того, высокая марка прочности, отличная геометрия и специальный тёплый раствор, который производят именно для этого кирпича. Удачное решение! ЛСР. Один из брендов крупнейшей группы «ЛСР». Кирпич с заслуженно хорошей репутацией. Кирпич с отличной геометрией и теплопроводностью 0,18.
Теплопроводность лицевого кирпича
У лицевого кирпича множество важных характеристик, которые Вам обязательно нужно учесть при выборе. О них у нас есть отдельные статьи (морозостойкость, марка прочности и несколько общих обзоров разных видов лицевого кирпича). Но вот теплопроводность лицевого кирпича не должна Вас волновать. Проектировщики и архитекторы давно пришли к пониманию того, что разные функции должны выполнять разные материалы.Теплопроводность строительного кирпича
Строительный кирпич (речь о современном) отлично сохраняет микроклимат и тепло в доме.
Предыдущая статья Следующая статья
Страница не найдена — Фасад
Сайдинг
Сайдинг – один из самых популярных вариантов облицовочных материалов для фасадов зданий. Его популярность
Сайдинг
Облицовка из стальных пластин надежно защитит любой дом от неблагоприятных погодных условий. Однако далеко
Дерево
Около 20 лет назад появился материал, используемый для оформления не только фасадов, но и
Вентилируемые фасады
Отделка внешней поверхности стен здания осуществляется разными материалами: сайдингом, декоративным кирпичом и даже плиткой.
Обзоры марок
Цокольные панели Альта Профиль пользуются популярностью на рынке строительных материалов. Их особенность в увеличенной
Виды и свойства
Горючесть строительных материалов показывает, насколько они безопасны в случае возгорания. Негорючие фасадные панели исключают
Страница не найдена — Фасад
Штукатурка
Выбор штукатурки – ответственный момент планирования ремонта. От её качества зависит итоговый результат отделки.
Штукатурка
Кладка стен осталась позади, и стал вопрос выравнивания внешней стороны, придания устойчивости к погодным
Штукатурка
По окончанию ремонтно-строительных работ, пора приступать к наружной отделке дома. Качественная работа сделает внешний
Обзоры марок
Для отделки и защиты внешней части фундамента используются цокольные панели.
Сайдинг
Американская компания «Nailite» начала свою деятельность более 30 лет назад. На сегодня она является
Кирпич
Облицовочный кирпич, использующийся для отделки, выглядит презентабельно. Обладает высокими прочностными свойствами, множеством фактур и
Теплопроводность бетона и кирпича
Полная таблица теплопроводности различных строительных материалов
В моей работе достаточно часто бывает необходимо уточнить теплопроводность различных материалов. Чтобы каждый раз не искать в справочниках, я решил собрать данные по теплопроводности строительных материалов в таблицу.
Каковую здесь для Вашего удобства и выкладываю. Пользуйтесь!
И не забывайте советовать друзьям.
Таблица теплопроводности материалов | |||
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 840 |
Асбест волокнистый | 470 | 0.![]() | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0.116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.![]() | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.![]() | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.![]() | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0.05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо- и пенобетон, газо- и пеносиликат | 300…1000 | 0.![]() | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.![]() | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.![]() | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.![]() | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.![]() | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.![]() | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.![]() | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Кладка бутовая из камней средней плотности | 2000 | 1.![]() | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.![]() | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0.29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.![]() | 1150 |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.![]() | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0.7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.038 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0.15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Парафин | 870…920 | 0.27 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пемза | 400…700 | 0.11…0.16 | — |
Пемзобетон | 800…1600 | 0.19…0.52 | 840 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пеногипс | 300…600 | 0.1…0.15 | — |
Пенозолобетон | 800…1200 | 0.17…0.29 | — |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол «Пеноплекс» | 35…43 | 0.028…0.03 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0.041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеносиликальцит | 400…1200 | 0.122…0.32 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0.082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) | 200 | 0.064 | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) | 50…350 | 0.048…0.091 | 840 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996 – 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 200…600 | 0.065…0.145 | 1060 |
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе | 200…500 | 0.057…0.113 | 1060 |
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах | 200…500 | 0.052…0.105 | 1060 |
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах | 200…500 | 0.062…0.121 | 1060 |
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.28 | — |
Пробка техническая | 50 | 0.037 | 1800 |
Ракушечник | 1000…1800 | 0.27…0.63 | — |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Шевелин | 140…190 | 0.056…0.07 | — |
Шелк | 100 | 0.038…0.05 | — |
Шлак гранулированный | 500 | 0.15 | 750 |
Шлак доменный гранулированный | 600…800 | 0.13…0.17 | — |
Шлак котельный | 1000 | 0.29 | 700…750 |
Шлакобетон | 1120…1500 | 0.6…0.7 | 800 |
Шлакопемзобетон (термозитобетон) | 1000…1800 | 0.23…0.52 | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 800…1600 | 0.17…0.47 | 840 |
Штукатурка гипсовая | 800 | 0.3 | 840 |
Штукатурка известковая | 1600 | 0.7 | 950 |
Штукатурка из синтетической смолы | 1100 | 0.7 | — |
Штукатурка известковая с каменной пылью | 1700 | 0.87 | 920 |
Штукатурка из полистирольного раствора | 300 | 0.1 | 1200 |
Штукатурка перлитовая | 350…800 | 0.13…0.9 | 1130 |
Штукатурка сухая | — | 0.21 | — |
Штукатурка утепляющая | 500 | 0.2 | — |
Штукатурка фасадная с полимерными добавками | 1800 | 1 | 880 |
Штукатурка цементная | — | 0.9 | — |
Штукатурка цементно-песчаная | 1800 | 1.2 | — |
Шунгизитобетон | 1000…1400 | 0.27…0.49 | 840 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка | 200…600 | 0.064…0.11 | 840 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка | 400…800 | 0.12…0.18 | 840 |
Эбонит | 1200 | 0.16…0.17 | 1430 |
Эбонит вспученный | 640 | 0.032 | — |
Эковата | 35…60 | 0.032…0.041 | 2300 |
Энсонит (прессованный картон) | 400…500 | 0.1…0.11 | — |
Эмаль (кремнийорганическая) | — | 0.16…0.27 | — |
termoizol.com
Коэффициент теплопроводности материалов
Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материалов
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материалаКоэффициент теплопроводности Вт/(м·°C)В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | 0 | ||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Таблица теплопроводности строительных материалов
Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.
Сравнивают самые разные материалы
Название материала, плотность Коэффициент теплопроводностив сухом состоянии | при нормальной влажности | при повышенной влажности | |
ЦПР (цементно-песчаный раствор) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка | 0,25 | ||
Пенобетон, газобетон на цементе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементе, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон, газобетон на цементе, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон, газобетон на извести, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на извести, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон, газобетон на извести, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Оконное стекло | 0,76 | ||
Арболит | 0,07-0,17 | ||
Бетон с природным щебнем, 2400 кг/м3 | 1,51 | ||
Легкий бетон с природной пемзой, 500-1200 кг/м3 | 0,15-0,44 | ||
Бетон на гранулированных шлаках, 1200-1800 кг/м3 | 0,35-0,58 | ||
Бетон на котельном шлаке, 1400 кг/м3 | 0,56 | ||
Бетон на каменном щебне, 2200-2500 кг/м3 | 0,9-1,5 | ||
Бетон на топливном шлаке, 1000-1800 кг/м3 | 0,3-0,7 | ||
Керамическийй блок поризованный | 0,2 | ||
Вермикулитобетон, 300-800 кг/м3 | 0,08-0,21 | ||
Керамзитобетон, 500 кг/м3 | 0,14 | ||
Керамзитобетон, 600 кг/м3 | 0,16 | ||
Керамзитобетон, 800 кг/м3 | 0,21 | ||
Керамзитобетон, 1000 кг/м3 | 0,27 | ||
Керамзитобетон, 1200 кг/м3 | 0,36 | ||
Керамзитобетон, 1400 кг/м3 | 0,47 | ||
Керамзитобетон, 1600 кг/м3 | 0,58 | ||
Керамзитобетон, 1800 кг/м3 | 0,66 | ||
ладка из керамического полнотелого кирпича на ЦПР | 0,56 | 0,7 | 0,81 |
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) | 0,35 | 0,47 | 0,52 |
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) | 0,41 | 0,52 | 0,58 |
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) | 0,47 | 0,58 | 0,64 |
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) | 0,7 | 0,76 | 0,87 |
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот | 0,64 | 0,7 | 0,81 |
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот | 0,52 | 0,64 | 0,76 |
Известняк 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Известняк 1+600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Песок строительный, 1600 кг/м3 | 0,35 | ||
Гранит | 3,49 | ||
Мрамор | 2,91 | ||
Керамзит, гравий, 250 кг/м3 | 0,1 | 0,11 | 0,12 |
Керамзит, гравий, 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, 350 кг/м3 | 0,115-0,12 | 0,125 | 0,14 |
Керамзит, гравий, 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, 800 кг/м3 | 0,18 | ||
Гипсовые плиты, 1100 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсовые плиты, 1350 кг/м3 | 0,23 | 0,35 | 0,41 |
Глина, 1600-2900 кг/м3 | 0,7-0,9 | ||
Глина огнеупорная, 1800 кг/м3 | 1,4 | ||
Керамзит, 200-800 кг/м3 | 0,1-0,18 | ||
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 | 0,23-0,41 | ||
Керамзитобетон, 500-1800 кг/м3 | 0,16-0,66 | ||
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 | 0,22-0,28 | ||
Кирпич клинкерный, 1800 — 2000 кг/м3 | 0,8-0,16 | ||
Кирпич облицовочный керамический, 1800 кг/м3 | 0,93 | ||
Бутовая кладка средней плотности, 2000 кг/м3 | 1,35 | ||
Листы гипсокартона, 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Листы гипсокартона, 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Фанера клеенная | 0,12 | 0,15 | 0,18 |
ДВП, ДСП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
ДВП, ДСП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДВП, ДСП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДВП, ДСП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДВП, ДСП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 | 0,33 | ||
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 | 0,38 | ||
Линолеум ПВХ на тканевой основе, 1400 кг/м3 | 0,2 | 0,29 | 0,29 |
Линолеум ПВХ на тканевой основе, 1600 кг/м3 | 0,29 | 0,35 | 0,35 |
Линолеум ПВХ на тканевой основе, 1800 кг/м3 | 0,35 | ||
Листы асбоцементные плоские, 1600-1800 кг/м3 | 0,23-0,35 | ||
Ковровое покрытие, 630 кг/м3 | 0,2 | ||
Поликарбонат (листы), 1200 кг/м3 | 0,16 | ||
Полистиролбетон, 200-500 кг/м3 | 0,075-0,085 | ||
Ракушечник, 1000-1800 кг/м3 | 0,27-0,63 | ||
Стеклопластик, 1800 кг/м3 | 0,23 | ||
Черепица бетонная, 2100 кг/м3 | 1,1 | ||
Черепица керамическая, 1900 кг/м3 | 0,85 | ||
Черепица ПВХ, 2000 кг/м3 | 0,85 | ||
Известковая штукатурка, 1600 кг/м3 | 0,7 | ||
Штукатурка цементно-песчаная, 1800 кг/м3 | 1,2 |
Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.
НаименованиеКоэффициент теплопроводностиВ сухом состоянии | При нормальной влажности | При повышенной влажности | |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Пробковое дерево | 0,035 | ||
Береза | 0,15 | ||
Кедр | 0,095 | ||
Каучук натуральный | 0,18 | ||
Клен | 0,19 | ||
Липа (15% влажности) | 0,15 | ||
Лиственница | 0,13 | ||
Опилки | 0,07-0,093 | ||
Пакля | 0,05 | ||
Паркет дубовый | 0,42 | ||
Паркет штучный | 0,23 | ||
Паркет щитовой | 0,17 | ||
Пихта | 0,1-0,26 | ||
Тополь | 0,17 |
Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.
НазваниеКоэффициент теплопроводности НазваниеКоэффициент теплопроводностиБронза | 22-105 | Алюминий | 202-236 | |
Медь | 282-390 | Латунь | 97-111 | |
Серебро | 429 | Железо | 92 | |
Олово | 67 | Сталь | 47 | |
Золото | 318 |
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающихконструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.
stroychik.ru
Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.
Навигация по справочнику TehTab.ru: главная страница / / Техническая информация / / Физический справочник / / Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… / / Теплопроводность. Коэффициенты теплопроводности. / / Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность. Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
tehtab.ru
Коэффициент теплопроводности строительных материалов таблица
Любой строитель с уверенностью скажет вам, что прежде, чем приступить к непосредственному выполнению работ, необходимо тщательно разработать проект. Очевидно, что задания такого типа ложатся на плечи квалифицированных в этой области специалистов – проектировщиков. Чтобы деятельность проектировщика была успешной, будь то дипломированный мастер или только новичок, ему необходимо обладать большим количество информации о комплексе свойств материалов, задействованных в конкретном проекте. Специалисту не только придется создавать будущее сооружение с нуля, но и в процессе доработки корректировать его внешний вид. Кроме того, важным является и расчет теплотехнических параметров здания.
Успешная работа проектировщика не только гарантирует качественный результат в краткосрочной перспективе, но напрямую определяет состояние здание в далеком будущее.
