Каким методом в металлургии получают щелочные металлы – Каким методом в металлургии получают щелочные металлы?

Получение — щелочной металл — Большая Энциклопедия Нефти и Газа, статья, страница 1

Получение — щелочной металл

Cтраница 1

Получение щелочных металлов в свободном виде возможно только путем электролиза расплава их галогенидов или гидр-оксидов. Характерные реакции щелочных металлов связаны с их высокой восстановительной способностью.  [1]

Для получения физически чистого щелочного металла все части установки спаивают; краны высоковакуумной части установки не следует смазывать. В других случаях, когда требования к чистоте получаемого металла не столь высоки, можно использовать в установке шлифовые соединения и краны; однако надо исключить контакт жидкого или газообразного щелочного металла со шлифами и с кранами.  [2]

В процессе получения щелочных металлов с использованием стеклянных ионообменных мембран, такое разрушение сказывается в еще большей степени. Однако влияние щелочного металла, входящего в состав стекла, проявляется только при проведении на воздухе испытаний пленок на электросопротивление. При взаимодействии щелочного металла с кислородом воздуха образуется щелочь; она взаимодействует с веществом катода.  [3]

Электролитический способ получения щелочных металлов заключается в электролизе расплавленных солей или гидроокисей, а электролитический способ получения едких щелочей основан на электролизе растворов галогенидов щелочных металлов. Хлористый натрий в твердом состоянии представляет собой кристаллическое вещество.  [4]

Исходным сырьем для получения щелочных металлов служат хлориды и гидроксиды, для получения щелочноземельных металлов — хлориды. Во всех случаях их получают электролизом расплавов указанных соединений.  [5]

Это лучший метод получения органических производных щелочных металлов

, магния, кальция, стронция и бария, особенно в том случае, если эти соединения используются как промежуточные продукты в дальнейших синтезах и не требуется их выделения в чистом виде. Если необходимо выделить чистые алкильные производные щелочных металлов, то этот метод не является единственным, так как в органических растворителях нерастворимы как металлалкилы, так и галогениды металлов, являющиеся побочными продуктами реакции, и разделение их практически невозможно. Этот метод можно использовать для приготовления органических производных алюминия при условии, что алюминий предварительно амальгамируется для удаления поверхностной окисной пленки. Аналогичным об-разом могут реагировать в виде амальгам и другие металлы, например олово и свинец.  [6]

Определение основано на получении щелочных металлов в виде хлоридов или сульфатов, свободных от других элементов, входящих в состав силикатных пород. Для этой цели используется отдельная навеска образца.  [7]

Действительно, при получении алкильных производных щелочных металлов взаимодействием галоидного алкила и щелочного металла в результате описанной выше реакции сильно уменьшается выход металлал-кила, так как он по мере его образования вступает в реакцию с галоидным алкилом. В этих реакциях бромиды и иодиды реагируют быстрее хлоридов, и эфир является менее пригодным растворителем, чем инертные углеводороды.  [8]

Из-за высокой химической активности получение щелочных металлов связано с определенными трудностями. Их нельзя получать восстановлением оксидом углерода ( П) подобно железу или электролизом водного раствора соли подобно никелю. Натрий и литий получают электролизом расплавов солей.  [10]

В последнее время для

получения щелочных металлов разработаны очень эффективные методы их получения, основанные на электролизе расплавленных солей.  [11]

Чем отличается электролитический способ получения щелочных металлов от электролитического-способа получения едких щелочей. Какие электрохимические процессы происходят в том и в другом случае.  [12]

Чем отличается электролитический способ получения щелочных металлов от электролитического способа получения едких щелочей.  [13]

Чем отличается электролитический способ получения щелочных металлов от электролитического способа получения едких щелочей. Какие электрохимические процессы происходят в том и в другом случае.  [14]

В связи с разработкой новой технологии получения щелочных металлов и хлора электролизом расплавленных солей с применением жидкого циркулирующего свинцового катода особое внимание уделяют подбору огнеупорных электроизоляционных керамических материалов, стойких к свинцово-щелочным сплавам при температурах до 850 С.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Урок в 9-м классе «Общие способы получения металлов»

Разделы: Химия


Цель урока: познакомить с природными соединениями металлов и с самородными металлами; дать понятие о рудах и металлургии, рассмотреть такие ее разновидности, как пиро–, гидро–, электрометаллургия, термическое разложение соединений металлов, продемонстрировать лабораторные способы получения металлов и с помощью фрагментов медиалекции ознакомить с промышленным производством металлов.

Оборудование: компьютер, видеопроектор, коллекция “Минералы и горные породы”, прибор для получения газов, лабораторный штатив, пробирки, спиртовка, фарфоровые ступки.

Реактивы: оксид меди(II), соляная кислота концентрированная, цинк гранулированный, термит (смесь порошков алюминия и оксида железа (Ш), раствор сульфата меди и железный гвоздь.

I. Организационный момент. Проверка домашнего задания.

1. Написать уравнения реакций взаимодействия между веществами:

а) Li, Na, Ca, Fe c O2, Cl2, S, N2, C:

б) Na, Ca, Al c H2O;

в) Zn c H2SO4; Al c HCl;

г) Zn c CuSO4; Al c NaOH; Be c KOH.

2. Расставить коэффициенты, найти окислитель и восстановитель в уравнениях реакций:

Cu + HNO3 (P) —> Cu (NO3)2 + NO + H2O

Cu + HNO3 (K) —> Cu (NO3)2 + NO2 + H2O

Na + HNO3 —> NaNO3 + N2O + H2O.

3. Все уравнения реакций учащиеся сверяют с экраном, где спроецированы данные уравнения реакций (фрагмент медиалекции “Общие свойства металлов”). (CD) Обобщение общих химических свойств металлов проводится по схеме “Общие свойства металлов”.

4. Завершим рассмотрение схемы, мы не разобрали нахождение металлов в природе и способы их получения.

II. Природные соединения металлов.

— Могут ли металлы находиться в природе в свободном (или самородном) состоянии? Если могут, то, какие это металлы?

Ответ очевиден, это металлы низкой химической активности. Металлы могут встречаться в природе или в виде простого вещества или в виде сложного вещества.

Металлы в природе встречаются в трёх формах: 1) в свободном виде встречаются золото и платина; золото бывает в распыленном состоянии, а иногда собирается в большие массы ? самородки. Так в Австралии в 1869 году нашли глыбу золота в сто килограммов весом. Через три года обнаружили там же еще большую глыбу весом около двухсот пятидесяти килограммов. Наши русские самородки много меньше, и самый знаменитый, найденный в 1837 году на Южном Урале, весил всего около тридцати шести килограммов. В середине XVII века в Колумбии испанцы, промывая золото, находили вместе с ним тяжелый серебристый металл. Этот металл казался таким же тяжелым, как и золото, и его нельзя было отделить от золота промывкою. Хотя он и напоминал серебро (по-испански ? plata), но был почти нерастворим и упорно не поддавался выплавке; его считали случайной вредной примесью или преднамеренной подделкой драгоценного золота. Поэтому испанское правительство приказывало в начале XVIII столетия выбрасывать этот вредный металл при свидетелях обратно в реку. Месторождения платины находятся и на Урале. Оно представляет собой массив дунита (изверженная горная порода, состоящая из силикатов железа и магния с примесью железняка). В нем содержатся включения самородной платины в виде зерен. 2) в самородном виде и в форме соединений могут находиться в природе серебро, медь, ртуть и олово; 3) все металлы, которые в ряду напряжений находятся до олова, встречаются только в виде соединений.

Чаще всего металлы в природе встречаются в виде солей неорганических кислот: хлоридов ? сильвинит КСl • NaCl, каменная соль NaCl;

нитратов – чилийская селитра NaNO3;

сульфатов – глауберова соль Na2SO4 ? 10 H2O, гипс CaSO4 • 2Н2О;

карбонатов – мел, мрамор, известняк СаСО3, магнезит MgCO3, доломит CaCO3 • MgCO3;

сульфидов ? серный колчедан FeS2, киноварь HgS, цинковая обманка ZnS;

фосфатов – фосфориты, апатиты Ca 3(PO4)2 ;

оксидов – магнитный железняк Fe3O4, красный железняк Fe2O3, бурый железняк, содержащий различные гидроксиды железа (III) Fe2O3 • Н2О.

Ещё в середине II тысячелетия до н. э. в Египте было освоено получение железа из железных руд. Это положило начало железному веку в истории человечества, который пришёл на смену каменному и бронзовому векам. На территории нашей страны начало железного века относят к рубежу II и I тысячелетий до н. э.

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией. Так же называется и наука о промышленных способах получения металлов из руд.

III. Получение металлов.

— Какой основной химический процесс лежит в основе получения металлов?

Большинство металлов встречаются в природе в составе соединений, в которых металлы находятся в положительной степени окисления, значит для того, чтобы их получить, в виде простого вещества, необходимо провести процесс восстановления.

Но прежде чем восстановить природное соединение металла, необходимо перевести его в форму, доступную для переработки, например, оксидную форму с последующим восстановлением металла. На этом основан пирометаллургический способ. Это восстановление металлов из их руд при высоких температурах с помощью восстановителей неметаллических ? кокс, оксид углерода (II), водород; металлических ? алюминий, магний, кальций и другие металлы. .

Демонстрационный опыт 1. Получение меди из оксида с помощью водорода.

Cu +2O + H2 = Cu0 + H2O (водородотермия)

Демонстрационный опыт 2. Получение железа из оксида с помощью алюминия.

Fe+32O3 +2Al = 2Fe0 + Al2O3 (алюмотермия)

Для получения железа в промышленности железную руду подвергают магнитному обогащению:3Fe2 O3 + H2= 2Fe3 O4 + H2O или 3Fe2O3 + CO = 2Fe3O4 + CO2 , а затем в вертикальной печи проходит процесс восстановления:

Fe3O4 + 4H2 = 3Fe + 4H2O

Fe3O4 + 4CO = 3Fe + 4CO2

Просмотр медиалекции . (CD)

Гидрометаллургический способ основан на растворении природного соединения с целью получения раствора соли этого металла и вытеснением данного металла более активным. Например, руда содержит оксид меди и ее растворяют в серной кислоте:

CuO + H2SO4 = CuSO4 + H2O, затем проводят реакцию замещения

CuSO4 + Fe = FeSO4 + Cu.

Демонстрационный опыт 3. Взаимодействие железа с раствором медного купороса.

Таким способом получают серебро, цинк, молибден, золото, ванадий и другие металлы.

Электрометаллургический способ.

Это способы получения металлов с помощью электрического тока (электролиза). Просмотр фрагмента медиалекции. (CD)

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов:

NaCl —> Na+ + Cl?

катод Na+ + e > Na0 ¦ 2

анод 2Cl? ?2e > Cl20 ¦ 1

суммарное уравнение: 2NaCl = 2Na + Cl2

Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит растворяет Al2O3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия ? электролитом.

Al2O3 —> AlAlO3 —> Al3+ + AlO33–

катод Al3+ +3e —> Al 0 ¦ 4

анод 4AlO33– – 12 e —> 2Al2O3 +3O2 ¦ 1

суммарное уравнение: 2Al2O3= 4Al + 3O2 .

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

Термическое разложение соединений.

Железо взаимодействует с оксидом углерода (II) при повышенном давлении и температуре 100-2000, образуя пентакарбонил: Fe + 5CO = Fe (CO)5

Пентакарбонил железа-жидкость, которую можно легко отделить от примесей перегонкой. При температуре около 2500 карбонил разлагается, образуя порошок железа: Fe (CO)5 = Fe + 5CO.

Если полученный порошок подвергнуть спеканию в вакууме или в атмосфере водорода, то получится металл, содержащий 99,98– 99,999% железа. Еще более глубокой степени очистки железа (до 99,9999%) можно достичь методом зонной плавки.

Таким образом, мы познакомились с природными соединениями металлов и способами выделения из них металла, как простого вещества.

IV. Закрепление темы.

Выполнить тестовые задания:

1. Укажите справедливые утверждения: а) все элементы d- и f-семейств являются металлами; б) среди элементов р-семейства нет металлов; в) гидроксиды металлов могут обладать как основными, так амфотерными и кислотными свойствами; г) металлы не могут образовывать гидроксиды с кислотными свойствами.

2. В каком ряду приведены символы соответственно самого твердого и самого тугоплавкого металлов? а) W, Ti; б) Cr, Hg; в) Cr, W; г) W, Cr,

3. Укажите символы металлов, которые можно окислить ионами Н+ в водном растворе кислоты: а) Cu; б) Zn; в) Fe; г) Ag.

4. Какие металлы нельзя получить в достаточно чистом виде, восстанавливая их оксиды коксом? а) W; б) Cr; в) Na; г) Al.

5. С водой только при нагревании реагируют: а) натрий; б) цинк; в) медь; г) железо.

6. Какие утверждения для металлов неверны: а) металлы составляют большинство элементов Периодической системы; б) в атомах всех металлов на внешнем энергетическом уровне содержится не более двух электронов; в) в химических реакциях для металлов характерны восстановительные свойства; г) в каждом периоде атом щелочного металла имеет наименьший радиус.

7. Отметьте формулу оксида металла с наиболее выраженными кислотными свойствами:

а) K2O; б) MnO; в) Cr2O3; г) Mn2O7.

8. В каких парах обе из реакций, схемы которых приведены ниже, позволяют получить металл? а) CuO + CO—> и CuSO4 + Zn —> б) AgNO3 —> и Cr2O3 + Al в) ZnS + O2 и Fe2O3 + H2 —> г) KNO3 —> и ZnO + C.

9. В атомах каких металлов в основном состоянии на энергетическом d- подуровне содержится пять электронов? а) титана; б) хрома; в) сурьмы; г) марганца.

10. Какой минимальный объем (н. у.) оксида углерода (II) нужен для восстановления 320 г оксида железа (III) до магнетита? а) 14,93 л; б) 15,48 л; в) 20,12 л; г) 11,78 л.

Список используемой литературы

  1. О. С. Габриелян “Химия 9 класс”. М. “Дрофа”, 2000 год.
  2. О. С. Габриелян, И. Г. Остроумов “Настольная книга учителя химии 9 класс”. М. “Дрофа”, 2002 год.
  3. Сост. В. А. Крицман “Книга для чтения по неорганической химии”. М. “Просвещение”, 1984 год.
  4. В. И. Соболевский “Замечательные минералы”. М. “Просвещение”, 1983 год.
  5. А. С. Федоров “Творцы науки о металле”. М. “Наука”, 1980 год.
  6. А. Е. Ферсман “Занимательная минералогия”. Свердловское издательство, 1954 год.
  7. Ю. В. Ходаков “Общая и неорганическая химия”. М. ”Просвещение”, 1965 год
  8. 2 CD “ Химия 7– 11 класс”.
  9. CD “Уроки химии Кирилла и Мефодия 8– 9 класс”.

1.03.2007

urok.1sept.ru

Способ получения щелочных и щелочно-земельных металлов

Изобретение относится к способу получения щелочных и щелочноземельных металлов. Способ включает электролиз растворов солей в органическом растворителе с использованием водного раствора гетерополикислоты 2-18 ряда. После восстановления кислоту нейтрализуют карбонатом или гидроксидом щелочного или щелочно-земельного металла, затем обезвоживают, выпаривают, растворяют и проводят электролиз при определенных условиях, обеспечивается существенное снижение энергозатрат.

 

Изобретение относится к способу получения щелочных и щелочно-земельных металлов в органических растворах путем электролиза.

Изобретение может быть использовано для получения щелочных и щелочно-земельных металлов энергетически выгодным методом.

Известен способ [заявка на изобретение №99105639/02 от 22.03.1999 «Способ получения магния и хлора и поточная линия для его осуществления»]. Способ получения магния и хлора путем электролиза магния в расплаве хлоридов включает приготовление электролита из хлормагниевого сырья или его смеси с хлоридами щелочных и щелочно-земельных металлов в электролизерах, соединенных с помощью транспортных каналов в замкнутый гидродинамический контур — поточную линию, в которой осуществляют принудительное движение электролита с магнием, накапливание магния в разделительном агрегате, периодическое удаление магния и удаление отработанного электролита из разделительного агрегата, в котором хлормагниевое сырье и/или его смесь с хлоридами щелочных и щелочно-земельных металлов загружают в электролизеры в твердом виде и поддерживают содержание MgCl2 в электролите в интервале 7-11%, при этом за счет изменения величины загрузки в 30-50% электролизеров, размещенных после разделительного агрегата по ходу движения электролита, содержание MgCl2 увеличивают от минимального до максимального значения, а в 30-50% электролизеров, размещенных перед разделительным агрегатом, содержание MgCl2 снижают от максимального до минимального значения.

Несмотря на то, что достоинством данного способа является усовершенствованный метод получения хлора, он достаточно трудоемок, так как включает в себя большое количество технологических операций и сопровождается большими энергетическими затратами, связанными с поддержанием высокой температуры расплава, а также затратой электрической энергии на электролиз самого расплава.

Известен способ [патент №2037543, опубл. 19.06.1995 «Способ получения металлов и сплавов»]. Сущность способа заключается в растворении окислов в расплаве галогенидов щелочных и/или щелочно-земельных металлов и жидкофазное восстановление окислов из раствора их в расплаве-растворителе. Восстановление осуществляют твердым углеродом при температуре, соответствующей энергии образования окисла. После восстановления окислов расплав-растворитель отделяют от металла и повторно используют для растворения исходного продукта, при этом на электролиз самого расплава энергия не расходуется. Однако из-за необходимости поддержания температуры окисления твердого углерода энергетические затраты также велики.

Данный способ имеет большие энергетические затраты, как и способ 1, связанные с поддержанием высокой температуры расплава и поддержанием температуры окисления твердого углерода.

Достоинством данного способа является то, что на электролиз самого расплава энергия не расходуется.

Известен способ получения кальция в промышленности, который заключается в электролизе расплава CaCl2 (75-85%)+KCl [«Химическая энциклопедия», издательство «Советская энциклопедия». М., 1990 г., том 2, стр.579]. Необходимый для электролиза чистый безводный CaCl2 производят хлорированием СаО при нагревании в присутствии угля или обезвоживанием CaCl2×6Н2О, полученного действием соляной кислоты на известняк. По мере выделения кальция в электролит добавляют CaCl2. Электролиз ведут с графитовым анодом, катодом служит жидкий сплав Са (62-65%)+Cu. Содержание кальция в сплаве постоянно возрастает. Часть обогащенного сплава периодически извлекают и добавляют сплав, обедненный кальцием (30-35% Са). Температура процесса 680-720°С, при более низкой температуре обогащенный кальцием сплав всплывает на поверхность электролита, а при более высокой происходит растворение кальция в электролите с образованием CaCl2. На 1 кг Са расходуется энергия 40-50 кВт/ч. Из сплава Са+Cu кальций отгоняют в вакуумной реторте при 1000-1080°С и остаточном давлении 13-20 кПа. Для получения высокочистого кальция его перегоняют дважды.

Достоинством данного способа является возможность получения высокочистого металлического кальция, однако он является трудоемким и требует больших энергетических затрат при повышенной температуре.

Как правило, все щелочные и щелочно-земельные металлы, такие как натрий, калий, кальций, магний, ряд тугоплавких и редких металлов, а также фтор получают электролизом расплавленных сред, поскольку электролизом водных растворов их получить практически невозможно из-за высокой реакционной способности (фтор, щелочные металлы) и преимущественного протекания на электродах процессов выделения водорода (на катоде) или кислорода (на аноде) [«Электрохимическая технология неорганических веществ» В.Л.Кубасов, В.В.Банников, издательство «Химия». М., 1989, с.202]. Поэтому общим недостатком всех известных способов являются большие энергозатраты на поддержание температуры расплава.

Наиболее близким по своей сущности к изобретению является способ получения щелочных и щелочно-земельных металлов путем электролиза органических растворов соединений этих металлов. [«Электрохимическая технология неорганических веществ» В.Л.Кубасов, В.В.Банников, издательство «Химия». М., 1989, с.202]. Однако невысокая электропроводность органических растворов делает данный способ малоэффективным. Кроме того, затраты электрической энергии на проведение электролиза достаточно велики.

Техническая задача заключается в получении щелочных и щелочноземельных металлов экономически выгодным способом. Затраты электроэнергии должны быть не менее чем в 5000 раз меньше, чем при электролизе солей.

Технический результат достигается за счет использования в качестве солей щелочного и щелочно-земельного металла гетерополикислоты 2-18 ряда Н6[P2W18O62].

Существо заявленного технического решения заключается в том, что в известном способе получения щелочных и щелочно-земельных металлов, заключающемся в электролизе растворов солей в органическом растворителе, предварительно приготавливают 15-25% по массе водный раствор гетерополикислоты 2-18 ряда, имеющей вольфрамовый анионный комплекс [P2W18O62]6-, который восстанавливают до анионного комплекса [P2W18O62]24- путем пропускания постоянного электрического тока, сила которого составляет 30-100 мкА при напряжении 2-2,5 В, с последующем образованием восстановленной формы гетерополикислоты H24[P2W18O62]. После этого ее нейтрализуют карбонатом или гидроксидом щелочного или щелочно-земельного металла до образования гетерополисоединения, которое, в свою очередь, обезвоживают путем выпаривания и растворяют в органическом растворителе до насыщения при температуре 15-22°С. Затем в раствор опускают два графитовых электрода и электролизуют раствор соли в органическом растворителе постоянным электрическим током при напряжении между электродами 2,5-3,2 В и силе тока 90-200 мкА до образования на катоде щелочного или щелочно-земельного металла в виде чешуек.

Процесс происходит следующим образом: сначала приготавливают 15-25% по массе водный раствор гетерополикислоты 2-18 ряда с вольфрамовым анионным комплексом [P2W18O62]6. Раствор наливают в гальваническую ванну и опускают два графитовых электрода. Через раствор пропускают постоянный электрический ток при силе тока 30-100 мкА и напряжении 2-2,5 В. На катоде происходит восстановление анионного комплекса гетерополикислоты с последующим образованием восстановленной формы кислоты, которая насыщает раствор

H6[P2W18O62]+9Н2O=H24[P2W18O62]+4,5O2.

После того, как сила тока при указанном напряжении станет меньше 30 мкА, процесс прекращают. Далее полученную кислоту нейтрализуют карбонатом или гидроксидом щелочного или щелочноземельного металла, в результате чего получается гетерополисоединение 2-18 ряда. В виде химических уравнений реакции процесс можно записать в следующем виде:

1) H24[P2W18O62]+MeCO3=Men[P2W18O62]+CO2+H2O

2) H24[P2W18O62]+МеОН=Men[P2W18O62]+Н2O

Me — щелочной или щелочно-земельный металл, имеющий соответственно степень окисления +1 или +2.

После того как образовалась гетерополисоль щелочного или щелочно-земельного металла, из нее удаляют воду методом выпаривания раствора, после чего сухую соль растворяют в каком-либо полярном органическом растворителе, например γ-бутиролактоне или пиридине до насыщения при температуре 15-22°С, после чего в раствор опускают два графитовых электрода (анод и катод) и электролизуют раствор соли в органическом растворителе постоянным электрическим током при напряжении 2,5-3,2 В и силе тока 90-200 мкА. При этом на катоде происходит выделение и осаждение щелочного или щелочноземельного металла в виде чешуек. На аноде происходит окисление анионного комплекса

[P2W18O62]24-→[P2W18O62]6-+18е.

Общий вид реакции можно записать в виде уравнения

Men[P2W18O62]+H2O=Me↓+H6[P2W18O62]+O2+H2.

Пример 1. Получение кальция.

Приготовили 17% (по массе) водный раствор гетерополикислоты 2-18 ряда, имеющей химическую формулу H6[P2W18O62]. Раствор налили в гальваническую ванну и опустили два графитовых электрода. Затем через раствор начали пропускать постоянный электрический ток. Напряжение между электродами составило 2,2 В. Начальная сила тока — 60 мкА. На катоде происходило восстановление анодного комплекса гетерополикислоты, а на аноде — выделение кислорода

H6[P2W18O62]+9H2O=H24[P2W18O62]+4,5O2.

После того как сила тока стала меньше 30 мкА, процесс остановили. Полученную кислоту нейтрализовали карбонатом кальция прямо в гальванической ванне с раствором. При этом наблюдалось выделение углекислого газа. Когда выделение углекислого газа прекратилось, порошок СаСО3 добавлять перестали.

Прекращение выделения углекислого газа означает, что кислота полностью нейтрализована. В виде химического уравнения реакции процесс можно записать следующим образом:

Н24[P2W18O62]+12СаСО3=Ca12[P2W18O62]+12СO2+12Н2O.

Полученную гетерополисоль выделили из раствора методом выпаривания и просушили. Сухие кристаллы Ca12[P2W18O62] растворили при температуре 18°С в γ-бутиролактоне, довели концентрацию до насыщения, после чего в раствор опустили два графитовых электрода (анод и катод) и электролизовали раствор постоянным электрическим током. Электролиз проводили при напряжении между анодом и катодом 2,9 В в течение 8 часов. Сила тока при этом составила 100 мкА. На катоде происходило окисление анодного комплекса

[P2W18O62]24-→[P2W18O62]6-+18е

с образованием исходной кислоты. Остаточная вода, которая осталась в Ca12[P2Me18O62], разлагалась в ходе процесса и часть водорода связывалась анодным комплексом.

Затраты электрической энергии составили 8,35 Дж, что в 16667 раз меньше, чем при обычном электролизе солей в растворах. Масса полученного кальция составила 10 г. Процесс получения кальция можно представить следующим уравнением:

9Ca12[P2W18O62]+28Н2O=108Ca↓+9Н6[P2W18O62]+14O22.

Гетерополикислота не реагирует в неводных растворах с металлическим кальцием.

Пример 2. Получение лития.

Приготовили 20% (по массе) водный раствор гетерополикислоты 2-18 ряда, имеющей химическую формулу H6[P2W18O62]. Раствор налили в гальваническую ванну и опустили два графитовых электрода. Затем через раствор начали пропускать постоянный электрический ток. Напряжение между электродами составило 2,3 В. Начальная сила тока — 70 мкА. На катоде происходило восстановление анодного комплекса гетерополикислоты, а на аноде выделялся кислород

H6[P2W18O62]+9H2O=H24[P2W18O62]+4,5O2.

После того как сила тока стала меньше 30 мкА, процесс остановили. Полученную кислоту нейтрализовали гидроксидом лития прямо в гальванической ванне с раствором. С помощью лакмусовой бумажки контролировали рН раствора. После того как рН стал равным примерно семи, LiOH добавлять перестали. рН, равный семи означал, что кислота полностью нейтрализована. В виде химического уравнения реакции процесс можно записать следующим образом:

Н24[P2W18O62]+24LiOH=Li24[P2W18O62]+24Н2O.

Полученную гетерополисоль выделили из раствора методом выпаривания и просушили. Сухие кристаллы Li12[P2W18O62] растворили при температуре 22°С в пиридине, довели концентрацию до насыщения, после чего в раствор опустили два графитовых электрода (анод и катод) и электролизовали раствор постоянным электрическим током. Электролиз проводили при напряжении между анодом и катодом 3,1 В в течение 8 часов. Сила тока при этом составила 140 мкА. На катоде происходило окисление анодного комплекса

[P2W18O62]24-→[P2W18O62]6-+18е

с образованием исходной кислоты. Остаточная вода, которая осталась в Li24[P2Me18O62], разлагалась в ходе процесса и часть водорода связывалась анодным комплексом.

Затраты электрической энергии составили 12,5 Дж, что в 5300 раз меньше, чем при обычном электролизе солей в растворах. Процесс получения лития можно представить следующим уравнением:

Li24[P2W18O62]+2Н2O=24Li↓+Н6[P2W18O62]+3O2+3Н2.

Масса полученного лития составила 1,59 г. Гетерополикислота не реагирует в неводных растворах с металлическим литием.

Эффект, который достигается в результате реализации заявленного способа, обусловлен тем, что дополнительная энергия, затрачиваемая на выделение щелочного или щелочно-земельного металла, накапливается в гетерополикомплексе в ядерной форме. За счет изменения степени окисления вольфрама происходит резкое изменение заряда всего комплекса, которое в конечном итоге приводит к возникновению частиц со сверхвысокими энергиями с последующими взаимопревращениями (RU №2168289, кл. Н 05 Н 1/00).

Резко снижаются затраты электроэнергии, что позволяет использовать способ для получения этих металлов в промышленных объемах, тем более что способ не требует специального высокотехнологичного оборудования.

В частности, полученный таким образом металлический кальций в дальнейшем может быть использован для получения водорода из воды.

Способ получения щелочных и щелочно-земельных металлов, включающий электролиз растворов солей в органическом растворителе, отличающийся тем, что предварительно приготавливают 15-25% по массе водный раствор гетерополикислоты 2-18 ряда, имеющей вольфрамовый анионный комплекс [P2W18О62]6-, который восстанавливают до анионного комплекса [P2W18О62]24- путем пропускания постоянного электрического тока, сила которого составляет 30-100 мкА, при напряжении 2-2,5 В с последующим образованием гетерополикислоты восстановленной формы Н242W18O62], после чего ее нейтрализуют карбонатом или гидроксидом щелочного или щелочно-земельного металла до образования гетерополисоли, которую обезвоживают выпариванием и растворяют в органическом растворителе до насыщения при температуре 15-22°С, затем в раствор опускают два графитовых электрода, анод и катод, и электролизуют раствор соли в органическом растворителе постоянным электрическим током при напряжении между электродами 2,5-3,2 В и силе тока 90-200 мкА до образования на катоде щелочного или щелочно-земельного металла в виде чешуек.

findpatent.ru

«Понятие о металлургии. Способы получения металлов. Сплавы (сталь, чугун, дюралюминий, бронза). Проблема безотходных производств в металлургии и охрана окружающей среды»

Дата_____________ Класс_______________

Тема: Понятие о металлургии. Способы получения металлов. Сплавы (сталь, чугун, дюралюминий, бронза). Проблема безотходных производств в металлургии и охрана окружающей среды.

Цели урока: знать определение металлургии, способы промышленного получения металлов, роль русских ученных в развитии металлургии; знать понятие руды и пустой породы, основные стадии получения металла.

Ход работы

1. Организационный момент урока.

2. Изучение нового материала.

Природные соединения металлов

 

Металлы могут встречаться в природе или в виде простого вещества или в виде сложного вещества.

 

Металлы в природе встречаются в трёх формах:

 

1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)

2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)

3. Благородные – в свободном виде (Au, Pt, Ag)

 

Чаще всего металлы в природе встречаются в виде солей неорганических кислот или оксидов:

 

  • хлоридов – сильвинит КСl • NaCl, каменная соль NaCl;

  • нитратов – чилийская селитра NaNO3;

  • сульфатов – глауберова соль Na2SO4 · 10 H2O, гипс CaSO4 • 2Н2О;

  • карбонатов – мел, мрамор, известняк СаСО3, магнезит MgCO3, доломит CaCO3 • MgCO3;

  • сульфидов –  серный колчедан FeS2, киноварь HgS, цинковая обманка ZnS;

  • фосфатов – фосфориты, апатиты Ca 3(PO4)2 ;

  • оксидов – магнитный железняк Fe3O4, красный железняк Fe2O3, бурый железняк Fe2O3 • Н2О.

 

Ещё в середине II тысячелетия до н. э. в Египте было освоено получение железа из железных руд. Это положило начало железному веку в истории человечества, который пришёл на смену каменному и бронзовому векам. На территории нашей страны начало железного века относят к рубежу II и I тысячелетий до н. э.

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией. Так же называется и наука о промышленных способах получения металлов из руд.

 

Металлургия – это наука о промышленных способах получения металлов.

 

Получение металлов

 

Большинство металлов встречаются в природе в составе соединений, в которых металлы находятся в положительной степени окисления, значит для того, чтобы их получить, в виде простого вещества, необходимо провести процесс восстановления.

Ме+n  + ne → Me0

 

I. Пирометаллургический способ

Это восстановление металлов из их руд при высоких температурах с помощью восстановителей неметаллических — кокс, оксид углерода (II), водород; металлических — алюминий, магний, кальций и другие металлы.

 

1. Получение меди из оксида с помощью водорода – Водородотермия:

 Cu +2O + H2 = Cu0 + H2O

 

2. Получение железа из оксида с помощью алюминия –Алюмотермия:

 Fe+32O3 +2Al = 2Fe0 + Al2O3

 

Для получения железа в промышленности железную руду подвергают магнитному обогащению:

3FeO3 + H2 = 2FeO4 + H2O или 3Fe2O3 + CO = 2Fe3O4 + CO2 , а затем в вертикальной печи проходит процесс восстановления:

 Fe3O4 + 4H2 = 3Fe + 4H2O

Fe3O4 + 4CO = 3Fe + 4CO2

 

II. Гидрометаллургический способ

Способ основан на растворении природного соединения с целью получения раствора соли этого металла и вытеснением данного металла более активным.

 

Например, руда содержит оксид меди и ее растворяют в серной кислоте:

 

1 стадия – CuO + H2SO= CuSO4 + H2O,

2 стадия – проводят реакцию замещения более активным металлом

CuSO4 + Fe = FeSO4 + Cu.

 

III. Электрометаллургический способ

Это способы получения металлов с помощью электрического тока (электролиза).

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы.

При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов:

 

2NaCl эл.ток→ 2Na + Cl2

 2Al2O3 эл.ток→  4Al + 3O2

 

IV. Термическое разложение соединений

 

Например, получение железа:

Железо взаимодействует с оксидом углерода (II) при повышенном давлении и температуре 100-2000, образуя пентакарбонил:

 Fe + 5CO = Fe (CO)5

 

Пентакарбонил железа-жидкость, которую можно легко отделить от примесей перегонкой. При температуре около 2500 карбонил разлагается, образуя порошок железа:

Fe (CO)5 = Fe + 5CO↑

 

Если полученный порошок подвергнуть спеканию в вакууме или в атмосфере водорода, то получится металл, содержащий 99,98– 99,999% железа.

  

Реакции, лежащие в основе получения металлов

1. Восстановление металлов из оксидов углем или угарным газом

MxO+ C = CO2 + Me  или   MxO+ CO = CO2 + Me 

 

Таким образом, мы познакомились с природными соединениями металлов и способами выделения из них металла, как простого вещества.

Проблема безотходных производств в металлургии

и охрана окружающей среды

 

Безотходная технология — технология, подразумевающая наиболее рациональное использование природных ресурсов и энергии в производстве, обеспечивающее защиту окружающей среды.

Безотходная технология — принцип организации производства вообще, подразумевающий использование сырья и энергии в замкнутом цикле. Замкнутый цикл означает цепочку первичное сырьё — производство — потребление — вторичное сырьё.

Как известно, при обжиге руд цветных металлов образуются газы, содержащие оксид серы (IV) – SO2. Этот газ засоряет окружающую среду, но  его можно улавливать и использовать для производства серной кислоты. В результате можно не только предотвратить загрязнение окружающей среды, но и получить дополнительную прибыль. Так, например, при получении 1 т меди можно получить примерно 10 т серной кислоты.

3. Домашнее задание

П.35, 45-47, упр.1-3, 5-6 на стр. 147.

Выполнить доклады по темам:

1. Курская магнитная аномалия.

2. ОЭМК.

3. Лебединский ГОК.

4. Стойленский ГОК.

5. М. В. Ломоносов.

6. Н. Н. Курнаков.

7. П. П. Аносов.

8. Д. И. Чернов.

2. Обжиг сульфидов с последующим восстановлением

1 стадия – MxSy+O2=MxOy+SO2

2 стадия —  MxO+ C = CO2 + Me  или   MxO+ CO = CO2 + Me

3. Алюминотермия (восстановление более активным металлом)

MxO+ Al = Al2O3 + Me 

4. Водородотермия

MxO+ H2 = H2O + Me 

doc4web.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *