Катушки индуктивности назначение: Что такое катушка индуктивности и для чего она нужна

Что такое катушка индуктивности и для чего она нужна

Катушки индуктивности нашли широкое применение в электротехнике в качестве накопителей энергии, колебательных контуров, ограничения тока. Поэтому их можно встретить везде, начиная от портативной электроники, заканчивая подстанциями в виде гигантских реакторов. В этой статье мы расскажем, что это такое катушка индуктивности, а также какой у нее принцип работы и многое другое.

  • Определение и принцип действия
  • Виды и типы катушек
  • Для чего нужны и какие бывают
  • Основные параметры
  • Маркировка

Определение и принцип действия

Катушка индуктивности — это катушка смотанного в спираль или другую форму изолированного проводника. Основные особенности и свойства: высокая индуктивность при низкой ёмкости и активном сопротивлении.

Она накапливает энергию в магнитном поле. На рисунке ниже вы видите её условное графическое обозначение на схеме (УГО) в разных видах и функциональных назначениях.

Она может быть с сердечником и без него. При этом с сердечником индуктивность будет в разы больше, чем если его нет. От материала, из которого изготовлен сердечник, также зависит величина индуктивности. Сердечник может быть сплошным или разомкнутым (с зазором).

Напомним один из законов коммутации:

Ток в индуктивности не может измениться мгновенно.

Это значит, что катушка индуктивности — это своего рода инерционный элемент в электрической цепи (реактивное сопротивление).

Давайте поговорим, как работает это устройство? Чем больше индуктивность, тем больше изменение тока будет отставать от изменения напряжения, а в цепях переменного тока — фаза тока отставать от фазы напряжения.

В этом и заключается принцип работы катушек индуктивности – накопление энергии и задерживание фронта нарастания тока в цепи.

Из этого же вытекает и следующий факт: при разрыве в цепи с высокой индуктивностью напряжение на ключе повышается и образуется дуга, если ключ полупроводниковый — происходит его пробой. Для борьбы с этим используются снабберные цепи, чаще всего из резистора и конденсатора, установленного параллельно ключу.

Виды и типы катушек

В зависимости от сферы применения и частоты цепи может отличаться конструкция катушки.

По частоте можно условно разделить на:

  • Низкочастотные. Пример — дроссель люминесцентной лампы, трансформатор (каждая обмотка представляет собой катушку индуктивности), реактор, фильтры электромагнитных помех. Сердечники чаще всего выполняются из электротехнической стали, для цепей переменного тока из листов (шихтованный сердечник).
  • Высокочастотные. Например, контурные катушки радиоприемников, катушки связи усилителей сигнала, накопительные и сглаживающие дроссели импульсных блоков питания. Их сердечник изготавливают обычно из феррита.

Конструкция отличается в зависимости от характеристик катушки, например, намотка может быть однослойной и многослойной, намотанной виток к витку или с шагом. Шаг между витками может быть постоянным или прогрессивным (изменяющимся по длине катушки). Способ намотки и конструкция влияют на конечные размеры изделия.

Отдельно стоит рассказать о том, как устроена катушка с переменной индуктивностью, их еще называют вариометры. На практике можно встретить разные решения:

  • Сердечник может двигаться относительно обмотки.
  • Две обмотки расположены на одном сердечнике и соединены последовательно, при их перемещении изменяется взаимоиндукция и индуктивная связь.
  • Сами витки для настройки контура могут раздвигаться или сужаться приближаясь друг к другу (чем плотнее намотка — тем больше индуктивность).

И так далее. При этом подвижная часть называется ротором, а неподвижная — статором.

По способу намотки бывают также различными, например, фильтры со встречной намоткой подавляют помехи из сети, а намотанные в одну сторону (согласованная намотка) подавляют дифференциальные помехи.

Для чего нужны и какие бывают

В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.

Дроссели. Обычно так называются устройства для ограничения тока, область применения:

  • В пускорегулирующей аппаратуре для розжига и питания газоразрядных ламп.
  • Для фильтрации помех. В блоках питания — фильтр электромагнитных помех со сдвоенным дросселем на входе компьютерного БП, изображен на фото ниже. Также используется в акустической аппаратуре и прочем.
  • Для фильтрации определенных частот или полосы частот, например, в акустических системах (для разделения частот по соответствующим динамикам).
  • Основа в импульсных преобразователях — накопитель энергии.

Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.

Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.

Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.

Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.

Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.

Рассмотрим, где используются соленоиды.

Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.

В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов.

Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.

Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.

Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).

Основные параметры

К основным характеристикам катушки индуктивности можно отнести:

  1. Индуктивность.
  2. Силу тока (для подбора подходящего элемента при ремонте и проектировании это нужно учитывать).
  3. Сопротивление потерь (в проводах, в сердечнике, в диэлектрике).
  4. Добротность — отношение реактивного сопротивления к активному.
  5. Паразитная емкость (емкость между витками, говоря простым языком).
  6. Температурный коэффициент индуктивности — изменение индуктивности при нагреве или охлаждении элемента.
  7. Температурный коэффициент добротности.

Маркировка

Для обозначения номинала катушки индуктивности используют буквенную или цветовую маркировку. Есть два вида буквенной маркировки.

  1. Обозначение в микрогенри.
  2. Обозначение набором букв и цифр. Буква r – используется вместо десятичной запятой, буква в конце обозначения обозначает допуск: D = ±0.3 нГн; J = ±5%; К = ±10%; М = ±20%.

Цветовую маркировку можно распознать аналогично таковой на резисторах. Воспользуйтесь таблицей, чтобы расшифровать цветные полосы или кольца на элементе. Первое кольце иногда делают шире остальных.

На это мы и заканчиваем рассматривать, что собой представляет катушка индуктивности, из чего она состоит и зачем нужна. Напоследок рекомендуем посмотреть полезное видео по теме статьи:

Материалы по теме:

  • Как сделать индукционный котел своими руками
  • Что такое самоиндукция
  • Калькулятор для расчета катушки индуктивности

Автор: Алексей Бартош

назначение, характеристики, виды.

Примеры использования

Катушки  индуктивности  (КИ;  индуктивность;  индуктор;  катушка)  используются в  электронных  схемах нечасто: обычное их место в схемах  преобразователей питания. Так называемые,  высокочастотные катушки  применяют в фильтрации напряжений питания чувствительных (аналоговых) компонентов.

Общее назначение КИ  (представлена на рисунке 1.27)  –  запасать энергию магнитного поля 

Wм= L*I2/  2  при протекании электрического тока, где I  –  протекающий через катушку ток, а  L  —  основной параметр КИ  —  индуктивность.

Качественные рассуждения при анализе электрической схемы: «катушка индуктивности  хорошо  пропускает  постоянный  и  низкочастотные  токи  и  затрудняет прохождение высокочастотных токов  –  представляет собой разрыв цепи для таких токов».

Исторический образ  КИ –  катушка с проводом. Внешне она может не отличаться от проволочного резистора.  Чем больше витков, тем  выше  основной параметр  катушки  –  индуктивность.

Отличие  от  проволочного  резистора  заключается в том, что омическое сопротивление  провода в катушке индуктивности является паразитным параметром: чем оно больше, тем больше потери энергии в катушке индуктивности (это функция собственно резистора). Второе отличие заключается в наличие магнитного сердечника (показано на  рисунке  1.28): чем лучше магнитные свойства сердечника, тем выше индуктивность.

Точный расчёт индуктивности катушки зависит от особенностей её конструкции. Для относительно простого случая (показано на рисунке 1.29) индуктивность оценивается по формуле:

L ≈ µ0*µ*s*N2/ l ,  (1.11)

где   µ0 ≈1,26·10-6Гн/м магнитная постоянная,

µ — относительная магнитная проницаемость,

s – площадь поперечного сечения катушки [м2],

N- число витков провода, l – длина намотки [м].

Значения  проницаемости  некоторых  магнитных  материалов  представлены в таблице 1. 11.

Таблица  1.11 – Значения свойств некоторых магнитных материалов

Материал

µ

Относительная проницаемость,

µ/ µ0

Пермаллой

1×10-2

до 50000

Электротехническая сталь

5×10-3

4000

Феррит (никель-цинк)

8,0×10-4 и более

до 640 и более

Никель

1,25×10-4

до 600

*Именно по этой характеристике оценивают магнитные качества магнитных материалов.

На  принципиальных  электрических  схемах  катушки индуктивности  обозначаются  графемой (показано на рисунке 1.30 слева):

Примечание   –   В  некоторых  случаях  общепринятую  в  принципиальных  схемах  графему  заменяют  более  сложной  моделью  (показано  на  рисунке  1.30  справа).  Такая  замена обоснована для КИ, которые имеют низкое значение добротности Q (см. определение далее).

Помимо индуктивности другими важными характеристиками катушек индуктивности являются:

  • номинальный  рабочий  ток  в  амперах.  Это  паспортное  значение  не должно превышаться во время эксплуатации КИ;
  • добротность. Это паспортное значение рассчитывают по формуле: Q = ω*L / RL ,  (1.12)

где  RL – сопротивление катушки на постоянном токе,

ω=2πf – актуальная круговая частота переменного тока, протекающего в КИ.

Чем больше  Q, тем меньше потери энергии на выбранной частоте, тем качественнее изготовлена катушка.

Катушки индуктивности  также  как  резисторы  и  конденсаторы,  выпускаются в  трёх  функциональных разновидностях:  постоянные,  переменные  и  подстроечные. Подстроечные широко используются в радиотехнике, но практически не используются в измерительной технике  –  их рассматривать не будем. Постоянные  катушки индуктивности  имеют разнообразные конструктивные решения (показано на рисунке 1.31).

Наиболее  широкое  применение  в  настоящее  время  находят  КИ  для  поверхностного  монтажа  (показано  на  рисунке  1.32).  Они  снижают  габаритные размеры электронных узлов, повышают надёжность работы схем и удешевляют продукцию.

Типовые характеристики современных КИ представлены в таблицах 1.12 и 1.13.

Таблица   1.12 –  Типовые характеристики высокочастотных чип-индуктивностей MURATA LQG18HN размера 0603

Типовые расчётные соотношения

  1. Последовательное соединение КИ: Lэ=L1+L2.

Пример:

L1 = 3,3 нГн/910 мА, L2= 6,8 нГн/680 мА; Lэ = 3,3 + 6,8 = 10,1 нГн.

При этом следует иметь в виду, что результат справедлив для токов, не превышающих 680 мА  –  это максимальный рабочий ток который может быть пропущен через L2.

  1. Параллельное соединение КИ возможно, но лучше не использовать, т.к. результат мало предсказуем: расположенные рядом КИ взаимодействуют через общее магнитное поле. Формула для расчёта в этом случае более сложная.

Пример использования катушек индуктивности

Катушки индуктивности широко применяются в преобразователях питания.  Схема подключения  понижающего  ключевого  преобразователя  показана  на    рисунке  1.33.  На его вход можно подавать постоянное напряжение в очень широком диапазоне значений  –  от  5до140 В,  на  выходе  поддерживается  стабильным  напряжение +5 В.

Указанные пассивные компоненты рекомендуются производителем в техническом описании. Особенно важно соблюдать рекомендации по выбору типа КИ.

 

Понимание роли катушек индуктивности в силовой электронике

  • Новостная рассылка
  • Белая бумага
  • Вебинары

Откройте для себя PCIM Europe

  • Продукты и приложения
  • Новости отрасли
  • Исследования и разработки
  • Инструменты и программное обеспечение
  • Эксперты
  • Услуги

От Люк Джеймс

Связанные поставщики

Файнпауэр ГмбХ Koki Deutschland Niederlassung KOKI Europe A/S Диотек Полупроводник АГ РОМ Полупроводник ГмбХ

МЕСАГО Мессе Франкфурт ГмбХ

Одним из самых малоизвестных компонентов силовой электроники является индуктор: структура в виде катушки, которую можно найти в большинстве схем. Именно благодаря этим и их свойствам работают трансформаторы и другие схемы силовой электроники.

Что такое катушки индуктивности, как они устроены и какие бывают типы?