Материал | Коэффициент теплопроводности, Вт/(м·°C) | ||
В сухом состоянии | Условия А («обычные») | Условия Б («влажные») | |
Пенополистирол (ППС) | 0,036 — 0,041 | 0,038 — 0,044 | 0,044 — 0,050 |
Пенополистирол экструдированный (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Войлок шерстяной | 0,045 | ||
Цементно-песчаный раствор (ЦПР) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка обычная | 0,25 | ||
Минеральная вата каменная, 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Минеральная вата каменная, 140-175 кг/м3 | 0,037 | 0,043 | 0,046 |
Минеральная вата каменная, 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата каменная, 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Минеральная вата каменная, 25-50 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата стеклянная, 85 кг/м3 | 0,044 | 0,046 | 0,05 |
Минеральная вата стеклянная, 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Минеральная вата стеклянная, 60 кг/м3 | 0,038 | 0,04 | 0,045 |
Минеральная вата стеклянная, 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Минеральная вата стеклянная, 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Минеральная вата стеклянная, 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Минеральная вата стеклянная, 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Минеральная вата стеклянная, 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Минеральная вата стеклянная, 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Пенобетон и газобетон на цементном вяжущем, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон и газобетон на цементном вяжущем, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон и газобетон на цементном вяжущем, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон и газобетон на цементном вяжущем, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон и газобетон на известняковом вяжущем, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Пенобетон и газобетон на известняковом вяжущем, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон и газобетон на известняковом вяжущем, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон и газобетон на известняковом вяжущем, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Медь | 382 — 390 | ||
Алюминий | 202 — 236 | ||
Латунь | 97 — 111 | ||
Железо | 92 | ||
Олово | 67 | ||
Сталь | 47 | ||
Стекло оконное | 0,76 | ||
Свежий снег | 0,10 — 0,15 | ||
Вода жидкая | 0,56 | ||
Воздух (+27 °C, 1 атм) | 0,026 | ||
Вакуум | 0 | ||
Аргон | 0,0177 | ||
Ксенон | 0,0057 | ||
Арболит (подробнее здесь) | 0,07 — 0,17 | ||
Пробковое дерево | 0,035 | ||
Железобетон плотностью 2500 кг/м3 | 1,69 | 1,92 | 2,04 |
Бетон (на гравии или щебне) плотностью 2400 кг/м3 | 1,51 | 1,74 | 1,86 |
Керамзитобетон плотностью 1800 кг/м3 | 0,66 | 0,80 | 0,92 |
Керамзитобетон плотностью 1600 кг/м3 | 0,58 | 0,67 | 0,79 |
Керамзитобетон плотностью 1400 кг/м3 | 0,47 | 0,56 | 0,65 |
Керамзитобетон плотностью 1200 кг/м3 | 0,36 | 0,44 | 0,52 |
Керамзитобетон плотностью 1000 кг/м3 | 0,27 | 0,33 | 0,41 |
Керамзитобетон плотностью 800 кг/м3 | 0,21 | 0,24 | 0,31 |
Керамзитобетон плотностью 600 кг/м3 | 0,16 | 0,2 | 0,26 |
Керамзитобетон плотностью 500 кг/м3 | 0,14 | 0,17 | 0,23 |
Крупноформатный керамический блок (тёплая керамика) | 0,14 — 0,18 | ||
Кирпич керамический полнотелый, кладка на ЦПР | 0,56 | 0,7 | 0,81 |
Кирпич силикатный, кладка на ЦПР | 0,70 | 0,76 | 0,87 |
Кирпич керамический пустотелый (плотность 1400 кг/м3 с учетом пустот), кладка на ЦПР | 0,47 | 0,58 | 0,64 |
Кирпич керамический пустотелый (плотность 1300 кг/м3 с учетом пустот), кладка на ЦПР | 0,41 | 0,52 | 0,58 |
Кирпич керамический пустотелый (плотность 1000 кг/м3 с учетом пустот), кладка на ЦПР | 0,35 | 0,47 | 0,52 |
Кирпич силикатный, 11 пустот (плотность 1500 кг/м3), кладка на ЦПР | 0,64 | 0,7 | 0,81 |
Кирпич силикатный, 14 пустот (плотность 1400 кг/м3), кладка на ЦПР | 0,52 | 0,64 | 0,76 |
Гранит | 3,49 | 3,49 | 3,49 |
Мрамор | 2,91 | 2,91 | 2,91 |
Известняк, 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Известняк, 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк, 1600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк, 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Туф, 2000 кг/м3 | 0,76 | 0,93 | 1,05 |
Туф, 1800 кг/м3 | 0,56 | 0,7 | 0,81 |
Туф, 1600 кг/м3 | 0,41 | 0,52 | 0,64 |
Туф, 1400 кг/м3 | 0,33 | 0,43 | 0,52 |
Туф, 1200 кг/м3 | 0,27 | 0,35 | 0,41 |
Туф, 1000 кг/м3 | 0,21 | 0,24 | 0,29 |
Песок сухой строительный (ГОСТ 8736-77*), 1600 кг/м3 | 0,35 | ||
Фанера клееная | 0,12 | 0,15 | 0,18 |
ДСП, ДВП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
ДСП, ДВП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДСП, ДВП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДСП, ДВП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДСП, ДВП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
Пакля | 0,05 | 0,06 | 0,07 |
Гипсокартон (листы гипсовые обшивочные), 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Гипсокартон (листы гипсовые обшивочные), 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1800 кг/м3 | 0,38 | 0,38 | 0,38 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1600 кг/м3 | 0,33 | 0,33 | 0,33 |
Линолеум из ПВХ на тканевой подоснове, 1800 кг/м3 | 0,35 | 0,35 | 0,35 |
Линолеум из ПВХ на тканевой подоснове, 1600 кг/м3 | 0,29 | 0,29 | 0,29 |
Линолеум из ПВХ на тканевой подоснове, 1400 кг/м3 | 0,2 | 0,23 | 0,23 |
Эковата | 0,037 — 0,042 | ||
Перлит вспученный, песок, плотность 75 кг/м3 | 0,043 — 0,047 | ||
Перлит вспученный, песок, плотность 100 кг/м3 | 0,052 | ||
Перлит вспученный, песок, плотность 150 кг/м3 | 0,052 — 0,058 | ||
Перлит вспученный, песок, плотность 200 кг/м3 | 0,07 | ||
Пеностекло, насыпное, плотность 100 — 150 кг/м3 | 0,043 — 0,06 | ||
Пеностекло, насыпное, плотность 151 — 200 кг/м3 | 0,06 — 0,063 | ||
Пеностекло, насыпное, плотность 201 — 250 кг/м3 | 0,066 — 0,073 | ||
Пеностекло, насыпное, плотность 251 — 400 кг/м3 | 0,085 — 0,1 | ||
Пеностекло, блоки, плотность 100 — 120 кг/м3 | 0,043 — 0,045 | ||
Пеностекло, блоки, плотность 121 — 170 кг/м3 | 0,05 — 0,062 | ||
Пеностекло, блоки, плотность 171 — 220 кг/м3 | 0,057 — 0,063 | ||
Пеностекло, блоки, плотность 221 — 270 кг/м3 | 0,073 | ||
Керамзит, гравий, плотность 250 кг/м3 | 0,099 — 0,1 | 0,11 | 0,12 |
Керамзит, гравий, плотность 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, плотность 350 кг/м3 | 0,115 — 0,12 | 0,125 | 0,14 |
Керамзит, гравий, плотность 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, плотность 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, плотность 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, плотность 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, плотность 800 кг/м3 | 0,18 | ||
Гипсоплиты, плотность 1350 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсоплиты, плотность 1100 кг/м3 | 0,23 | 0,35 | 0,41 |
Перлитобетон, плотность 1200 кг/м3 | 0,29 | 0,44 | 0,5 |
Перлитобетон, плотность 1000 кг/м3 | 0,22 | 0,33 | 0,38 |
Перлитобетон, плотность 800 кг/м3 | 0,16 | 0,27 | 0,33 |
Перлитобетон, плотность 600 кг/м3 | 0,12 | 0,19 | 0,23 |
Пенополиуретан (ППУ), плотность 80 кг/м3 | 0,041 | 0,042 | 0,05 |
Пенополиуретан (ППУ), плотность 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ), плотность 40 кг/м3 | 0,029 | 0,031 | 0,04 |
Пенополиэтилен сшитый | 0,031 — 0,038 |
Ваш дом может сохранят тепло
Достижения строительной индустрии, динамика развития которой поражает, дают нам возможность существенно экономить на содержании архитектурных сооружений. Сегодня можно построить не просто надежное, безопасное и эстетически привлекательно здание, но и придать ему такие свойства как поддержание определенного микроклимата и сохранение тепла. Для этого еще на этапе разработки проекта конструкции необходимо задействовать материалы, коэффициент теплопроводности которых соответствует нашим желаниям.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещенияНемного о понятии теплопроводности
Итак, ответ на вопрос «то такое теплопроводность?» заключается в следующем: это процесс, в рамках которого элементы, обладающие большим количеством тепла, передают его менее нагретым частям конструкции, данный обмен не прекратиться ровно до тех пор, пока общая температура сооружения полностью не уравновесится. Если проецировать данное утверждение на плоскость ограждающих систем здания, то становится очевидным, что суть теплопроводности сводится к временному отрезку, за который температура становится равной во всех элементах конструкции. Если это время достаточно продолжительное, то, соответственно, теплопроводность самих материалов, на порядок ниже.
Что определяет коэффициент?
В целях систематизации полученных экспериментальным и вычислительным путем знаний, ученые в свое время решили характеризировать проводимость тепла различными строительными материалами через определённое понятие, знакомое многим специалистам соответствующей сферы. Речь идет о так называемом коэффициенте теплопроводности материалов. Данный показатель указывает какое именно количество тепла способно пройти через стандартную единицу площади материальной поверхности за одну временную единицу. В случае, когда описываемый параметр высок, то теплопередача происходит значительно быстрее, а потому и здание, построенное из стройматериала с такими свойствами, остынет гораздо быстрее желаемого. Таким образом, можно сделать вывод, что для экономии в отопительный период необходимо выстраивать дома из таких продуктов, коэффициент которых как можно ниже. Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Факторы, определяющие величину коэффициента
Конечно же, имея дело с какой-либо величиной, необходимо помнить, что существует целая система факторов, оказывающая определяющее воздействие на данное свойство. На свойство теплопроводимости материала влияют:
- Структура. Если структура продукта неоднородна, то в нем обязательно присутствуют поры. В случае прохождения тепла сквозь пористую структуру происходит минимально возможное охлаждение. Итак, большое количество пор – залог качественного сохранения тепла.
- Плотность. Высокие показатели данного параметра определяют достаточно тесное взаимодействие молекул. Вследствие сам процесс теплообмена, а также уравновешивание температур, которое происходит в итоге, осуществляется достаточно оперативно.
- Влажность. Капельки жидкости, которые располагаются в порах продукта, выталкивают сухой воздух и ускоряют теплопередачу.
Чем пригодятся эти знания на практике?
В профессиональной среде строительные материалы распределяют на два типа, необходимо подчеркнуть, что такое распределение очень удобно для понимания актуальности использования тех или иных стройматериалов новичками. Предлагаются такие типы товаров:
- конструкционные;
- теплоизоляционные.
Конструкционная категория – это основа строительства стен, ограждений, перекрытий и прочих перегородок. С их свойствами вас ознакомит специально разработанная таблица теплопроводности, в которой в оптимальной форме изложены данные, заранее вычисленные специалистами. Согласно данному источнику в процессе создания железобетонных стен необходимо устанавливать толщину, приближенную к шести метрам. Однако, на практике совершить подобное практически нереально, ведь если придерживаться описанного правила, здание само по себе будет, пускай и прочным, но все же через чур громоздким, а это противоречит принципам функциональности и эргономичности в архитектуре.
Решим проблему громоздких конструкций
Что ж, практика, как и исторический опыт, свидетельствуют о том, что железобетонные строения, коэффициент теплопроводимости которых достаточно высок, все же являются безопасными, надежными, долговечными и функциональными. Чтобы не водружать на подобные стройматериалы еще и теплосберегательную функцию, можно с легкостью обойтись укладкой как внутри помещений, так и снаружи специальных продуктов.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковымСуществует несколько вариантов утепления архитектурных конструкций. Это разнообразие вызвано в первую очередь тем, что еще на этапе проектирования специалист обязан определить решительно все пути, через которое тепло может преждевременно покидать конструкцию и ликвидировать данную проблему. Внушительное количество тепла, как правило, теряется из-за плохого утепления:
- пола;
- стен;
- крыши;
- дверей, а также окон.
Если проектировщик допустит ошибку, жильцам получившегося сооружения придется довольствоваться малой долей энергии, которую производят теплоносители. Чтобы будущий дом был и надежным, и теплосберегательным, профессионалы соответствующей отрасли разработали комбинации продуктов с различными свойствами:
- Дом каркасного типа. В случае установки каркаса из древесины у работников получается обеспечить прекрасные прочностные показатели для всей конструкции в целом. Утеплительный элемент в таком случае располагается в свободном пространстве, которого предостаточно между стойками каркаса. Случается,так, что в итоге приходится утеплять с наружной стороны еще и сам каркас.
- Стандартный дом. Ели здание возводится из традиционных продуктов вроде кирпича, шлакоблоков и бетона, утеплительное покрытие укладывается на поверхности здания снаружи.
При грамотном подходе к делу сохранения тепла вы сможете сэкономить большое количество денег и сделать свое жилище еще более комфортабельным.
Таблица теплопроводности материалов Коэффициент теплопроводности материалов обновлено: Декабрь 4, 2017 автором: kranch0 (1 оценок, среднее: 5,00 из 5) Загрузка… Читайте по темеjsnip.ru
Керамический кирпич — Теплопроводность
Исторически в строительстве кирпич применяется очень давно, современная популярность этого материала частично объяснима доверием к нему со стороны застройщиков. Ведь при упоминании стены в подсознании у многих отражается лишь её исполнение в кирпиче. В современном мире этот искусственный керамический материал вовсе не собирается сдавать свои позиции, а лишь расширяет ассортимент и улучшает свои свойства.
Однако, постоянное удорожание энергоносителей вынуждает даже неспециалистов пристально рассматривать любые материалы на вопрос теплопотерь. Ниже мы составили для вас таблицу, в которой рассмотрели особенности каждого вида керамического кирпича и их теплопроводность.
Основные виды керамического кирпича:
Подвид материала | Сфера применения и особенности | Коэффициент теплопроводности Вт/м∙°С |
Полнотелый | Применяется при возведении любого типа стен, преимущественно применяют для несущих колонн, стен и перегородок, большой выбор марок прочности позволяет использовать его в наиболее ответственных конструкциях. В этот класс входят и материалы с техническими пустотами, что обеспечивают прочность кладки. | 0,5-0,8 |
Пустотелый (щелевой и поризованный) | В этом виде кирпича, для повышения теплоизоляционных свойств предусмотрены каналы или отверстия различной формы. | 0,22-0,43 |
Огнеупорный | Находит своё применение при возведении элементов, что могут подвергаться воздействию открытого пламени и высокой температуры – до 1400-1800 °С, в промышленном производстве он незаменим. Разумеется в жилом строительстве температура огня в топке редко превышает 800 °С и применяются менее стойкие марки шамотного кирпича. | 0,5-1,28 |
Лицевой | Полнотелый кирпич предполагает его дальнейшую отделку, так как нормы его производства допускают небольшие неровности, изменения в фактуре и цвете. Для сохранения естественной красоты кирпичной кладки используют облицовочный кирпич, лишённый этих недостатков. В его линейке также есть много декоративных и доборных элементов с радиальными закруглениями. | 0,36-0,52 |
Клинкер | Вершина развития керамики фасадных облицовочных материалов проверенная временем, производится из глины, что проходит несколько стадий обжига. Обладает стойкостью к воздействию щелочей и кислот, малопроницаем для влаги, поэтому выдерживать большое количество циклов «замерзания-оттаивания» — имеется в ввиду изменений сезонов зима-весна. Обычно производителями гарантируется около 100-300 циклов, что подразумевает беспроблемную эксплуатацию столько же лет. | 0,8-0,9 |
Не стоит полагать, что виды этих стеновых материалов не могут сочетаться: ведь в одно и то же время облицовочный кирпич может быть и пустотелым, и это не уменьшит несущую способность элементов выполненных из него, а лишь уменьшит теплопроводность ограждающих конструкций и сохранит комфортную температуру в вашем доме.
Смотрите также:
Понравилась статья? Поделиться с друзьями:
Газобетон или кирпич, что лучше выбрать?
В этой статье под газобетоном мы будем понимать вид ячеистого бетона, который получают из смеси цемента, песка, воды и газообразующими добавками, которые образуют в бетоне пузыри, делающие плотность и теплопроводность бетона ниже.
Под кирпичом подразумевается знакомый всем, керамический строительный материал, производимый посредством обжига разных глиняных смесей.
И обычный кирпич, и газобетон обладают рядом конкретных характеристик, по которым их можно сравнивать. Среди них:
- масса;
- прочность на сжатие;
- теплопроводность;
- морозостойкость;
- огнестойкость;
- паропрницаемость;
- влагопоглощение.
Обладая сведениями о выше упомянутых показателях, можно уже судить о том, подойдет ли вам данный материал с учётом расположения и предназначения будущей постройки. Поэтому далее мы подробно расскажем о каждом параметре.
Масса материала
Масса отдельных фрагментов формирует массу стен, а вот её следует учитывать при выборе типа закладываемого фундамента.
По этим причинам кирпичные стены требуют наличия под собой более сложного, а оттого и более дорогого фундамента (преимущественно монолитного или ленточного), а вот газобетонные стены в этом плане менее требовательны.
Но, у газобетона, в отличие от кирпича, очень слабая прочность на изгиб, а это значит, что усадка фундамент должен быть очень хорошо сделан.
Хороший фундамент для газобетона не должен давать усадку, а морозное пучение не должно сдвигать его. Потому, большое внимание нужно уделить дренажу фундамента и подсыпке из непучинистых наполнителей (песка и щебня).
В принципе, на хороших грунтах подойдет малозаглубленный фундамент с утепленной отмосткой, для более сложных грунтов лучше проводить геологию грунта.
В любом случае, выбор того или иного фундамента зависит от тяжести всего здания типа грунта, от глубины промерзания и от уровня грунтовых вод. А рассчет всего этого, дело сложное, которое лучше предоставить специалистам.
Сравнение газобетона и керамических блоков (видео)
Прочность газобетона на сжатие
Геометрия газоблоков и кирпичей
Газоблоки намного крупнее и ровнее чем кирпичи, какой из этого сделать вывод? А вот какой: коробка из газоблока строится гораздо быстрее. Швы между газоблоками получаются около 2 мм, что сводит до минимума теплопотери через шов. Отметим, что каждый ряд газоблока нужно выравнивать теркой, чтобы плоскость была идеальной, а шов равномерным, это очень важно. Ряды газоблока вравниваются теркой очень быстро и просто, так что не стоит этого боятся.
Также некоторые ряды газобетона нужно армировать. Более подробно про армирование газобетонной кладки смотрите в нашей статье.
Газобетон бывает автоклавным и неавтоклавным, сразу скажем, что автоклавный газобетон лучше по всем показателям, в том числе и по геометрии блоков, но автоклавный дороже. Более подробно про различия автоклавного и неавтоклавного газобетона читайте в нашей статье по ссылке.
К швам в кирпичной кладке нет таких требований. Также стоит отметить, что в доме из газобетона необходимо наличие монолитного железобетонного армопояса. А как вы понимаете, армопояс это непростая конструкция, требующая немало времени и средств. Время сэкономленное на кладке газобетона несколько отберется при устройстве армопояса.
Как можно догадаться, этот параметр указывает на то, какой уровень нагрузки способен выдерживать материал; рассчитывается в килограммах на 1 см². От прочности на сжатие значительно зависит общая прочность конструкции.
Чем стены здания выше, тем они тяжелее, и нагрузка на блоки (на сжатие) увеличивается, и требования к прочности на сжатие растет. Прочность на сжатие принято обозначать классами (от B0.5 до B60) и для газобетона этот показатель может быть в пределах от B0.5 до B20.
К примеру у качественного газобетона марки D500 класс прочности на сжатие равняется B3.5 что соответсвует нагрузке 46 кг/см².
Марка газобетона | Класс прочности на сжатие | Средняя прочность (кг/см²) |
D300 (300 кг/м³) | B0,75 — B1 | 10 — 15 |
D400 |
B1,5 — B2,5 | 25 -32 |
D500 | B1,5 — B3,5 | 25 — 46 |
D600 | B2 — B4 | 30 — 55 |
D700 | B2 — B5 | 30 — 65 |
D800 | B3,5 — B7,5 | 46 — 98 |
D900 | B3,5 — B10 | 46 — 13 |
D1000 | B7,5 — B12,5 | 98 — 164 |
D1100 | B10 — B15 | 131 — 196 |
D1200 | B15 — B20 | 196 — 262 |
У кирпича тоже есть своя маркировка по прочности (от М50 до М300 ). К примеру, марка кирпича М100 соответствует классу прочности на сжатие — B7.5 что соответствует нагрузке в 100 кг/см².
Марка кирпича | Класс прочности на сжатие (класс) | Средняя прочность (кг/см²) |
M50 | B3,5 | 50 |
M75 | B5 | 75 |
M100 | B7,5 | 100 |
M125 | B10 | 125 |
M150 | B12,5 | 150 |
M200 | B15 | 200 |
M250 | B20 | 250 |
M300 | B25 | 300 |
Теплопроводность
Коэффициент теплопроводности свидетельствует о способностях материала проводить сквозь себя тепло. Этот показатель означает количество тепла, которое проходит за час времени сквозь 1 м³ материала при единичной разнице температуры на противоположных поверхностях. То есть чем коэффициент выше, тем хуже теплоизоляция.
На фотографии с тепловизора видно, какая температура поверхности в каких участках, чем ярче цвет, тем хуже в той области теплоизоляция.
Вид кирпича | Коэффициент теплопро- водности | Кладка на цементно-песчаном растворе |
Красный глиняный (1800 кг/м³) | 0,56 | 0,70 |
Силикатный, белый (1500 кг/м³) |
0,70 | 0,85 |
Керамический пустотелый (1400 кг/м³) | 0,41 | 0,49 |
Керамический пустотелый (1000 кг/м³) | 0,31 | 0,35 |
Таблица теплопроводности газобетона
Марка и плотность газобетона | Коэффициент теплопро- водности(сухой) | Коэффициент теплопроводности(при влажности блоков 4%) |
D300 (300 кг/м³) | 0,080 | 0,082 |
D400 (400 кг/м³) |
0,095 | 0,100 |
D500 (500 кг/м³) | 0,118 | 0,127 |
D600 (600 кг/м³) | 0,137 | 0,150 |
D700 (700 кг/м³) | 0,165 | 0,192 |
D800 (800 кг/м³) | 0,182 | 0,215 |
Сравнительный график теплопроводности кирпичей и газобетона
Так, по графику наглядно видно разницу в теплопроводности между различными кирпичами и газабетонами, к примеру, теплопроводность газобетона D500 в 4-5 раз ниже чем у красного полнотелого кирпича. Но это всё лабораторные цифры, на самом деле, в кладке разница между теплопроводностью несколько меняется, и теплопроводность будет отличаться уже не в 4-5 раз, а всего в три.
Причиной этому являются так называемые «мостики холода», под которыми подразумеваются слои раствора между частями кладки.
В случае с газобетонными блоками используется специальный клей для тонких швов, что уменьшает теплопотери конструкции, но всё равно, реальные показатели кладки газобетона по теплопроводимости ниже чем представленные в таблице выше.
Также стоит отметить, что толщина швов в газобетонной кладке должна быть как можно меньше, в идеале (1-3 мм). Толстые швы в газобетоне сводят все его теплотехнические достоинства к минимуму.
Еще оним фактором, который ухудшает теплоизоляцию, является влажность блоков, чем влажность выше, тем хуже. А газобетон пористый и от того хорошо впитывает воду.
По теплотехническим нормам, теплые кирпичные стены должны иметь солидную толщину (1 м), тогда как для газобетонных стен хватит толщины в 0,3-0,5 м. Для самых холодных регионов может потребоваться кладка из газобетона толщиной аж 600 мм.
В общем, чем толще стены, чем тоньше швы и чем меньше влажность стены, тем лучше будет сохраняться тепло внутри помещения и тем больше вы сэкономите на отоплении дома.
Повторимся, что газобетон бывает разных марок, начиная от D200 и заканчивая D1200. Число в данном случае показывает плотность материала. Чем плотность выше, тем блок прочнее, но при этом его теплоизоляционные свойства хуже.
Газобетон марок D200-D300, используется как теплоизолятор, а блоки маркой D400 и выше используются как конструкционные блоки для стен.
В настоящее время строительство кирпичных стен с толщиной под 1 м – большая редкость, ибо это слишком накладно и по деньгам, и по количеству затрачиваемого времени, и по трудовым ресурсам.
Чаще всего возводят кирпичные стены в полтора-два кирпича с толщиной 38-50 см, а для теплоизоляции применяют гораздо толще слой теплоизоляционных материалов, чем при кладке газобетонных стен.
Морозостойкость
Данный показатель демонстрирует стойкость намоченого материала при воздействии минусовых температур. Он показывает, насколько хорошо материал может сохранять свою прочность при повторяющихся замораживаниях и оттаиваниях.
Морозостойкость обозначают буквой «F», цифра показывает количество циклов, которые материал должен выдержать.
Для строительства рекомендуют использовать кирпич, с морозостойкостью F15 — F25 циклов, У облицовочного кирпича морозостойкость от F50 до F100. У клинкерного F200.
Как правило, кирпич имеет гораздо более высокий коэффициент морозостойкости, чем газобетон, то есть кирпич является более стойким к морозу материалом, а от того и более долговечным.
Марка блока/кирпича | Класс морозостойкости(F) | Водопоглощение |
Кирпич строительный полнотелый | F50; F75 | 8% |
Кирпич, пустотность 40% |
F35; F50 | 6% |
Кирпич силикатный | F50; F75 | 8% |
D600 (600 кг/м³) | F15;F25 | 47% |
D700 (700 кг/м³) | F25;F35 | 40% |
D800 (800 кг/м³) | F25;F50 | 35% |
Влагопоглощение
Показатель влагопоглощения свидетельствует о способностях материала по впитыванию и удерживанию влаги. Поглощение воды негативно отражается на прочности материалов, возрастает также и теплопроводность.
Так как газобетонные блоки способны впитывать в 4-5 раз больше влаги по сравнению с кирпичом, стены из газоблока должны дополнительно защищаться от попадания воды, что, конечно, идёт в минус газобетону.
Тестирование влагопоглащения проводилось путем помещения блоков в емкость с водой. Спустя сутки, блоки и кирпичи доставали и взвешивали. Разницу между первоначальной и конечной массой переводили в проценты.
К примеру, взяли кубик газобетона размером 10X10 см, вес его составлял 592 грамма, что соответствует марке D600. после 18 часов намокания, вес кубика составил 869 грамм. То есть, газобетон впитал в себя 277 грамм воды, что составляет 47% от его первоначальной массы. Многие производители газобетона пишут, что влагопоглощение их блоков составляет всего 20%, но что-то слабо в это верится после такого тестирования.
Огнестойкость газобетона и кирпича
Этот параметр показывает способность сопротивления строительных материалов при прямом воздействии высокой температуры от открытого огня. От степени огнестойкости зависит, насколько долго строительная конструкция сможет простоять до появления трещин и возникновения обрушений во время пожара.
В этом плане кирпич и газобетон не имеют особых различий, так как оба материала входят в первый класс огнестойкости (предел 2,5). Материалы обоих видов достаточно хороши, если речь заходит о противостоянии огню.
Вывод
Газобетон лучше сохраняет тепло, и у него лучше паропроницаемость, чем у кирпича. Но кирпич при этом в несколько раз прочнее на сжатие и излом. По влагостойкости и морозостойкости также выигрывает кирпич. Становится понятно, что кирпич более долговечен, и дом из кирпича может простоять намного дольше.
Но многие недостатки газобетона уберет качественная облицовка фасада, которая предотвратит намокание газоблоков. Более того, мокрый газобетон хуже сохранаяет тепло.
Газобетонные блоки обладают большими размерами, вследствие чего возводить коробку из них быстрее, также у газобетона лучше геометрия. Но швы между блоками газобетона должны быть очень тонкими(1-3 мм), иначе будут большие теплопотери.
Также в доме из газобетона необходим железобетонный армопояс, а в кирпичной кладке он не обязателен.
Газобетонные стены очень боятся неравномерной усадки фундамента и могут дать трещины. Так что желательно, под газобетон, делать тяжелый и очень качественный фундамент и дополнительно дать ему время настоятся, чтобы прошла основная усадка.
Мы составили сравнительный график различных показателей, в котором, чем столбец выше, тем лучше.
Иными словами, однозначного решения проблемы выбора между кирпичом и газобетоном не существует, так как оба материала имеют свои достоинства и недостатки. При выборе следует отталкиваться, прежде всего, от проекта будущей постройки, так как в одних случаях гораздо эффективней будет использование газобетона, а в других возможно лучше применить старый добрый кирпич.
Но в реалиях двадцать первого века, когда цена электроэнергию и другие источники отопления очень высоки, мы бы выбрали газобетон толщиной 400 мм с последующей облицовкой. Такой толщины хватит, чтобы обеспечить хорошую теплоизоляцию, не используя дополнительных утеплителей.
В случае с кирпичом, при кладке в 0.4 метра, нужно использовать около 10-15 см дополнительной теплоизоляции пенопластом, минватой или другими материалами. Но, кирпич проверен временем, и здания из него стоят по сто лет и более, связано это с хорошей морозостойкостью кирпича и высокой прочностью на сжатие.
Теплопроводность кирпича разных видов, морозостойкость и теплоемкость
Выбор кирпича как строительного материала для возведения стен любых помещений, печей или каминов осуществляют на основании его свойств, связанных со способностью проводить, удерживать тепло или холод, выносить воздействие высоких или низких температур. Самые важные теплотехнические характеристики: коэффициент теплопроводности, теплоемкость и морозостойкость.
Оглавление:
- Классификация
- Способность проводить тепло
- Что такое теплоемкость?
- Показатель морозостойкости
Виды кирпича
Под этим названием прежде понимали лишь элементы стандартного размера (250х120х65) из обожженной глины. Сейчас производят и продают строительные изделия, изготовленные из любых пригодных компонентов, имеющие форму правильного параллелепипеда и размеры, схожие с габаритами классического керамического варианта.
Основные разновидности:
- керамический рядовой (строительный) — классический камень красного цвета из обожженной глины;
- керамический лицевой — отличается лучшими внешними качествами, повышенной устойчивостью к атмосферным воздействиям, обычно имеет внутри полости;
- силикатный полнотелый — светло-серого цвета из прессованной песчано-известняковой смеси, уступает керамическому по всем показателям (в том числе теплотехническим), кроме прочности;
- силикатный пустотный — отличается наличием полостей, повышающих способность стен сохранять тепло;
- гиперпрессованый — из цемента с пигментами, придающими оттенки натурального материала, заполнителями смеси являются крошка известняка, мрамора, гранулы доменного шлака;
- шамотный — предназначен для кладки печей, каминов, дымоходов;
- клинкерный — отличается от обычного тем, что при его производстве используют особые сорта глины и более высокие температуры обжига;
- теплая керамика (поризованный камень) — ее характеристики намного превосходят теплопроводность красного кирпича , это достигается за счет наличия в глиняной массе пор, заполненных воздухом, и особой конструкции элемента, имеющего большое количества пустот внутри.
Коэффициент теплопроводности
Теплопроводность вещества — количественная характеристика его способности проводить энергию (тепло). Для ее сравнения у разных строительных материалов используют коэффициент теплопроводности — количество теплоты, проходящей через образец единичных длины и площади за единицу времени при единичной разнице температур. Измеряется в Ватт/метр*Кельвин (Вт/м*К).
При выборе кирпича для возведения стен на показатель теплопроводности обращают внимание, так как от него зависит минимально допустимая толщина конструкции. Чем меньше значение, тем лучше стена удерживает тепло и тем тоньше она может быть, экономнее расход. Этот же параметр учитывают, подбирая вид утеплителя, размер его слоя и технологию.
Теплопроводность зависит от таких факторов:
- материал: лучшие показатели — у теплой поризованной керамики, худшие — у гиперпрессованного или силикатного кирпича;
- плотность — чем она выше, тем хуже удерживается тепло;
- наличие пустот в изделиях — полости внутри щелевого стенового камня после выполнения монтажа заполняет воздух, за счет этого лучше сохраняются тепло или прохлада в помещении.
По коэффициенту теплопроводности в сухом состоянии различают следующие виды кладок:
- высокоэффективные — до 0,20;
- повышенной эффективности — от 0,21 до 0,24;
- эффективные — от 0,25 до 0,36;
- условно-эффективные — от 0,37 до 0,46;
- обыкновенные — более 0,46.
При выполнении расчетов, выборе лицевого и строительного кирпича и утеплителя учитывают, что способность стены проводить тепло зависит не только от свойств материала, но и характеризуется коэффициентом теплопроводности раствора и толщиной швов.
Теплоемкость
Это количество теплоты (энергии), которое необходимо подвести к телу, чтобы повысить его температуру на 1 Кельвин. Единица измерения этого показателя — Джоуль на Кельвин (Дж/К). Удельная теплоемкость — ее отношение к массе вещества, единица измерения — Джоуль/кг*Кельвин (Дж/кг*К). У кирпича ее значение — от 700 до 1250 Дж/кг*К. Более точные цифры зависят от материала, из которого изготовлен конкретный вид.
Параметр влияет на расход энергии, требуемой для отопления дома: чем ниже значение, тем быстрее прогревается помещение и тем меньше средств уйдет на оплату. Он особенно важен, если проживание в доме непостоянное, то есть периодически требуется прогревать стены. Лучший вариант — силикат, но точные расчеты рекомендуется поручить специалисту. Необходимо учитывать не только теплоемкость стены, но и ее толщину, теплоемкость кладочного раствора, ширину швов, особенности расположения помещения и коэффициент теплоотдачи.
Морозостойкость
Выражается в количестве циклов замораживания-оттаивания, которое элемент выдерживает без существенных ухудшений свойств. Значение имеет не нижний уровень температуры, а именно частота замораживания влаги в порах. Вода, превратившись в лед, расширяется, что способствует разрушению камня.
Обычно морозостойкость обозначают индексом, который содержит большую латинскую букву F и цифры. Например: маркировка F50 указывает на то, что этот материал начинает терять прочность не ранее, чем через 50 циклов замораживания-оттаивания. Возможные марки кирпича по морозостойкости (ГОСТ 530-2012): F25; F35; F50; F100; F200; F300. Ориентируясь на обозначенную цифру, нужно понимать, что количество циклов не совпадает с количеством сезонов.
В некоторых регионах в течение одной зимы может многократно происходить резкая смена температур. Для несущих стен рекомендуют использовать минимум F35, для облицовки — от F75. Варианты с более низкими показателями пригодны только для регионов с мягким климатом.
Вид | Теплопроводность, Вт/м*К | Удельная теплоемкость,(Дж/кг*К) | Морозостойкость, циклов |
Керамический рядовой (строительный) полнотелый | 0,59-0,69 | 700-900 | 25-50 |
Керамический рядовой (строительный) пустотелый | 0,35-0,39 | — | 25-100 |
Керамический облицовочный (лицевой) | 0,36-0,38 | 880 | 35-100 |
Поризованный керамический камень (теплая керамика) | 0,11-0,22 | — | 50-100 |
Гиперпрессованный | 0,43-0,9 | — | 100 |
Клинкерный | 0,6-0,9 | 880 | 50-300 |
Силикатный полнотелый | 0,7-0,8 | 750-850 | 25-75 |
Силикатный пустотелый | 0,4-0,66 | — | 50 |
Шамотный | 0,6-0, 7 | 830-1250 | 35-100 |
Коэффициент теплопередачи в сочетании с повторно используемым бетонным кирпичом и стеной из теплоизоляционных плит из пенополистирола
Четыре образца тектонических форм были взяты для проверки их коэффициентов теплопередачи. Путем анализа и сравнения тестовых значений и теоретических значений коэффициента теплопередачи был предложен метод расчета скорректированного значения для определения коэффициента теплопередачи; Предложенный метод оказался достаточно корректным. Результаты показали, что коэффициент теплопередачи кирпичной стены из переработанного бетона выше, чем у стены из глиняного кирпича, коэффициент теплопередачи кирпичной стены из переработанного бетона может быть эффективно снижен в сочетании с изоляционной панелью из пенополистирола, а тип теплоизоляции сэндвич был лучше. чем у типа внешней теплоизоляции.
1. Введение
По мере того, как урбанизация постепенно расширяется, увеличиваются также высокие темпы строительства зданий и выдающиеся достижения в области энергосбережения [1]. Энергосбережение играет важную роль в национальных энергетических стратегиях, снижая значительную нагрузку на ресурсы и окружающую среду [2, 3]. В элементах частокола здания площадь внешней стены занимает большую долю по сравнению с крышей здания, дверями, окнами и т. Д. [4, 5].Тепловая консервация наружных стен является ключом к достижению энергоэффективности в зданиях [5, 6]. Наружные стены различаются в зависимости от строительных материалов, типов конструкций и условий окружающей среды. Глиняный кирпич, который широко используется во многих существующих зданиях, нанес большой ущерб земельным ресурсам. Производственный процесс с использованием высокотемпературных печей также привел к увеличению выбросов парниковых газов. Таким образом, возникла растущая потребность в исследованиях строительных материалов для зеленых стен и их термоконсервации и теплоизоляционных характеристик.Переработанный бетонный кирпич, изготовленный из измельченных отходов бетона, широко используется в кирпичных конструкциях в качестве экологически чистых строительных материалов. Было проведено множество исследований его механических свойств, но лишь несколько измерений его теплоизоляционных свойств [7]. Кроме того, наиболее распространенным типом теплоизоляции было добавление теплосохраняющих материалов на внешней стороне внешней стены, с самым большим ограничением, заключающимся в более коротком сроке службы [8, 9]. Вспениваемый полистирол (EPS), используемый для теплоизоляции, продемонстрировал очевидные характеристики сохранения тепла и теплоизоляции.Тем не менее, различные материалы для наружных стен с различными формами структурных типов для сохранения тепла из пенополистирола, независимо от того, сильно ли отличаются вариации их теплоизоляционных свойств, традиционно не были в центре внимания в контексте сохранения тепла стен и энергосбережения.
Коэффициент теплопередачи () обычно использовался в качестве показателя для измерения термоконсервации и теплоизоляции стен корпуса и в основном определялся коэффициентом теплопроводности () материалов.Считается, что тепловая и влажная среда влияет на характеристики теплопередачи стенок корпуса [10–12]. Коэффициент теплопроводности изменялся в зависимости от температуры и влажности воздуха, что приводило к отклонению между фактическим и теоретическим значением. Однако во многих исследованиях предполагалось, что характеристики материала не будут изменены или коэффициент теплопроводности () материалов выражен как постоянный. Следовательно, существует растущая потребность в изучении скорректированного коэффициента теплопроводности материала в различных средах и его расширенном применении в энергосберегающих конструкциях.
Переработанный бетонный кирпич имеет все больший потенциал развития и использования. Его различная комбинация с изоляционной плитой EPS имеет как эффект экологической защиты окружающей среды, так и энергосбережение. Понимание характеристик теплопередачи вторичного бетонного кирпича в сочетании с изоляционной плитой из пенополистирола становится все более важным для количественной оценки их вклада в энергосбережение.
Целями данного исследования было испытание коэффициента теплопередачи () кирпичной стены из вторичного бетона, прямое сравнение теплового поведения различных строительных решений стен и предложение скорректированного метода расчета коэффициента теплопередачи при оптимизации энергопотребления здания. .
2. Тест коэффициента теплопередачи
В настоящее время не существует официального стандарта для методов испытаний, которые непосредственно касаются динамических характеристик стен: основные справочные нормы [13] включают измерение стационарных характеристик отдельных материалов и многослойных конструкций. при стандартных граничных условиях. В этом исследовании был проведен экспериментальный анализ климатической камеры для сравнения влияния коэффициента теплопередачи элементов оболочки, которые характеризуются эквивалентными характеристиками в установившемся режиме.
2.1. Типы стен и свойства материалов
В этом исследовании были изготовлены четыре различных образца для количественной оценки их тепловых характеристик. Четыре образца, выбранные из типологии стен, подробно описаны на Рисунке 1 и в Таблице 1.
0,020 0,020
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SJ0 была стеной из глиняного кирпича; SJ1 была переработана бетонная кирпичная стена; SJ2 добавлен односторонний шаблон EPS на основе SJ1; SJ3 был добавлен в шаблон EPS в середине SJ1. |
2.2. Устройство для испытаний
В соответствии со стандартами и исследованиями, относящимися к этому типу испытаний [14, 15], в экспериментальных исследованиях использовался прибор для измерения стационарной теплопередачи (CD-WTFl515, Шэньян, Китай).Условия теплопередачи тестируемой оболочки здания моделируются на основе стандарта GB / T 13475-2008 и однонаправленного устойчивого принципа теплопередачи для измерения и анализа коэффициента теплопередачи. Климатическая установка с контролем окружающей среды состоит из двух камер с кондиционированием воздуха, в которых температура регулируется с помощью термостойких проводов и систем охлаждения (рисунки 2 и 3). Одна камера используется для создания микроклимата на открытом воздухе. Температура дозирующего резервуара установлена на -10 ° C (при допустимом перепаде температур ± 0.2 ° С). Другая камера имитирует внутреннюю среду, в которой температура установлена на 35 ° C (с допустимой разностью температур ± 0,1 ° C). Образцы были изготовлены в соответствии с предусмотренными размерами испытательного оборудования. Размеры установки и образцов составляют 2600 × 2160 × 2140 мм в высоту и 1500 × (≤400) × 1500 мм соответственно (рисунок 4). После 28 дней естественной сушки в испытательном устройстве поверхность раздела между образцами и испытательным устройством была герметизирована пенополиуретаном.
Все образцы были испытаны в Пекинском центре испытаний строительных материалов. Перед обработкой образцов стен в аппарате сначала была проведена калибровка установки. Образцы стен внутри и снаружи должны соответствовать горячим и холодным камерам соответственно. Для каждого образца были измерены шесть групп данных связанных параметров окружающей среды, таких как температура горячего поля () и холодного поля (), влажность горячего поля () и холодного поля (), а также общая входная мощность (). уменьшить погрешность измерения.С каждой стороны образцов симметрично подключалось по девять датчиков температуры. Допустимый перепад температуры поверхности образца составлял ± 0,5 ° C, с интервалом сбора данных 10 мин. Измерения проводились на основе настроек параметров в соответствии с положениями стандарта GB / T 13475-2008. Когда после трех часов непрерывного климат-контроля допустимая разница температур находилась в пределах диапазона значений, испытания прекращались.
3. Модель расчета коэффициента теплопередачи
Теплопередача через стену проходила в трех фазах: теплообмен внутренней поверхности; теплопроводность внутренней стены; теплообмен внешней поверхности.Методы расчета теплопередачи на каждом этапе различны [17], с точки зрения решения процесса уравнения Фурье с помощью метода испытаний и метода теории, граничных условий.
3.1. Принципы расчета контрольных значений
Принцип испытания устройства для испытания теплоотдачи в установившемся режиме (CD-WTFl515, Шэньян, Китай) основан на одномерном установившемся теплопереносе. Образцы были помещены между двумя различными температурными полями, чтобы моделировать теплопередачу стен в реальных условиях.По обе стороны от образца температура поверхности и температура воздуха измерялись датчиками температуры. Также были измерены поверхностные температуры с обеих сторон направляющей пластины. Были проверены внутренняя и внешняя температура поверхности измерительной коробки и входная мощность. По измеренным данным можно рассчитать коэффициент теплопередачи стенок образцов [13], учтите, где — тепловой поток через стенку измерительной коробки (Вт · м −2 ), — коэффициент теплопередачи измерительной стенки (Вт м −2 K −1 ), является температурой внутренней поверхности измерительной камеры (K) и является температурой внешней поверхности измерительной камеры (K).
Тогда коэффициент теплопередачи конструкции ограждения можно рассчитать по следующей формуле: где — общая потребляемая мощность (Вт · м −2 ), — расчетная площадь измерения, — температура горячего поля (K), и — температура холодного поля (К).
3.2. Теоретическая расчетная модель
В условиях установившейся теплопередачи, когда весь процесс теплопередачи не изменяет общее количество тепла, закон Фурье может быть выражен как где — теплопередача плотности теплового потока конструкции, — теплота Коэффициент передачи оболочки здания (Вт · м -2 K -1 ) — это сопротивление теплопередаче внутренней поверхности, равное 0.11 м 2 K Вт −1 , представляет собой сопротивление теплопередаче внешней поверхности, которое составляет 0,04 м 2 K Вт −1 , представляет собой сопротивление теплопередаче каждого материала (м 2 K W -1 ), представляет собой сопротивление теплопередаче ограждающей конструкции здания, представляет собой толщину материалов (м) и представляет собой коэффициент теплопроводности каждого материала (Вт · м -1 K -1 ).
3.3. Модель расчета скорректированного значения
Коэффициент теплопроводности материала является постоянным в существующих теоретических расчетах и численных расчетах, приведенных в литературе, без учета коэффициента теплопроводности материала при изменении температуры и влажности.Мы должны изучить истинное значение расчета коэффициента теплопередачи и применить его к теоретическому расчету.
3.3.1. Расчет коэффициента теплопроводности в реальных условиях эксплуатации
Механизм теплопередачи строительных материалов стен аналогичен жидкостному, который основан на упругих волнах. Теплопроводность увеличивалась с повышением температуры, а также на нее влияла влажность. Общее уравнение в случае реальных рабочих условий обычно выражается следующим образом: где — испытательное значение теплопроводности материала, — изменение теплопроводности, вызванное температурой, — изменение теплопроводности, вызванное влажностью веса, и — изменение теплопроводности. пробужденный от холода.
Были рассчитаны материалы, вызванные перепадом температуры, весом, влажностью и замерзанием, соответственно. Затем материалы были рассчитаны в рабочей среде на влияние теплопроводности на температуру и влажность.
Модель, используемая для описания влияния температуры и влажности на коэффициент теплопроводности неорганических вяжущих материалов, была [18]
Испытания на теплопроводность проводились на основе стандартов испытаний теплопроводности цементного раствора и повторно используемого бетонного кирпича [16].Затем можно было рассчитать изменения теплопроводности материалов, вызванные температурой, весом, влажностью и замерзанием, соответственно. Коэффициенты теплопроводности () (относительное изменение для изменения 0 ° C) цементного раствора и повторно используемых бетонных кирпичей были рассчитаны как 0,7526 Вт · м −1 K −1 и 0,6160 Вт · м −1 K −1. соответственно.
Влияние влажности на коэффициент теплопроводности шаблона EPS можно игнорировать [19]. Модель, используемая для описания влияния температуры на коэффициент теплопроводности шаблонов EPS, была [20] где — коэффициент теплопроводности неорганических связующих материалов при средней температуре, — коэффициент теплопроводности при 20 ° C, — коэффициент теплопроводности при 0 ° C. , — средняя температура материала, — коэффициент теплопроводности пенополистирола при 10 ° C, — коэффициент теплопроводности влаги, — влажность материала (%), — коэффициент с поправкой на влажность, — плотность материала (кг · м −3 ).
Когда стены демонстрируют явление конденсации, суточное количество конденсации может быть выражено как [17] где — суточное количество конденсации (г), — это парциальное давление водяного пара на стороне с более высоким парциальным давлением (), — водяной пар парциальное давление стороны с более низким парциальным давлением (), является сопротивлением проницаемости водяного пара втекающего водяного пара (m 2 h g -1 ), и является сопротивлением проницаемости водяного пара вытекающего водяного пара (m 2 ч г −1 ).
3.3.2. Принципы расчета скорректированного значения
Теплопередача ограждающей конструкции здания обычно рассчитывалась на основе установившейся теплопередачи с фиксированными значениями теплопроводности материалов. Тем не менее, теплопроводность при различных материалах оболочки здания и типах конструкций, независимо от того, сильно ли отличаются изменения от постоянной теплопередачи в реальных рабочих условиях, традиционно не корректировалась в контексте исследований по энергосбережению.Следовательно, существует необходимость корректировать теплопроводность в зависимости от температуры и влажности. Расчет должен удовлетворять закону сохранения энергии, а плотность теплового потока через стену и каждый слой должна быть одинаковой. Рассмотрим, где — тепловой поток, — тепловой поток на внутренней поверхности стенки (Вт · м −2 ), — тепловой поток на поверхности стенки (Вт · м −2 ), — тепловой поток через стенку (Вт · м −2 ), — это внутренний тепловой поток. температура поверхности любого слоя многослойной стены (K), температура воздуха в помещении (K), температура наружного воздуха (K) и сопротивление теплопередаче (m 2 K W -1 ).
Кроме того, расчет должен удовлетворять тому, что осмотическое количество не только пропорционально разнице давления пара между внутренним и внешним пространством, но также обратно пропорционально сопротивлению в процессе проникновения. Уравнение представлено как где — интенсивность инфильтрации водяного пара (г · м -2 ч -1 ), — парциальное давление водяного пара воздуха в помещении (), — парциальное давление водяного пара наружного воздуха (), — полное сопротивление проникновению водяного пара из ограждающей конструкции (м 2 h g −1 ), — сопротивление материалов проникновению водяного пара (m 2 h g −1 ), — парциальное давление пара на внутренней поверхности любой слой многослойной стены ().
3.3.3. Правильный расчет коэффициента теплопередачи
В сочетании с этими известными значениями, такими как толщина материала каждой стены, теплопроводность и коэффициент проникновения водяного пара, распределение температуры внутри стены, распределение парциального давления водяного пара, содержание воды, и тогда можно было рассчитать количество льда. Это изменит теплопроводность каждого материала для расчета коэффициента теплопередачи. Затем модифицированные значения теплопроводности были повторно использованы для повторения расчета.Затем итеративно решается коэффициент теплопередачи до тех пор, пока изменение значений не будет соответствовать критерию сходимости (рисунок 5).
4. Результаты
4.1. Экспериментальные результаты и анализ неопределенностей
Средние значения соответствующих параметров окружающей среды для четырех образцов были показаны в таблице 2 соответственно. Неопределенность результатов измерения может быть связана с несколькими составляющими неопределенности. Суммарные стандартные неопределенности, вызванные повторяемостью измерений (), составили; ; ; , соответственно.Комбинированные стандартные неопределенности, вызванные ошибкой испытательного значения мощности () и ошибкой испытательного значения температуры (), составили 0,1% и 1%, в которых коэффициент охвата () равен 2. Таким образом, комбинированная стандартная неопределенность эксперимента с коэффициентом теплопередачи была синтезируются этими компонентами неопределенности [21]. Рассмотрим, какой коэффициент охвата () равен 2. Объединенные расширенные неопределенности для коэффициента теплопередачи составили 2,06%, 2,04%, 2,33% и 2,20% соответственно.
|
4.2. Контрольные и теоретические значения
Контрольное значение коэффициента теплопередачи может быть рассчитано с использованием данных испытаний образца стены и расчетной модели (Таблица 3). Теоретическое значение коэффициента теплопередачи можно рассчитать с помощью теоретической расчетной модели. Коэффициент теплопроводности кирпичной стены из вторичного бетона был рассчитан по результатам испытаний SJ1. Коэффициенты теплоотдачи SJ2 и SJ3 рассчитывались с учетом коэффициента теплопроводности кирпичной стены из вторичного бетона.
|
4.3. Результаты испытаний и теоретические значения
Экспериментальное значение коэффициента теплопередачи SJ0 было ниже, чем у SJ1; экспериментальное значение коэффициента теплоотдачи SJ2 было ниже, чем у SJ1; после добавления 60-миллиметрового одностороннего шаблона EPS коэффициент теплопередачи стенок SJ2 был уменьшен на 76%, а эффект энергосбережения значительно увеличился. После добавления 60-миллиметрового шаблона EPS в середине стены из повторно использованного кирпича коэффициент теплопередачи стены SJ3 был снижен на 81%; значение коэффициента теплопередачи SJ3 меньше, чем у SJ2.
Коэффициенты теплоотдачи образцов различаются между экспериментальными и теоретическими значениями. Теоретические значения с использованием пограничного слоя термического сопротивления и коэффициента теплопроводности материала отличаются от скорректированного значения коэффициента теплопроводности материала. Погрешность размера материала образца имеет большое влияние на коэффициент теплопередачи расчетного теоретического значения. был сильно, значительно связан с толщиной шаблона EPS () (Рисунок 6), уменьшаясь с увеличением толщины шаблона EPS.Соответствующие линии на рисунке 6 были получены из эмпирической модели. Значения коэффициента теплопередачи опорной стены уменьшались с увеличением толщины изоляционной плиты EPS (Рисунок 6). Он показал, что после добавления более тонкой теплоизоляционной плиты EPS коэффициент теплопередачи может быть значительно снижен. Однако с постоянно увеличивающейся толщиной изоляционной плиты EPS значение коэффициента теплопередачи больше не уменьшается значительно. Точно так же тепловое сопротивление образца имеет монотонно увеличивающийся коэффициент общего теплового сопротивления, и скорость замедляется.По результатам расчетов толщина изоляционной плиты EPS толщиной 60 мм уменьшилась на 5 мм, а коэффициент теплопередачи служебной стены увеличился на 6,6%.
4.4. Анализ результатов правильного расчета коэффициента теплопередачи
В соответствии с моделью расчета истинного значения коэффициента теплопередачи, коэффициенты теплопередачи SJ2 и SJ3 были оценены в тестовой среде, и на рисунке 7 показаны результаты сравнения теоретических значений. и экспериментальные значения.
Рисунок 7 показывает результаты; при рассмотрении влияния температуры и влажности на изменение материалов все коэффициенты теплопередачи скорректированных расчетных значений были ниже теоретических значений и намного ближе к экспериментальным значениям, что могло доказать, что скорректированный расчет был правильным и точно отражать характеристики теплопередачи.
5. Выводы
В этом исследовании были испытаны четыре тактические формы образцов стен для изучения их коэффициентов теплопередачи; Коэффициент теплопередачи стен из вторичного бетона из кирпича значительно снижается после получения изоляционной плиты из композитного пенополистирола.Коэффициент теплопередачи с обеих сторон стены из вторичного бетона со средней изоляционной панелью из пенополистирола толщиной 60 мм не только меньше, чем такая же толщина внешней изоляции, но и имеет отличную долговечность. Основываясь на основном механизме теплопроводности вторичного бетонного кирпича и изоляционной плиты из пенополистирола, можно определить соотношение между коэффициентом теплопроводности различных материалов и температурой, влажностью. По выражению истинной теплопроводности материала предложены методы расчета коэффициента теплопередачи кирпичной стены из композитного пенополистирола.Путем анализа экспериментальных значений, теоретических значений и скорректированных значений тестовых образцов было доказано, что метод расчета скорректированного значения является правильным и разумным и может обеспечить лучшую энергоэффективность.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.
Благодарности
Это исследование было поддержано Пекинским технологическим университетом и грантами Китайского фонда естественных наук (51308011) и Национального проекта поддержки науки и технологий Китая (2011BAJ08B02).Авторы благодарят Пекинский испытательный центр строительных материалов за помощь с приборами для испытаний.
Теплопроводность обычных материалов
В этой статье представлены данные о теплопроводности для ряда распространенных материалов. Теплопроводность измеряет способность материала пропускать тепло через проводимость.
Теплопроводность измеряет способность материала пропускать тепло через проводимость. Теплопроводность материала сильно зависит от состава и структуры.Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, плохо проводят тепло.
Теплопроводность материалов требуется для анализа сетей теплового сопротивления при изучении теплопередачи в системе.
Дополнительную информацию см. В статье «Значения теплопроводности для других металлов и сплавов».
В следующих таблицах показаны значения теплопроводности для обычных веществ.
900 100Материал | Температура | Теплопроводность | Температура | Теплопроводность | ||||
---|---|---|---|---|---|---|---|---|
40 Грунт и земля | 0,600 | 68 | 0,347 | |||||
Гравий | 20 | 2,50 | 68 | 1,44 | ||||
Недра (Влажность 8%) | 20 | 0.900 | 68 | 0,520 | ||||
Грунт, сухой песок | 20 | 0,300 | 68 | 0,173 | ||||
Мокрый песок (Влажность 8%) | 20 | 0,600 | 68 | 0,347 | ||||
Строительные материалы | ||||||||
Кирпич (здание) | 20 | 0,720 | 68 | 0,416 | ||||
Кирпич ( Глинозем) | 430 | 3.10 | 806 | 1,79 | ||||
Клинкер (цемент) | 20 | 0,700 | 68 | 0,404 | ||||
Бетон, тяжелый | 20 | 1,30 | 68 | 0,751 | ||||
Бетон, изоляция | 20 | 0,207 | 68 | 0,120 | ||||
Бетон, светлый | 20 | 0,418 | 68 | 0,242 | ||||
Стекло | 20 | 0.935 | 68 | 0,540 | ||||
Дерево | 20 | 0,170 | 68 | 0,098 | ||||
Изоляция | ||||||||
Асбест | 0 | 0,160 | 32 | 0,092 | ||||
0,190 | 212 | 0,110 | ||||||
200 | 0,210 | 392 | 0,121 | |||||
Силикат кальция | 20 | 0.046 | 68 | 0,027 | ||||
Пробка | 30 | 0,043 | 86 | 0,025 | ||||
Стекловолокно | 20 | 0,042 | 68 | 0,024 | ||||
Магнезия 85% | 20 | 0,070 | 68 | 0,040 | ||||
Магнезит | 200 | 3,80 | 392 | 2,20 | ||||
Слюда | 50 | 0.430 | 122 | 0,248 | ||||
Rockwool | 20 | 0,034 | 68 | 0,020 | ||||
Мягкая резина | 20 | 0,130 | 68 | 0,075 | ||||
Твердая резина | 0 | 0,150 | 32 | 0,087 | ||||
Опилки | 20 | 0,052 | 68 | 0,030 | ||||
Пенополиуретан (жесткий) | 20 | 0.026 | 68 | 0,015 | ||||
Прочие твердые вещества | ||||||||
Алмаз | 20 | 2300 | 68 | 1329 | ||||
Графит | 0 | 151 | 32 | 87,2 | ||||
Кожа человека | 20 | 0,370 | 68 | 0,214 | ||||
Жидкости | ||||||||
Уксусная кислота, 50% | 20 | 0.350 | 68 | 0,202 | ||||
Ацетон | 30 | 0,170 | 86 | 0,098 | ||||
Анилин | 20 | 0,170 | 68 | 0,098 | ||||
Бензол | 30 | 0,160 | 86 | 0,092 | ||||
Хлорид кальция, 30% | 30 | 0,550 | 86 | 0,318 | ||||
Этанол, 80% | 20 | 0.240 | 68 | 0,139 | ||||
Глицерин, 60% | 20 | 0,380 | 68 | 0,220 | ||||
Глицерин, 40% | 20 | 0,450 | 68 | 0,260 | ||||
Гептан | 30 | 0,140 | 86 | 0,081 | ||||
Ртуть | 20 | 8,54 | 68 | 4,93 | ||||
28 | 8.36 | 82 | 4,83 | |||||
Серная кислота, 90% | 30 | 0,360 | 86 | 0,208 | ||||
Серная кислота 60% | 30 | 0,430 | 86 | 0,248 | ||||
Вода | 20 | 0,613 | 68 | 0,354 | ||||
30 | 0,620 | 86 | 0,358 | |||||
60 | 0.660 | 140 | 0,381 | |||||
Газы | ||||||||
Воздух | 0 | 0,024 | 32 | 0,014 | ||||
20 | 0,026 | 68 | 0,015 | |||||
100 | 0,031 | 212 | 0,018 | |||||
Диоксид углерода | 0 | 0,015 | 32 | 0,009 | ||||
Этан | 0 | 0.018 | 32 | 0,010 | ||||
Этилен | 0 | 0,017 | 32 | 0,010 | ||||
Гелий | 20 | 0,152 | 68 | 0,088 | ||||
Водород | 0 | 0,170 | 32 | 0,098 | ||||
Метан | 0 | 0,029 | 32 | 0,017 | ||||
Азот | 0 | 0.024 | 32 | 0,014 | ||||
Кислород | 0 | 0,024 | 32 | 0,014 | ||||
Вода (пар) | 100 | 0,025 | 212 | 0,014 |
Статьи Теги
Теплоизоляция сплошных стен занижена
Ула Лехтинен — CC BY-SA 3.0
В Англии насчитывается около 5,7 миллиона домов со сплошными стенами, что составляет 25% жилого фонда.Большинство из них были построены между 1750 и 1914 годами. Исследования показывают, что их энергоэффективность недооценивалась десятилетиями.
Английское исследование жилищного строительства (EHS) определяет строительство со сплошными стенами как здание, в котором внешние несущие стены сделаны из кирпича, блоков, камня или кремня без полостей. В Англии переход к использованию монолитного кирпичного строительства начался во время большой перестройки в середине 16 века.
Что касается нынешнего английского жилищного фонда, то подавляющая часть сплошных жилищ, построенных в основном из кирпича, возникла в результате роста населения с середины 18 века до начала Первой мировой войны.Сплошные стены оставались наиболее распространенной конструкцией в жилищном секторе до британского жилищного бума 1920-х и 1930-х годов.
Толщина стенки
Наиболее широко используемая оценка U-значения (меры теплопроводности) твердой стены в Великобритании составляет 2,1 Вт · м − 2 · K − 1 . Тем не менее, появляется все больше свидетельств того, что значения U сплошных стенок намного ниже, чем предполагалось ранее. Несколько исследований, проведенных в последние годы, показали, что среднее или медианное значение U, измеренное для цельностенных конструкций, было около 1.3–1,4 Вт · м − 2 · К − 1. Это большое несоответствие объясняется двумя причинами.
Во-первых, U-значения стандартных полнотелых кирпичных стен основаны на предполагаемой толщине кирпичной стены 220 мм и приблизительно 12 мм плотной штукатурки. Современные кирпичи имеют длину 220 мм, поэтому такое предположение было бы логичным для современной кирпичной стены. Однако толщина 220 мм использовалась в качестве консервативной оценки, чтобы учесть различия в производстве кирпича. После Великого лондонского пожара в 1666 году потребовалось построить более двухэтажные кирпичные дома со стенами толщиной более одного кирпича.
Таким образом, требуемая толщина несущих каменных стен в Англии увеличивается с высотой здания. В то время как двухэтажные здания могут быть построены со стенами толщиной чуть более 200 мм, для трехэтажных зданий требуется минимум 300 мм, а для четырехэтажных зданий — стены толщиной не менее 400 мм. Следовательно, очевидно, что средняя толщина сплошных стен в жилищном фонде Великобритании, вероятно, будет больше, чем номинальные 220 мм одинарной кирпичной стены.
Воздушные полости
Во-вторых, так называемые «сплошные стены» на самом деле часто не являются полностью прочными.Кирпичные стены могут быть построены по разным образцам, но, как правило, строятся из разных типов кирпича, причем некоторые из них проходят прямо через всю глубину стены, известные как заголовки, а некоторые уложены бок о бок, известные как подрамники. (см. изображение выше). Чтобы стены можно было возводить с использованием обычного типа строительного раствора, общая ширина двух соседних подрамников должна быть меньше длины коллектора на ширину строительного шва, которая обычно составляет 5–10 мм.
Хотя некоторое количество раствора будет проникать в пространство в виде соплей от стыков между носилками, практические ограничения кирпичной кладки означают, что этот зазор часто не заполняется раствором.Существует большая вероятность того, что сегменты сплошных стен, построенные на носилках, содержат воздушные зазоры. Если предполагается, что подрамники занимают 50–80% поверхности стены с воздушными зазорами порядка ≈10 мм, то простой расчет с идентичными допущениями относительно плотности кирпича и т. Д. Дает оценки значения U в диапазоне 1,65–1,8 W − 1 м2 К.
«Сплошные» каменные стены могут также содержать остаточные воздушные полости по аналогичным причинам. Стены, построенные из камня, часто в целом толще, чем стены из монолитного кирпича, и часто используют заполненные щебнем сердечники.Почти наверняка внутри этих сердечников есть пустоты, которые увеличивают тепловое сопротивление элемента по сравнению с полностью твердой стенкой.
Последствия
Среди множества последствий для политики несоответствие между реальными значениями U и значениями U, принятыми при моделировании энергопотребления и стандартными протоколами оценки зданий в Великобритании, предполагает, что стандартные значения U для сплошных стен могут не подходить для энергетической сертификации или оценки инвестиций. экономика монолитного утепления стен.
Уменьшение представленного коэффициента теплопроводности сплошных стен в фонде с 2,1 до 1,3 Вт · м − 2 · K − 1 снижает расчетную среднегодовую потребность в отоплении помещения на 16% и вызывает изменение энергии примерно у одной трети всех сплошных жилищ. Полоса сертификации производительности (EPC).
Источник:
Li, Francis GN, et al. «Показатели U для твердых стенок: измерения теплового потока по сравнению со стандартными допущениями». Строительные исследования и информация 43,2 (2015): 238-252. http: //www.tandfonline.com / doi / full / 10.1080 / 09613218.2014.967977
Плотность, теплоемкость, теплопроводность
О кирпиче
Кирпич — это конструкционные изделия из глины, выпускаемые как стандартные единицы, используемые в строительстве. Три основных типа кирпича — это необожженный, обожженный и химически закрепленный кирпич. Каждый тип изготавливается по-своему. Обожженные кирпичи обжигаются в печи, что делает их долговечными. Современные обожженные глиняные кирпичи формуются одним из трех способов — мягким глинистым раствором, сухим прессованием или прессованием.В зависимости от страны наиболее распространенным является метод экструдированного или мягкого раствора, так как они являются наиболее экономичными.
Сводка
Имя | Кирпич |
Фаза на STP | цельный |
Плотность | 1700 кг / м3 |
Предел прочности на разрыв | 2,8 МПа |
Предел текучести | НЕТ |
Модуль упругости Юнга | НЕТ |
Твердость по Бринеллю | НЕТ |
Точка плавления | 1727 ° С |
Теплопроводность | 1.31 Вт / м · К |
Теплоемкость | 800 Дж / г К |
Цена | 0.2 $ / кг |
Плотность кирпича
Типичные плотности различных веществ указаны при атмосферном давлении. Плотность определяется как масса на единицу объема . Это интенсивное свойство , которое математически определяется как масса, разделенная на объем: ρ = m / V
Проще говоря, плотность (ρ) вещества — это общая масса (m) этого вещества, деленная на общий объем (V), занимаемый этим веществом.Стандартная единица СИ — килограммов на кубический метр ( кг / м 3 ). Стандартная английская единица составляет фунтов массы на кубический фут ( фунт / фут 3 ).
Плотность кирпича 1700 кг / м 3 .
Пример: плотность
Вычислите высоту куба из кирпича, который весит одну метрическую тонну.
Решение:
Плотность определяется как масса на единицу объема .Математически это определяется как масса, разделенная на объем: ρ = м / В
Поскольку объем куба равен третьей степени его сторон (V = a 3 ), высоту этого куба можно вычислить:
Высота этого куба равна a = 0,838 м .
Плотность материалов
Механические свойства кирпича
Прочность кирпича
В механике материалов прочность материала — это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Сопротивление материалов в основном рассматривает взаимосвязь между внешними нагрузками , приложенными к материалу, и результирующей деформацией или изменением размеров материала. При проектировании конструкций и машин важно учитывать эти факторы, чтобы выбранный материал имел достаточную прочность, чтобы противостоять приложенным нагрузкам или силам, и сохранять свою первоначальную форму.
Прочность материала — это его способность выдерживать эту приложенную нагрузку без разрушения или пластической деформации.Что касается растягивающего напряжения, способность материала или конструкции выдерживать нагрузки, имеющие тенденцию к удлинению, известна как предел прочности при растяжении (UTS). Предел текучести или предел текучести — это свойство материала, определяемое как напряжение, при котором материал начинает пластически деформироваться, тогда как предел текучести — это точка, в которой начинается нелинейная (упругая + пластическая) деформация. В случае растягивающего напряжения однородного стержня (кривая «напряжение-деформация»), закон Гука описывает поведение стержня в упругой области.Модуль упругости Юнга представляет собой модуль упругости для растягивающего и сжимающего напряжения в режиме линейной упругости при одноосной деформации и обычно оценивается с помощью испытаний на растяжение.
См. Также: Сопротивление материалов
Предел прочности кирпича на разрыв
Предел прочности кирпича на разрыв 2,8 МПа.
Предел текучести кирпича
Предел текучести кирпича — N / A.
Модуль упругости кирпича
Модуль упругости Юнга кирпича равен N / A.
Твердость кирпича
В материаловедении твердость — это способность противостоять поверхностному вдавливанию ( локализованная пластическая деформация ) и царапинам . Испытание на твердость по Бринеллю — это одно из испытаний на твердость при вдавливании, которое было разработано для испытания на твердость. При испытаниях по Бринеллю твердый сферический индентор прижимается под определенной нагрузкой к поверхности испытываемого металла.
Твердость по Бринеллю (HB) — это нагрузка, деленная на площадь поверхности вмятины.Диаметр слепка измеряют с помощью микроскопа с наложенной шкалой. Число твердости по Бринеллю рассчитывается по формуле:
Твердость кирпича по Бринеллю составляет приблизительно N / A.
См. Также: твердость материалов
Пример: Прочность
Предположим, пластиковый стержень, сделанный из кирпича. Этот пластиковый стержень имеет площадь поперечного сечения 1 см 2 . Рассчитайте растягивающее усилие, необходимое для достижения предельного значения прочности на растяжение для этого материала, которое составляет: UTS = 2.8 МПа.
Решение:
Напряжение (σ) можно приравнять к нагрузке на единицу площади или силе (F), приложенной к площади поперечного сечения (A), перпендикулярной силе, как:
, следовательно, сила растяжения, необходимая для достижения предела прочности на разрыв, составляет:
F = UTS x A = 2,8 x 10 6 x 0,0001 = 280 N
Сопротивление материалов
Упругость материалов
Твердость материалов
Тепловые свойства кирпича
Кирпич — точка плавления
Температура плавления кирпича 1727 ° C .
Обратите внимание, что эти точки связаны со стандартным атмосферным давлением. В общем, плавление представляет собой фазовый переход вещества из твердой в жидкую фазу. точка плавления вещества — это температура, при которой происходит это фазовое изменение. Точка плавления также определяет состояние, в котором твердое вещество и жидкость могут существовать в равновесии. Для различных химических соединений и сплавов трудно определить температуру плавления, поскольку они обычно представляют собой смесь различных химических элементов.
Кирпич — теплопроводность
Теплопроводность кирпича 1,31 Вт / (м · К) .
Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , , k (или λ), измеренным в Вт / м · K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье применяется ко всем веществам, независимо от их состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.
Коэффициент теплопроводности большинства жидкостей и твердых тел зависит от температуры. Для паров это также зависит от давления. Всего:
Большинство материалов почти однородны, поэтому обычно можно записать k = k (T) . Подобные определения связаны с теплопроводностью в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.
Кирпич — Удельная теплоемкость
Удельная теплоемкость кирпича 800 Дж / г К .
Удельная теплоемкость, или удельная теплоемкость, — это свойство, связанное с внутренней энергией , которое очень важно в термодинамике. Интенсивные свойства c v и c p определены для чистых простых сжимаемых веществ как частные производные внутренней энергии u (T, v) и энтальпии ч. (Т, п) соответственно:
, где индексы v и p обозначают переменные, фиксированные во время дифференцирования.Свойства c v и c p упоминаются как удельная теплоемкость (или теплоемкость ), поскольку при определенных особых условиях они связывают изменение температуры системы с количеством энергии, добавляемой за счет теплопередача. Их единицы СИ: Дж / кг K или Дж / моль K .
Пример: расчет теплопередачи
Теплопроводность определяется как количество тепла (в ваттах), передаваемое через квадратную площадь материала заданной толщины (в метрах) из-за разницы температур.Чем ниже теплопроводность материала, тем выше его способность сопротивляться теплопередаче.
Рассчитайте скорость теплового потока через стену площадью 3 x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1,31 Вт / м · К (плохой теплоизолятор). Предположим, что внутренние и внешние температуры составляют 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах равны h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 K соответственно.Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от внешних и внутренних условий (ветер, влажность и т. Д.).
Рассчитайте тепловой поток ( теплопотери ) через эту стену.
Решение:
Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию проводимости и конвекции . С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как коэффициент U .Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :
Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.
Предполагая одномерную теплопередачу через плоскую стенку и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:
Тогда общий коэффициент теплопередачи равен: U = 1 / (1/10 + 0.15 / 1,31 + 1/30) = 4,03 Вт / м 2 K
Тепловой поток можно рассчитать просто как: q = 4,03 [Вт / м 2 K] x 30 [K] = 121,05 Вт / м 2
Суммарные потери тепла через эту стену будут: q потерь = q. A = 121,05 [Вт / м 2 ] x 30 [м 2 ] = 3631,42 Вт
Температура плавления материалов
Теплопроводность материалов
Теплоемкость материалов
Свойства и цены на другие материалы
таблица материалов в разрешении 8k
Теплопроводность обожженных глиняных кирпичей с окурками
[1] Т.Э. Новотны, К. Лум, Э. Смит, В. Ван, Р. Барнс, Сигаретные окурки и аргументы в пользу экологической политики в отношении опасных сигаретных отходов: Международный журнал экологических исследований и общественного здравоохранения, 6 (5) (2009) , стр.1691-1705.
DOI: 10.3390 / ijerph6051691
[2] Сигаретный мусор. Подробнее см. Http: / www.сигаретник. org (по состоянию на 15 февраля 2012 г.).
[3] К.М. Регистр, Сигаретные окурки токсичны и уродливы как мусор: Бюллетень подводного естествоиспытателя Американского приморского общества, 25 (2) (2000), стр. 23-29.
[4] Роу, Дэвид, Морской мусор: Убийцы в нашем океане: журнал национальных парков, 51 (6) (2007).
[5] От стыка к стыку, подробности см. По адресу: http: / pubs.acs. org / cen / science / 85 / 8544sci2. html (по состоянию на 25 марта 2012 г.).
[6] Т.Исигаки, В. Сугано, А. Наканиши, М. Татеда, М. Айк, М. Фуджита, Разлагаемость биоразлагаемых пластиков в модельных реакторах для захоронения аэробных и анаэробных отходов, Chemosphere, 54 (3) (2004), стр.225- 233.
DOI: 10.1016 / s0045-6535 (03) 00750-1
[7] А.Ах, Биоразлагаемые пластики на основе ацетата целлюлозы: Journal Macromol Science Pure, 30 (9) (1993), стр. 733-740.
[8] А.А. Кадир, А. А. Мохаджерани, Физико-механические свойства и анализ фильтрата обожженных кирпичей с окурками. В: Материалы Международной конференции по окружающей среде. Малайзия: Universiti Sains Malaysia, (2008).
DOI: 10.1016 / j.clay.2014.12.005
[9] А.А. Кадир, А. Мохаджерани, Возможное использование окурков в легких обожженных глиняных кирпичах. В: Известия Всемирной Академии Наук. Париж, 35 (28) (2008b), стр 153-157.
[10] А.А. Кадир, А. А. Мохаджерани, Ф. Роддик, Дж. Бакеридж, Плотность, прочность, теплопроводность и характеристики фильтрата легких обожженных глиняных кирпичей с окурками. В: Труды Всемирной академии наук, техники и технологий. Япония, 53 (170) (2009).
[11] А.А. Кадир, А. А. Мохаджерани, Возможное использование окурков в легких обожженных глиняных кирпичах: Международный журнал экологических наук и инженерии, 2 (3) (2010).
[12] А.А. Кадир, А. А. Мохаджерани, Переработка окурков в легкие обожженные глиняные кирпичи: журнал строительных материалов. В: Proceedings of the Institution of Civil Engineers, 164 (5) (2011), pp 219-229.
DOI: 10.1680 / coma.3
[13] Б.Э. Э. Хегази, Х. А. Фуад, А. М. Хассанайн, Производство кирпича из шлама водоочистки и золы рисовой шелухи: Австралийский журнал фундаментальных и прикладных наук, 6 (3) (2012), стр.453-461.
[14] Б.И. Угхеоке, Э. О. Онче, О. Н. Намессан, Г. А. Асикпо, Оптимизация свойств изоляционных огнеупорных кирпичей из каолин-рисовой шелухи: Электронный журнал практик и технологий Леонардо, 9 (2006), стр. 167-178.
[15] П.Лертваттанарук, Дж. Чоксириванна, Физические и термические свойства сырцового кирпича, содержащего газовый газ для строительства земли: Журнал архитектурных / плановых исследований и исследований, 5 (1) (2011), стр 187-199.
[16] В.Банхиди, Л. А. Гомзе, Улучшение изоляционных свойств обычных кирпичных изделий: материаловедение, 589 (2008), стр. 1-6.
DOI: 10.4028 / www.scientific.net / msf.589.1
[17] Я.Демир, Исследование производства строительного кирпича из переработанных отходов чая: строительство и окружающая среда, 41 (2006), стр.1274-1278.
DOI: 10.1016 / j.buildenv.2005.05.004
[18] Р.Сайя, Б. Перрин, Л. Ригал, Улучшение тепловых свойств обожженных глин путем введения растительного вещества: журнал строительной физики, 34 (2) (2010), стр.124-142.
DOI: 10.1177 / 17442560059
[19] С.Кребс, Х. Мортел, Использование вторичных порообразующих агентов в производстве кирпича: Tile and Brick International, 15 (1) (1999), стр. 12-18.
[20] Я.Демир, Влияние добавления органических остатков на технологические свойства глиняных кирпичей: управление отходами, 28 (2008), стр.622-627.
DOI: 10.1016 / j.wasman.2007.03.019
[21] П.Тургут, Б. Есилата, Физико-механические и тепловые характеристики недавно разработанных кирпичей с добавлением каучука: энергия и строительство. 40 (2008), стр 679-688.
DOI: 10.1016 / j.enbuild.2007.05.002
[22] М.С. Сойлемез, Об эффективной теплопроводности строительных кирпичей: строительство и окружающая среда. 34 (1999), стр. 1-5.
[23] М.Донди, Ф. Маццанти, П. Принципи, М. Раймондо, Дж. Занарини, Теплопроводность глиняных кирпичей: журнал материалов в гражданском строительстве, 16 (1) (2004).
DOI: 10.1061 / (восхождение) 0899-1561 (2004) 16: 3 (287)
[24] W.М. Рохенов, Дж. П. Хартнетт, Ю. И. Чо, Справочник по теплопередаче. Макгроу-Хилл; (1998).
[25] Британский институт стандартов (BS 1377) 1990.Методы испытаний грунтов для строительных целей. Классификационные испытания.
[26] Британский институт стандартов (BS EN ISO 8990) 1996.Теплоизоляция — Определение устойчивых теплопередающих свойств — Калиброванная и охраняемая горячая камера.
DOI: 10.3403 / 005u
[27] Гази, Аль-Маралех, Производство легкой керамики из местных материалов: Американский журнал прикладных наук 2 (4) (2005), стр.778-783.
DOI: 10.3844 / ajassp.2005.778.783
Механические и термические свойства блокировочных кирпичей из отработанного полиэтилентерефталата | Международный журнал бетонных конструкций и материалов
Прочность на сжатие
По завершении 48-часового отверждения кубики размером 50 мм × 50 мм × 50 мм были подвергнуты испытанию на прочность на сжатие в соответствии с BS1881: Часть 116: 1983 для определения сопротивления нагрузки.В таблице 3 показаны результаты испытаний на прочность при сжатии для 12 смесей.
Таблица 3 Результаты испытаний прочности на сжатиеВ таблице 3 самая высокая прочность на сжатие принадлежит опыту 3 с отношением ПЭТ / ПУ 60/40, что на 84,54% меньше, чем у контрольного образца. Наименьшую прочность на сжатие показывает запуск 1, в котором соотношение ПЭТ / ПУ составляет 20/80.
По сравнению с исследованием, проведенным Sayanthan et al. (2013b), прочность куба на сжатие, полученная для блокирования легких цементных блоков, составила 4.9 Н / мм 2 , который требуется для возведения стен высотой до 5 этажей с обозначением раствора. Основываясь на результатах текущего исследования, наивысшее полученное значение прочности на сжатие составило 5,3, что соответствует требованиям к ненесущей кирпичной стене в соответствии с ASTM, где минимально допустимая прочность составляет 4,14 МПа (ASTM 2011).
Однако другие конструкции смесей не превзошли эталонное значение 4,9 Н / мм 2 . Поскольку в опыте 1 присутствовал избыток полиуретанового связующего, это делало образец более эластичным, что приводило к большей гибкости.Образец оставался в пределе упругости даже после приложения критической нагрузки. В отличие от этих образцов, испытания 3 и 4 успешно перешли из упругой области в пластическую до точки разрушения и показали оптимальный результат. Другая возможная причина снижения прочности на сжатие — увеличенные объемы воздухововлечения из-за большего количества полиуретана (ПУ).
В таблице 4 показано значение Скорректированного R-квадрата 0,9981 и Прогнозируемое значение R-Squared 0,9970.Это указывает на приемлемую разницу 0,0011, которая меньше 0,2. Если посмотреть на адекватную точность модели, которая составляет 114,2233, то это положительный результат. Соответствующее значение точности можно в дальнейшем использовать для навигации по дизайну.
Таблица 4 Ключевые результаты ANOVA (сжатие)Следовательно, уравнение в терминах фактических факторов может быть получено следующим образом:
$$ Сжатие \, прочность = 5,08 + 0,4670A + 1,39 \ влево (A \ вправо) \ влево (B \ вправо). $$
(1)
Уравнение 1 показывает модель, разработанную RSM, и может использоваться для надежных прогнозов модели для получения нескольких значений прочности на сжатие для получения удовлетворительных результатов.Где A — полиэтилентерефталат, а B — полиуретан.
На основании трехмерного графика поверхности отклика на рис. 6 делается вывод, что наивысшая прочность на сжатие 5,05 МПа может быть достигнута при использовании ПЭТ / ПУ с соотношением 60/40. Это можно наблюдать в красноватой зоне на контурном графике.
Рис. 6Трехмерный график поверхности (прочность на сжатие)
Прочность на разрыв
По завершении 48-часового отверждения костная форма для собак размерами 500 мм × 100 мм × 25 мм была подвергнута испытанию на прочность на разрыв согласно ASTM D638 (Стандарт 2014a).Мера силы, требуемой для удлинения образца до предела разрушения, рассчитана и обсуждается в таблице 5.
Таблица 5 Результат испытания на разрывИз таблицы 5 можно заметить, что самый высокий предел прочности был зарегистрирован для контрольного образца. 1,28 МПа. Принимая во внимание, что для смесей оптимальным составом смесей был опыт 3 с соотношением ПЭТ / ПУ 60/40, так как он имеет наивысшую прочность на разрыв. Это связано с прочной связью, образованной между порошком полиэтилентерефталата и полиуретановым связующим.Для всех образцов было предусмотрено общее время отверждения 3 дня, чтобы гарантировать получение влажных смесей; Испытания 1 и 2 были полностью высушены и готовы к испытаниям, однако общие результаты, полученные в отношении прочности на разрыв, были неудовлетворительными.
Что касается бетона, прочность на разрыв повышается за счет введения в бетон арматурных стержней. Это дополнительно улучшает сцепление в бетонной матрице и ее общие характеристики (Pillai et al. 1999). Прочность на разрыв неармированного бетона находится в диапазоне 2.2–4,2 МПа. Напротив, результаты, полученные в ходе эксперимента, находятся в диапазоне 0,4–1,3 МПа.
Значения прочности на разрыв были намного ниже для испытаний 1 и 2 из-за того, что смесь была влажной. В природе и ПЭТ, и ПУ обладают эластичными свойствами. Совпадение обоих материалов, смешанных во влажной пропорции, привело к тому, что образцы для опыта 1 и опыта 2 стали более эластичными и губчатыми, что значительно снизило индивидуальную прочность и сделало их хрупкими. Однако для прогонов 3 и 4 потребовалось больше времени, чтобы достичь точки разрыва от предела упругости.Таким образом, можно сделать вывод, что материал образца был пластичным по своей природе. В заключение, общие характеристики блокирующего кирпича как элемента растяжения неудовлетворительны и, следовательно, не подходят для использования в качестве элемента растяжения в конструкции.
В таблице 6 показано значение Скорректированного R-квадрата 0,9960 и Прогнозируемое значение R-Squared 0,9934. Это указывает на приемлемую разницу 0,0026, которая меньше 0,2. Если посмотреть на адекватную точность модели, которая составляет 64,5141, то это положительный результат.{2} Б $$
(2)
Уравнение 2 показывает модель, разработанную RSM, и может использоваться для надежных прогнозов модели для получения нескольких значений прочности на разрыв для получения удовлетворительных результатов. Где A — полиэтилентерефталат, а B — полиуретан.
На основе трехмерного графика поверхности отклика на рис. 7 делается вывод, что наивысший предел прочности на разрыв 1,3 МПа может быть достигнут при использовании ПЭТ / ПУ с соотношением 60/40. Это можно наблюдать в красноватой зоне на контурном графике. .
Рис. 7Трехмерный график поверхности (предел прочности)
Ударная вязкость
Образцы для испытания на ударную вязкость были отправлены на испытания для определения ударной вязкости блокирующих кирпичей, содержащих ПЭТ и ПУ. Это испытание было проведено на ударной машине Изода в соответствии со стандартом ASTM D256 (Стандарт, A 2002), как показано в Таблице 7.
Таблица 7 Результаты ударной вязкостиИз Таблицы 7 можно заметить, что наибольшая ударная вязкость была 43,08 Дж / м для контрольного образца.В то время как в смесях самая высокая ударная вязкость была у опыта 3 с отношением ПЭТ / ПУ 60/40. Наименьшая зарегистрированная ударная вязкость была для опыта 1 с отношением ПЭТ / ПУ 80/20. Два наиболее распространенных метода оценки ударной вязкости материала — это испытание на удар по Изоду и Шарпи. Однако испытание на удар по Изоду больше подходит для использования с пластиковыми материалами, тогда как испытание на удар по Шарпи полезно для испытания обычных металлов. Энергия, необходимая для разрушения образца для испытаний, получается, когда образец ударяется по центру маятниковым грузом.
Полученные результаты были превосходными, так как он выдерживает высокие удары. Пластик — прочный материал, в котором более высокий процент ПЭТ увеличивает прочность, но, следовательно, снижает ударную вязкость. Этот сценарий может быть связан с образцами для прогона 3. Пластмасса имеет плохую ударную вязкость, но она значительно улучшилась за счет добавления полиуретанового связующего; эластомер, который способствует увеличению молекулярной массы и улучшает ударную вязкость. Высокая молекулярная масса и узкое молекулярно-массовое распределение улучшают ударную вязкость.
Однако мокрые смеси прогонов 1 и 2 дали неудовлетворительные результаты. Это связано с тем, что оба материала были смешаны во влажной пропорции, что привело к тому, что образцы стали более эластичными и губчатыми, что значительно снизило индивидуальную прочность самого материала и сделало его хрупким.
Кроме того, ударная вязкость снижается в опыте 4 после добавления ПЭТ в смесь. Это связано с тем, что сухая смесь имеет недостаточное сцепление между полиэтилентерефталатом (ПЭТ) и полиуретановым связующим.Адекватное соединение между двумя материалами имеет важное значение для удовлетворительной работы блокирующего кирпича. (Abu-Isa et al. 1996) Ударная вязкость увеличилась после смешивания гранул полиэтилентерефталата с полиэфиром в смеси, где полученная ударная нагрузка составила 70/30 ПЭТ / сополиэфир 20,5 Дж / м. По сравнению с этим исследованием ударная вязкость, полученная для этого проекта, увеличилась на 23,3 Дж / м при соотношении 60/40 ПЭТ / ПУ. Таким образом, можно сделать вывод, что ударная вязкость достаточна для использования в качестве строительного материала.
В таблице 8 показано значение Скорректированного R-квадрата 0,9921 и Прогнозируемое значение R-Squared 0,9852. Это указывает на приемлемую разницу в 0,0069, что меньше 0,2. Если посмотреть на адекватную точность модели, которая составляет 51,7616, то это положительный результат. Соответствующее значение точности можно в дальнейшем использовать для навигации по дизайну.
Таблица 8 Ключевые результаты дисперсионного анализа (ANOVA)Таким образом, уравнение в терминах фактических факторов может быть получено как:
$$ Impact \, сила = 22.16 + 0.7550A + 1.86AB $$
(3)
Уравнение 3 показывает модель, разработанную RSM, и может использоваться для надежных прогнозов модели для получения нескольких значений ударной вязкости для получения удовлетворительных результатов. Где A — полиэтилентерефталат, а B — полиуретан.
На основе трехмерного графика поверхности отклика на рис. 8 делается вывод, что наивысшая прочность на сжатие около 23,3 МПа может быть достигнута при использовании ПЭТ / ПУ с соотношением 60/40.Это можно наблюдать в красноватой зоне на контурном графике.
Рис. 8Трехмерный график поверхности отклика (ударная вязкость)
Теплопроводность
Образцы для испытаний на теплопроводность были отправлены на испытания для получения значений, показанных в Таблице 9, включая ПЭТ и ПУ. Испытание на теплопроводность предназначено для измерения теплоизоляционной способности. Этот тест проводился измерителем теплопроводности в соответствии со стандартом ASTM C177 (Стандарт 2010).
Из Таблицы 9 можно заметить, что теплопроводность уменьшается по мере увеличения процентного содержания ПЭТ.Теплопроводность ПЭТ после бытового использования составляет 0,19 Вт / м ° C, а литературное значение для первичного ПЭТ составляет 0,0375 Вт / м ° C, оба при 25 ° C. Согласно результатам, полученным в ходе эксперимента, теплопроводность находится в диапазоне 0,15–0,3 Вт / м К. По сравнению с другими отходами, такими как использование резиновой крошки в бетонных панелях, резиновая крошка имеет теплопроводность в диапазон 0,303–0,476 Вт / м · К, что выше результатов, полученных для ПЭТ и ПУ (Sukontasukkul 2009).
Таблица 9 Результаты по теплопроводностиБолее высокая теплопроводность означает, что материал может передавать больше тепла в единицу времени.Кроме того (Sukontasukkul 2009) теплопроводность обратно пропорциональна плотности материала. Поскольку пластиковый блокирующий кирпич имеет более низкую плотность, ожидается, что он будет иметь более низкую теплопроводность, значение k. Когда этот экспериментальный результат сравнивается с обычным бетоном, среднее значение k составило 0,531 Вт / м · К, что все еще выше, чем у пластикового блокирующего кирпича.
Поскольку теплопроводность полиэтилентерефталата и полиуретанового связующего в качестве исходного материала низкая, значение k обоих материалов, сформованных вместе, уменьшилось.Следовательно, скорость теплопередачи прямо пропорциональна значению k. Температурный градиент вдоль образца велик, и согласно закону термодинамики Фурье, температурный градиент обратно пропорционален теплопроводности. Поскольку теплопроводность меньше, очевидно, что скорость теплопередачи по материалу уменьшится.
В заключение, терморегулирование является одним из важных аспектов в зданиях. Базовые знания о теплопередаче и распределении температуры с помощью строительных материалов можно использовать для анализа использования энергии и теплового комфорта в зданиях.Хорошая теплоизоляция обеспечивает тепловой комфорт без излишнего кондиционирования воздуха, что является одним из основных требований здания. Таким образом, этот пластиковый блокировочный кирпич можно отнести к категории хороших теплоизоляторов.
Таблица 10 показывает значение Скорректированного R-квадрата 0,9883 и Прогнозируемое значение R-Squared 0,9820. Это указывает на приемлемую разницу в 0,0063, что меньше 0,2. Если посмотреть на адекватную точность модели, которая составляет 47,1109, то это положительный результат. Соответствующее значение точности можно в дальнейшем использовать для навигации по дизайну.
Таблица 10 Ключевые результаты ANOVA (термический)Следовательно, уравнение в терминах фактических факторов может быть получено следующим образом:
$$ Thermal \, проводимость = 0,1806 — 0,0310A — 0,0051AB $$
(4)
Вышеупомянутое уравнение. 4 показана модель, разработанная RSM, которую можно использовать для надежных прогнозов модели для получения нескольких значений теплопроводности с целью получения удовлетворительных результатов. Где A — полиэтилентерефталат, а B — полиуретан.
На основании проверки, проведенной RSM, было замечено, что все модели оказались значимыми и имеют 4% отличия от исходного значения, основанного на модели.
На основе трехмерного графика поверхности отклика на рис. 9 делается вывод, что самая низкая теплопроводность около 0,155 МПа может быть достигнута при использовании ПЭТ / ПУ с соотношением 80/20. Это можно наблюдать в синей зоне на контурном графике.
Рис. 9Трехмерный график поверхности отклика (теплопроводность)
Проверка с помощью RSM
Планы проверочного микса были получены с помощью метода оптимизации с несколькими откликами.В таблице 11 показано процентное отличие полученных результатов от модели.
Таблица 11 Разница в процентах с модельюИз таблицы 11 видно, что все модели доказали свою значимость и имеют менее 4% отличия от исходного значения, основанного на модели.
Теплоизоляционный кирпич с низкой теплопроводностью котировки в реальном времени, цены последней продажи -Okorder.com
Описание продукта:
Кирпич шамотный Превосходная механическая прочность Хорошая огнеупорность
Короткая шайба рваная5 9308 9307 9307 9307 9307 9307 9307 9307 9308 9307 9307 9307 9308 9308 9307 9307 9307 9307 9308 9308 Кирпич шамотный UAL85
CMAX Высокий шамотный кирпич UAL85 классифицируется по содержанию глинозема от 48% до 95%, изготавливается из таких минералов, как бокситы, корунд и т. Д.путем смешивания, штамповки, сушки, спекания и механической обработки.
CMAX Высокоглинистый кирпич UAL85 отличается стабильной механической прочностью и термостойкостью, огнеупорностью не ниже 1750 градусов.
Преимущества для Кирпич шамотный UAL85
◆ ◆ Низкая теплопроводность
◆ ◆ сопротивление
◆ Превосходная стойкость к тепловому удару
◆ Превосходная механическая прочность
Спецификация / технические данные для Кирпич шамотный UAL85
6 9130 UAL85
6 9130 9130
6 9130 9130 00
4 9128 9002
UAL55
UAL65
UAL75
UAL80
UAL85
UAL85
ALP80
1790
1790
1810
1810
1810
229
22
222
23
20
20
18
C.CS, МПа
39
44
49
53
55
60
100
ies30ies30 900 ) , ℃1420
1470
1500
1520
1500
1520
1550
02
1450 ℃ x2h 0.1 ~ -0,4
1500 ℃ x2h 0,1 ~ -0,4
1500 ℃ x2h 0,1 ~ -0,4
1500 ℃ x2h 0,1 ~ -0,4
1550 2h -0,5
1550 ℃ x2h -0,5 ~ + 0,5
1550 ℃ x2h -0,5 ~ + 0,5
Al 2 O 3 Содержание,%
92 48
65
75
80
85
82
000300030003002 9128002
FAQ
Q1: Вы производитель или трейдер?
A: Завод + торговля (в основном фабрики, в то же время мы работаем с другими сопутствующими товарами).
Q2: Можем ли мы посетить ваш завод?
A: Конечно, добро пожаловать в любое время, увидеть — значит поверить.
Q3: Что такое MOQ пробного заказа?
A: Без ограничений, мы можем предложить лучшие предложения и решения в соответствии с вашим состоянием.
Q4: Принимает ли ваша компания настройки?
A: У нас есть собственный завод и отличная техническая команда, и мы принимаем услуги OEM.
Q5: Как насчет сертификации вашей компании?
A: ISO9001 и отчет об испытаниях, также мы могли бы применить другие необходимые сертификаты.
Q6: Как решить проблемы с качеством?
A: Если продукты не подтверждены образцами клиентов или имеют проблемы с качеством, наша компания будет нести ответственность за компенсацию за это.
Q7: Вы можете предложить образцы?
A: Конечно, образцы бесплатны, но фрахт оплачивается покупателем.
Q8: Каков срок службы ваших кирпичей?
A: Срок службы разных кирпичей различен.