(Источник: gemeinfrei / Pixabay)

Катушки индуктивности обычно используются в качестве накопителей энергии в импульсных силовых устройствах для получения постоянного тока. Катушка индуктивности, которая накапливает энергию, подает энергию в цепь для поддержания протекания тока в периоды «выключения», тем самым обеспечивая топографии, в которых выходное напряжение превышает входное напряжение.

Из-за того, как они работают — изменяя не только электрическое поле, но и магнитное поле вокруг него — многим людям трудно их понять.

Что такое индуктор?

Катушка индуктивности, пожалуй, самый простой из всех электронных компонентов. Это пассивный двухконтактный электрический компонент, который накапливает энергию в магнитном поле, когда через него протекает электрический ток. Как правило, катушка индуктивности состоит из изолированного провода, намотанного на катушку, как резистор. Этот дизайн был основан на обширных методах проб и ошибок, в которых учитывались такие методы, как кривые Ханны и произведение площади.

Когда ток, протекающий через катушку, изменяется, изменяющееся во времени магнитное поле индуцирует напряжение в проводнике с полярностью, противодействующей изменению тока, который его создал. Таким образом, катушки индуктивности противодействуют любым изменениям тока, проходящего через них.

Индуцированное магнитное поле также индуцирует электрическое свойство, известное как индуктивность, — отношение напряжения к скорости изменения тока. Индуктивность определяет количество энергии, которую катушка индуктивности способна хранить.

Конструкция индуктора и основные компоненты

Конструкция индуктора определяется электрическими, механическими и тепловыми требованиями данного приложения. Как правило, это включает:

  • Выбор материала сердечника
  • Выбор формы и размера сердечника
  • Выбор провода обмотки

затем покрываются слоями изоляционного полимерного материала. Обмотка может иметь различную форму, в том числе круглую, прямоугольную фольгу и квадратное сечение. Магнитный провод выбран для ограничения и направления магнитных полей, и он изолирован, чтобы предотвратить такие проблемы, как короткие замыкания и поломки.

Различные типы индукторов

Для различных применений требуются различные типы индукторов. Почти во всех случаях вы обнаружите, что индуктор в системе формируется вокруг материала сердечника — обычно железа или соединений железа — для поддержки создания сильного магнитного поля.

Катушки индуктивности с железным сердечником

Катушки индуктивности с железным сердечником производства Jantzen Audio для аудиоприложений.

(Источник: Hifi Collective)

Железо — классический и наиболее узнаваемый магнитный материал, что делает его идеальным выбором для использования в индукторах. Как и выше, железо в индукторах имеет форму железного сердечника. Они обычно используются для фильтрации низкочастотных линий из-за их относительно больших индуктивностей. Они также широко используются в звуковом оборудовании. Однако катушки индуктивности не всегда должны иметь железный сердечник.

Дроссель с воздушным сердечником

Дроссель с воздушным сердечником производства Wurth Elektronik.

(Источник: Farnell)

Как следует из названия, индукторы с воздушным сердечником не имеют сердечника — сердечник находится на открытом воздухе. Поскольку воздух имеет низкую проницаемость, индуктивность индукторов с воздушным сердечником очень мала. Это означает, что скорость нарастания тока относительно высока для приложенного напряжения, что делает их способными работать с высокими частотами, характерными для таких приложений, как радиочастотные схемы.

Катушки индуктивности с ферритовым сердечником

Катушка индуктивности с ферритовым сердечником производства Wurth Elektronik.

(Источник: RS Components)

Феррит представляет собой керамический материал, полученный путем смешивания и обжига оксида железа (III) с добавлением небольшого количества одного или нескольких дополнительных металлических элементов, таких как никель и цинк. При использовании в катушках индуктивности ферритовый порошок смешивают с эпоксидной смолой и формуют, чтобы сформировать сердечник, вокруг которого можно намотать магнитный провод. Ферритовые индукторы являются наиболее широко используемым типом, поскольку их проницаемость можно точно контролировать, регулируя соотношение феррита и эпоксидной смолы.

Практическое применение

Катушки индуктивности из-за того, что для их изготовления необходимы материалы из меди и железа, как правило, дороги. Это относит большинство их вариантов использования к приложениям в областях, где такие расходы могут быть оправданы, например, к телекоммуникационному оборудованию, радио и источникам питания.

В источниках питания роль катушки индуктивности заключается в предотвращении внезапных изменений используемого тока. Работая вместе с конденсатором, катушка индуктивности предотвращает внезапные изменения выходного напряжения и тока источника питания.

В целом, это очень простые компоненты, играющие важную роль в силовой электронике.

(ID:47041174)

Подпишитесь на рассылку новостей сейчас

Не пропустите наш лучший контент

Деловой адрес электронной почты

Нажимая «Подписаться на рассылку новостей», я даю согласие на обработку и использование моих данных в соответствии с формой согласия (пожалуйста, разверните для подробностей) и принимаю Условия использования. Для получения дополнительной информации ознакомьтесь с нашей Политикой конфиденциальности.

Развернуть для подробностей вашего согласия

Что такое индуктор? – Определение TechTarget

К

  • Роберт Шелдон

Что такое индуктор?

Катушка индуктивности — это пассивный электронный компонент, который временно накапливает энергию в магнитном поле, когда электрический ток протекает через катушку катушки индуктивности. В своей простейшей форме индуктор состоит из двух клемм и катушки из изолированного провода, которая либо закручивается вокруг воздуха, либо окружает материал сердечника, усиливающий магнитное поле. Катушки индуктивности помогают справляться с колебаниями электрического тока, проходящего через цепь.

Когда электрический ток течет по проводнику, такому как медный провод, ток создает небольшое магнитное поле вокруг провода. Если проволока свернута в катушку, магнитное поле становится намного сильнее. Если проволока намотана вокруг центрального сердечника, сделанного из такого материала, как железо, магнитное поле становится еще сильнее — по сути, так работает электромагнит. Магнитное поле полностью зависит от электрического тока. Изменение электрического тока также изменяет это поле.

Индукторы

используют взаимосвязь между электрическим током и магнитным полем для компенсации изменений в протекании тока. Когда ток начинает проходить через катушку индуктора, магнитное поле начинает расширяться, пока окончательно не стабилизируется. До тех пор катушка препятствует протеканию тока. После того, как магнитное поле стабилизируется, ток через катушку течет нормально.

Энергия сохраняется в магнитном поле, пока ток продолжает течь через катушку. Когда ток перестает течь, магнитное поле начинает разрушаться, и магнитная энергия снова преобразуется в электрическую энергию, которая продолжает поступать в цепь до тех пор, пока магнитное поле полностью не исчезнет.

Катушки индуктивности и индуктивности

Если течение тока остается в устойчивом состоянии, ток проходит через индуктор точно так же, как любой провод, без какой-либо реакции со стороны индуктора. Однако при резких изменениях тока индуктор пытается им противостоять.

Катушка индуктивности всегда отстает от изменения тока из-за своего магнитного поля. Когда ток изменяется, магнитное поле катушки индуктивности изменяется — увеличивается, если ток увеличивается, и уменьшается, если ток уменьшается. Изменения в магнитном поле вызывают изменения в магнитном потоке, который, в свою очередь, индуцирует электромагнитное поле (ЭДС), которое пытается противодействовать изменению тока. Если ток уменьшается, ЭДС пытается его увеличить. Если ток увеличивается, ЭДС пытается его уменьшить.

Способность индуктора противостоять изменениям тока называется его индуктивностью, которая представляет собой отношение напряжения к скорости изменения тока в катушке. Стандартной единицей индуктивности является генри (Гн). Поскольку генри является такой большой единицей, многие катушки индуктивности измеряются в меньших количествах, таких как миллигенри, сокращенно мГн (1 мГн равен 10 -3 Гн), и микрогенри, сокращенно мкГн (1 мкГн равен 10 -6 Н). Иногда используются наногенри (нГн) (1 нГн равен 10 -9 Н).

Многие факторы могут влиять на уровень индуктивности индуктора, включая количество витков, длину намотанной проволоки, материал, используемый для сердечника, а также размер и форму сердечника. Если сердечник не используется, то индуктивность также зависит от радиуса катушки.

Для данного радиуса катушки и количества витков воздушные сердечники или сердечники без сплошных сердечников обеспечивают наименьшую индуктивность. Такие материалы, как дерево, стекло и пластик, известные как диэлектрические материалы, по своей индуктивности практически такие же, как воздух. Ферромагнитные материалы, такие как железо, многослойное железо и порошковое железо, увеличивают индуктивность. В некоторых случаях это увеличение составляет порядка тысяч раз. Форма ядра также имеет значение. Тороидальные или кольцевые сердечники обеспечивают большую индуктивность для данного материала сердечника и количества витков, чем соленоидальные или цилиндрические сердечники.

Изготовление катушек индуктивности на микросхемах интегральных схем (ИС) может быть трудным, но выполнимым, хотя они имеют довольно низкую индуктивность. Когда катушки индуктивности нельзя использовать, их можно заменить резисторами. В некоторых случаях индуктивность можно моделировать с помощью транзисторов, резисторов и конденсаторов, встроенных в микросхемы.

Несмотря на то, что это сложно, изготовление катушек индуктивности на микросхемах интегральных схем возможно. Катушки индуктивности

используются с конденсаторами в беспроводной связи, аудиосистемах и множестве других приложений. Катушка индуктивности, соединенная последовательно или параллельно с конденсатором, может помочь отфильтровать нежелательные сигналы. Большие катушки индуктивности используются в источниках питания электронной аппаратуры всех типов, в том числе компьютеров и их периферийных устройств. В этих системах катушки индуктивности помогают сгладить мощность выпрямленного переменного тока (AC), обеспечивая чистую мощность постоянного тока (DC), подобную батарее.

См. также: электромагнитная индукция, электрическая диэлектрическая проницаемость, электрическая сеть, вольт на метр, диэлектрическая проницаемость, ультраконденсатор, преобразователь, пикофарад на метр, кулон, закон Ома, чистое электричество, вольт-ампер, полное сопротивление, электрическая проводимость и сопротивление.

Последнее обновление: декабрь 2022 г.

Продолжить чтение о катушке индуктивности
  • Масштабирование новых технологий памяти, используемых для постоянной памяти
  • ЦП и микропроцессор: в чем разница?
  • Создание руководства по электробезопасности для центра обработки данных
  • Инструменты и советы по отслеживанию энергопотребления сервера
  • Какое отношение сигнал постоянного тока в вольтах имеет к телекоммуникациям?
экологичные вычисления

«Зеленые» вычисления, также известные как «зеленые технологии», представляют собой использование компьютеров и других вычислительных устройств и оборудования энергосберегающими и экологически безопасными способами.

Сеть

  • широкополосный

    Широкополосный доступ относится к телекоммуникациям, в которых для передачи информации доступна широкая полоса частот.

  • оптоволокно до дома (FTTH)

    Оптоволокно до дома (FTTH), также называемое оптоволокном до дома (FTTP), представляет собой установку и использование оптического волокна от центрального …

  • Манчестерское кодирование

    При передаче данных манчестерское кодирование — это форма цифрового кодирования, в которой состояние бита данных — 0 или 1 — представляется …

Безопасность

  • WPA3

    WPA3, также известный как Wi-Fi Protected Access 3, является третьей итерацией стандарта сертификации безопасности, разработанного Wi-Fi …

  • брандмауэр

    Брандмауэр — это устройство сетевой безопасности, которое предотвращает несанкционированный доступ к сети. Проверяет входящий и исходящий трафик…

  • защита облачных рабочих нагрузок

    Защита рабочих нагрузок в облаке — это защита рабочих нагрузок, распределенных по нескольким облачным средам. Предприятия, которые используют …

ИТ-директор

  • Agile-манифест

    Манифест Agile — это документ, определяющий четыре ключевые ценности и 12 принципов, в которые его авторы верят разработчикам программного обеспечения…

  • Общее управление качеством (TQM)

    Total Quality Management (TQM) — это система управления, основанная на вере в то, что организация может добиться долгосрочного успеха, …

  • системное мышление

    Системное мышление — это целостный подход к анализу, который фокусируется на том, как взаимодействуют составные части системы и как…

HRSoftware

  • непрерывное управление производительностью

    Непрерывное управление эффективностью в контексте управления человеческими ресурсами (HR) представляет собой надзор за работой сотрудника .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *